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Abstract

Strengthening of reinforced concrete (RC) columns is needed when the actual load-carrying capacity of the
columns does not reach the required level due to either structural deterioration or increasing acting loads. This
experimental study aims to evaluate the strengthening effect on the eccentrically-compressed RC columns us-
ing Carbon fiber reinforced polymer (CFRP) sheets, that confine around the column cross-section. Three RC
column specimens with the same geometrical dimensions, reinforcement detailing, and concrete compressive
strength were cast and tested in the current experimental investigation. One RC column without being strength-
ened is referred as the control specimen whereas two other RC columns were partially strengthened by CFRP
sheets. All three RC columns were axially loaded with the same initial eccentricity e0 of 80 mm. Based on the
test results such as the ultimate load-carrying capacity, the load-rotation relationship, and load-curvature at the
middle of column height, the effectiveness of the strengthening technique is discussed.
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https://doi.org/10.31814/stce.huce(nuce)2021-15(4)-15 © 2021 Hanoi University of Civil Engineering (HUCE)

1. Introduction

The reduction of the actual load-bearing capacity of existing RC columns due to structural dete-
rioration or increasing acting loads on existing buildings due to the change of building functionality
addresses the need for structural strengthening. Fig. 1 shows the RC columns whose middle section
has been environmentally deteriorated. Besides traditional strengthening methods such as widening
cross-sections, using post-tensioned reinforcement, and adding steel section, using Fiber-reinforced
polymer (FRP) in enhancing the structural performance of supporting columns has been more and
more common in recent years. One of the composite materials that has been commonly used for
strengthening purposes is Carbon fiber reinforced polymer (CFRP) due to its superior characteris-
tics such as high compressive strength, high elastic modulus, lightweight, and not to be corroded
[1–6]. In addition to the advantages of mechanical characteristics, CFRP strengthening technique is
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often simpler to be applied in a short period of construction time [7]. Furthermore, CFRP sheets can
be easily wrapped around the column section using high-strength adhesive to provide confinement
effects, resulting in increased load-carrying capacity [8–17].
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Figure 1. Deterioration of RC column

In recent years, there have been a number of
studies to investigate FRP confining effects on RC
columns subjected to concentrical loads. Hadi and
Li [8] tested a series of FRP-wrapped RC columns
with a circular section subjected to different lev-
els of eccentric loading conditions. The effects
of the concrete strength, internal steel reinforce-
ment, wrap types, and eccentricity were investi-
gated. In a study performed by Parvin and Wang
[9], a series of scaled RC columns with square
cross-section were strengthened with varying lay-
ers of carbon fiber reinforced polymer (CFRP)
composites that have been tested to failure using
statically axially loading conditions with different
eccentricities. Yuan et al. [10], Hassan et al. [14]
performed a comparative study of concrete stress-
strain models and applied these models for FRP
confined RC columns under combined bending
and compression and axial load-bending moment
(P-M) interaction curve were presented.

Although the previous studies provide significant insights into the strengthening effects on ec-
centrically compressed RC columns, there have been a limited experimental evidence for either RC
columns with rectangular section or those partially strengthened with CFRP materials. The experi-
mental investigation presented herein aims to provide such lacked information based on the test on
three CFRP strengthened RC columns that are eccentrically loaded. The findings of this study will
be of interest for engineers those are involved in retrofitting and strengthening of RC structures with
CFRP materials. The experimental research has been carried out in the Laboratory of Construction
Testing and Inspection, Hanoi University of Civil Engineering (HUCE).

2. Experimental study

2.1. Test specimens and materials

The experimental program consisted of three RC columns under combined axial-flexural loading
conditions. All test specimens had the same rectangular section of 150 × 200 mm, with two end
corbels with a cross-section of 150 × 400 mm and a length of 400 mm. The overall length of the
test specimens was 1600 mm. All column specimens were reinforced longitudinally in the test region
with four deformed rebars with 14 mm diameter which corresponded to a steel reinforcement ratio of
2.05%. The transverse reinforcement consisted of deformed rebars with 6 mm diameter, spaced at 100
mm from center to center. The clear concrete cover was 20 mm. The corners of the cross-section were
rounded to a radius of 15 mm. To ensure that failure would occur in the test region, the end corbels
were designed to have sufficient flexural and shear strengths that are well beyond the anticipated
failure load of the column section in the test region. The dimensions of the test columns and details
of steel reinforcement are shown in Fig. 2.
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Among the column specimens, one un-strengthened column, named C-0, was used as a reference
specimen. Two other column specimens, named C-S-3 and C-S-4, were strengthened using CFRP
sheets. Partial CFRP wrapping schemes were used in this study (Fig. 2). One layer of CFRP, with
the fibers oriented in a transverse direction, were partially wrapped around the column’s section in
the test region. All CFRP strips were 100 mm wide at a spacing of 175 mm (center to center). The
strengthening procedure for C-S-3 and C-S-4 specimens consist of four main steps, including: prepare
the bottom face of the columns, apply epoxy to the prepared surface, install the CFRP sheets, and
allow the epoxy to cure in 48 hours. The cleanness and smoothness of the column’s bottom surface in
the preparation process is the key step in this procedure that allow the CFRP sheets to develop their
full strength when the columns are loaded.
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Figure 2. Details of test specimens and CFRP wrapping schemes 
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Figure 2. Details of test specimens and CFRP wrapping schemes

Table 1. Mixture proportions for 1 m3 of concrete (kg/m3)

Cement PCB40 Sand Coarse aggregate Water Average cylinder strength R28 (MPa)

365 680 1260 175 23.5
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All column specimens were cast in the same batch with the concrete mix ratio shown in Table 1.
The average cylinder compressive strength measured at the age of 28 days is 23.5 MPa. Yield strengths
of longitudinal and transversal reinforcing bars were 330 MPa and 490 MPa, respectively.

The CFRP sheets used in this study were unidirectional and manufactured by Toray Carbon Co.
Ltd (Japan). Table 2 presents the mechanical properties of the CFRP sheets provided by the manufac-
turers.

Table 2. Mechanical properties for CFRP sheets

Thickness (mm)
Modulus of elasticity

(GPa)
Ultimate tensile strength

(MPa)
Ultimate tensile elongation

(%)

0.111 245 3400 1.6

2.2. Test setup and instrumentations

Fig. 3 illustrates the typical test setup for the current experimental investigation and Fig. 4 shows
a test in progress. All specimens were tested under monotonically increasing eccentric loading. A
hydraulic actuator was used to apply the axial load to the columns. The upper ends of the column
specimens were attached to the actuator, while the lower ends were supported on the steel reaction
frame. Both end supports were designed as hinged connections with the initial eccentricity e0 of
80 mm. This eccentricity is equal to the distance between the applying load and the centroid of the
column’s cross-section in the test region. The lateral stability of each specimen in and out of the plane
was maintained by appropriate steel support as shown in Fig. 3.
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Three Linear Variable Differential Transducers LVDT-1, LVDT-2, LVDT-3 were used to measure
transversal displacements which were placed with a space of 750 mm along the column length (LVDT-
1 and LVDT-3 are next to the hinged supports). The lateral displacement of the columns is used to
construct the load-displacement curves can be calculated by the following formula:

f = f2 − 0.5 ( f1 + f3) (1)
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where f1, f2, and f3 are the reading values of LVDT-1, LVDT-2, and LVDT-3, respectively.
LVDT-4 and LVDT-5 were mounted on the concrete surface in the longitudinal direction at the

tension and compression side, to measure the longitudinal displacement over a 400 mm gauge length.
During the test, load, transversal and longitudinal displacements were monitored by a digital data
logger system TDS-530 (Tokyo Sokky). The tests were performed up to the failure of the specimens.
The test was stopped when the concrete was crushed on the compression face for the unstrengthened
column or when the CFRP failed on the tension face for the strengthened specimens.

3. Test results and discussions

3.1. Overall behavior and failure mode

Fig. 5 shows the photos of failure and the failure region of all tested specimens. It can be seen that
the overall behavior of the unstrengthened and strengthened specimens was typical. Tensile cracks ap-
peared on the tension face at the early stages of loading and propagated with increasing of the applying
load. The cracks in the mid-height region of the specimen were opened extensively when the tensile
stress of the longitudinal steel bars reached yield stress. The applying load dropped when the concrete
on the compression face at the mid-height region was crushed and the compressive longitudinal steel
bars buckled. For strengthened specimens, C-S-3 and C-S-4, the crushing of concrete happened at the
unconfined zone between two adjacent strips of CFRP. Before the failure of all strengthened speci-
mens, the maximum lateral displacement was almost seen at the mid-height of the specimens and the
curvature was visible. There is no debonding between the CFRP layer and the concrete during the
test. These results show the role of CFRP sheets in limiting the failure area of concrete in the com-
pressive zone and in preventing the buckling of longitudinal compressive reinforcements. The overall
behavior of the strengthened specimens shows the contribution of CFRP-partially wrapped rectangu-
lar concrete columns under eccentric loading for increasing the load-bearing capacity and post-peak
behavior of strengthened specimens.
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3.2. Load – lateral displacement relationship

The load versus lateral mid-height displacement curves with 80 mm eccentricity for the un-
strengthened and strengthened columns are shown in Fig. 6. The summary of the ultimate load and
the corresponding lateral mid-height displacement is given in Table 3.
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Figure 6. Load-lateral displacement relationship

It can be seen that before the fracture of test-
ing specimens, the lateral displacement of the
unstrengthened and strengthened columns is al-
most identical. The unstrengthened specimen C-0
was failure at the ultimate load of 420 kN. Two
strengthened specimens C-S-3 and C-S-4 were
failures at 440 kN and 445 kN, respectively. The
mean increasing of load-bearing capacity is about
6% for the strengthened columns. After the failure,
the applying eccentric load was significantly de-
creased for the C-0 specimen, and for the strength-
ened specimens, the residual eccentric loads were
maintained. These obtained results show that the
contribution of CFRP wraps to limit the crushing
of concrete in the compressive side and the buck-
ling of longitudinal steel bars.

Table 3. Ultimate axial load and corresponding lateral displacement

Specimens Ultimate load Pul (kN) Corresponding lateral displacement (mm)

C-0 420 5.3
C-S-3 440 7.7
C-S-4 445 8.5

3.3. Moment - curvature relationship

The moment-curvature behaviors of the tested specimens at the mid-height of the test length are
shown in Fig. 7. The bending moment M was calculated by multiplying the applying load P by actual
eccentricity as shown in Eq. (2). At each load step, the actual eccentricity was determined by the sum
of the initial eccentricity e0 and mid-height displacement f at the previous load step. In this way, the
bending moments were evaluated considering second-order effects.

M = P (e0 + f ) (2)

The curvature of the columns, ϕ, was obtained using the differential longitudinal strain on the
tensile face and compressive face of the mid-height section as follows:

ϕ =
εL,T − εL,C

h
(3)

where εL,T and εL,C are the longitudinal strain of the tensile and compressive face, respectively (they
are the reading values of LVDT-4 and LVDT-5), h is the height of the section (i.e, 200 mm).
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The moment-curvature relations are depen-
dent on the stress-strain characteristics of the rein-
forcing steel and the compressive strength of con-
crete. It can be seen that the bending-curvature be-
havior is similar to load-lateral displacement be-
havior for all test specimens. The CFRP partially
wrapped significantly improved the curvature ca-
pacity of the specimen but the flexural stiffness is
not affected. In this case, after the peak, the curva-
ture capacity of two strengthened specimens has
been significantly observed. These obtained re-
sults show the contribution of CFRP, by confining
the compressed concrete, to improve the ductility
of strengthened column specimens.

3.4. Curvature ductility factor

The moment-curvature analyses can be used to determine the curvature ductility of structural
concretes. The curvature ductility factors µ can be calculated by the following formula:

µ =
ϕmax

ϕy
(4)
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Figure 8. Determination of yield and maximum
curvature of RC columns

where ϕy is the corresponding curvature at the
yield of the longitudinal reinforcing steel and ϕmax
is the maximum curvature. The alternative defini-
tions which have been used to estimate the yield
and maximum curvature of RC columns are illus-
trated in Fig. 8 [18]. The yield curvature ϕy was
found as the secant bending stiffness at 75% of the
ultimate bending moment.

The curvature ductility factor values in Table 4
show that the CFRP wrapped significantly con-
tributes to increasing the ductility of the column.
Partial CFRP wrapping is effective in the strength-
ening of RC structures working in earthquake ar-
eas, in order to limit the sudden collapse of the
structural members.

Table 4. Curvature ductility factor

Specimens ϕy (10−6× rad/m) ϕmax (10−6× rad/m) µ =
ϕmax

ϕy

C-0 28.5 61.5 2.2
C-S-3 30.8 121.5 4.0
C-S-4 31.5 143.3 4.5

178



Nguyen, T. H., et al. / Journal of Science and Technology in Civil Engineering

3.5. Comparison between analytical predictions and experimental results

In the case of RC columns with rectangular cross-section, according to ACI 440.2R-17 [1] and
fib 14 [2], the maximum confined concrete compressive strength, f ′cc, and the maximum confine-
ment pressure fl are calculated using Eq. (5) and (6), respectively, with the inclusion of an additional
reduction factor ψ f equals to 0.95.

f ′cc = f ′c + ψ f 3.3κa fl (5)

fl =
2nE f t f ε f e

D
κe (6)

In Eq. (5), κa is the efficiency factor accounts for the geometry of the section. In Eq. (6), n is the
number of CFRP plies, t f is the thickness per ply, E f is the modulus of elasticity of CFRP material,
ε f e is the effective strain in FRP at failure that equals 0.586ε f u (ε f u is the design rupture strain of
FRP), D is the diameter of equivalent circular column, κe is the confinement effectiveness coefficient
accounts for the influence of partial wrapping [2].

The factor κa can be calculated as follow:

κa =
Ae

Ac

(
b
h

)2

(7)

Ae

Ac
=

1 −

[(
b
h

)
(h − 2rc)2 +

(
h
b

)
(b − 2rc)2

]
3Ag

− ρg

1 − ρg
(8)
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where Ac and Ae are the cross-sectional area
and the effective cross-section area, respectively
(Fig. 9), Ag is the gross cross-sectional area, rc is
the radius of the corner, ρg is the longitudinal steel
reinforcement ratio.

The diameter of equivalent circular cross-
section D can be calculated as the diagonal of the
rectangular cross-section:

D =
√

b2 + h2 (9)

To take into account the effectiveness of this strengthening method, in this research, it is proposed
using coefficient κe (κe < 1) in calculating the maximum confinement pressure in Formulation (5).
The coefficient κe is determined based on fib 14 [2], where a column rectangular section is replaced
by a column circular section with an equivalent diameter shown in (9), and given as:

κe =

(
1 −

s′

2D

)2

=

(
1 −

s′

2
√

b2 + h2

)2

(10)

where s′ is the clear spacing between the FRP wraps. In this study s′ is 75 mm (Fig. 2).
The above-mentioned equations were used to determine the maximum confinement concrete com-

pressive strength. The summary of the calculated parameters for strengthened columns C-S-3 and
C-S-4 is given in Table 5.

According to the guideline of ACI 440.2R-17 [1], the axial load-moment (P − M) interaction
diagrams for the un-strengthened and strengthened columns were constructed and presented in Fig. 10.
It can be seen that the prediction results were suitable in comparison with experimental results.
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Table 5. Summary of calculation parameters

κa κe fl f ′c f ′cc

0.30 0.72 1.47 23.5 24.9
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Figure 9. Confinement effectiveness cross-sectional area 
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4. Conclusions

This paper presents an experimental investigation on the CFRP strengthening effects on eccentri-
cally compressed RC columns with rectangular cross-section. Three specimens, one is un-strengthened
while two others are partially strengthened, have been tested to failure. Based on the obtained test re-
sults, several conclusions can be drawn as follows:

- The behavior of strengthened columns with CFRP partially wrapped was typical with the same
compression-controlled failure mode which is characterized by yielding of tensile longitudinal steel
bars and crushing of compressive concrete on the compression face.

- It has been shown that the CFRP partial wrapping has significantly improved the curvature
capacity of the column specimens. However, the flexural stiffness of the strengthened columns is not
affected.

- The contribution of CFRP wrapped was also shown for the post-peak response of the strength-
ened columns. The CFRP sheets were effectively activated to limit the stiffness degradation and to
increase the ductility of the strengthened columns.
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