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Abstract

We study static mechanical behavior of non-uniform hexagonal cross-sections for thin-walled functionally
graded beams using a non-traditional computational approach based on artificial neural network. One of the
main objectives of our approach is to save the computational cost for the optimization process, which is usually
time-consuming by using traditional methods such as finite element method (FEM). In this study, 1000 data
sets randomly generated by the FEM through iterations are used for the training process to get optimal weights.
Based on these obtained optimal weights, beam behaviors under the changes in material distribution through
thickness could then be predicted. In this model, the ANN’s inputs are the gradation index of the power-law
distribution and thickness, while the outputs are compliance and beam displacements. The computed results
are verified against those derived from the FEM.
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1. Introduction

Thin-walled structures have been widely applied in a variety of engineering applications including
building construction, storage racks, automotive, and aircraft [1, 2]. The functionally graded materials
(FGMs) with superior metal and ceramic continuity which aid in the elimination of abrupt transitions
between distinct materials have been introduced. Thermal and flexural resistances are among their
advantages, and thin-walled structures integrated with FGMs have been developed in many studies
[3–6].

Many studies have previously been developed such as a well-known study of Vlasov [7] or Tews
et al. [8] who proposed an automatic hp-adaptive finite element method (FEM) for efficiently describ-
ing geometries and that allowed simulation on a variety of structures. In the analysis of thin-walled
structures, Rank et al. [9] used a finite cell method with a fictitious domain approach which uses
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higher-order shape functions. Though solutions found in the literature have demonstrated to be quite
effective, there are still some issues where natural behavior aspects have not been fully considered, for
example higher-orders of distortion as it occasionally takes more effort to complete. Besides, polyg-
onal cross-sections have become increasingly appealing to many recent studies and a more thorough
analysis of their mechanical behaviors is necessary. As a result, Nguyen et al. [10, 11] developed
design technique for thin-walled FG beams with polygonal cross-sections that takes into account
higher-order warping, distortion and anisotropy of FGMs. In their works, the FEM was used to model
the structures. However, such method is computationally expensive for numerical analysis.

Besides, ANN is a computational model based on the architecture of biological neural networks
that aims to simulate how humans learn from data. In most cases, an ANN is made up of layers:
hidden, input, and output, each of which is made up of nodes. ANN has been widely used in a variety
of fields, including robots, computer vision, translation, speech recognition, self-driving cars, and
engineering mechanics. In particular, Vesperini et al. [12] proposed an ANN for multi-room speaker
localization, in which convolutional neural networks and multi-layer perceptron architectures were
investigated. In the engineering field, Do et al. [13] presented an ANN for material optimization
of functionally graded plates under buckling load or free vibration. Le et al. [14] proposed a risk
assessment framework using ANN technique. The framework with successful model has been used
as a tool to help construction companies assess risk and evaluate its impact on project profitability.
Besides, a hybrid deep learning algorithm was proposed for structural damage detection tasks [15].
That approach aimed to reduce required resources and has the capability to deal with different damage
levels. Moreover, Truong et al. [16] suggested Deep Neural Network for estimation of ultimate load
factor of nonlinear inelastic steel truss. Based on obtained numerical results, the high accuracy of the
method was verified. And several other studies in the engineering field were shown in the literature
as [17, 18]. ANN’s effectiveness and accuracy have been confirmed through above studies.

Therefore, in this study, ANN is proposed to predict the behavior of non-uniform hexagonal cross-
sections for thin-walled FG beams in the first time. Because, for optimization problems, to identify
a globally optimal solution, a significant number of structural analyses is required; consequently, nu-
merical analysis of the thin-walled FG beams based on FEM must be performed numerous times. As
a result, there is a significant increase in the cost of computing. To overcome this limitation, artifi-
cial neural network (ANN) is proposed as an efficient way to predict the behavior of thin-walled FG
beams quickly. The ANN is used in place of FEM to reduce computational time while maintaining
the quality of the results. In which, 1000 data sets for training process are generated randomly by
FEM through iterations. The number of data sets is significant smaller than the number of structural
analyses which are required in the optimization problems. After the training process, beam behav-
iors under changes in material distribution through thickness and thickness can be predicted quickly
without using FEM. In addition, the influence of the number of hidden layers and epochs in an ANN
on accuracy and computational cost is considered. The effectiveness and reliability of the proposed
approach are demonstrated through numerical examples in terms of accuracy and computational cost.

2. Theory of thin-walled beam

2.1. Kinematics

A combination of higher-order modes and 1D deformations are used to define 3D displacements
of an arbitrary point on a cross-section in the axial direction. Governing equations are established
using the principle of the minimum potential energy, based on stress-strain relations, stress resultants
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Figure 1. Geometries and coordinates of a thin-walled hexagonal cross-section

and constitutive equations. The contour displacements or 3D middle plane on the general hexagonal
cross-section, as depicted in Fig. 1, can be determined as follows:

ū = Ψ · U (1)

in which

ū =


ūn

ūs

ūz

 (2)

where s, n-axes are, which are in-plane coordinates, tangential and normal to the mid- surface of a
cross-section, respectively; and z-axis parallels to the beam’s axial direction. In Fig. 1, αi symbolizes
the angle between the edge ith and x-axis.

The shape functions described by s variation in the contour direction of a cross-section, which
include conventional rigid bodies and higher-order deformations, are given as:

Ψ =


Ψn(s)
Ψs(s)
Ψz(s)

 (3)

The displacements for any arbitrary position on a cross-section can be simply calculated using
Kirchhoff-Love assumptions as follows:

u∗ =


u∗n
u∗s
u∗z

 =


ūn

ūs − n
∂ūn

∂s

ūz − n
∂ūn

∂z


(4)

In comparison to other thin-walled theories, shear strains in the mid-plane are probably negligible
as an acceptable solution due to its complexity in multi-dimensional and multi-variable issues. These
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effects are, however, taken into consideration in our research in order to achieve more accurate results
and properly represent the behavior of the thin-walled FG beam. In the case of planar stress, the strain
vector can be approximated as:

ε =


εs

εz

γsz

 =



∂u∗s
∂s
∂u∗z
∂z

∂u∗z
∂s

+
∂u∗s
∂z


'



(
∂Ψs(s)
∂s

− n
∂2Ψn(s)
∂s2

)
· U

Ψz(s)
∂U
∂z
− nΨn(s)

∂2U
∂z2

Ψs(s)
∂U
∂z

+
∂Ψz(s)
∂s

· U − 2n
∂Ψn(s)
∂s

∂U
∂z


(5)

In this study, a sandwich material is used in which the ceramic material at the middle plane is
specified by βh ranging from −0.5βh to 0.5βh and subsequently reaches full metal on both sides
as shown in Fig. 2. The Young’s modulus at any point across the thickness is calculated using the
Young’s modulus of ceramic Ec or metal Em as follows:

E(n) = (Ec − Em)Vc + Em (6)

where the ceramic volume fraction is written as follows: Vc =

[
−|n| + 0.5h
0.5(1 − β)h

]k

, −0.5h ≤ n ≤ −0.5βh or 0.5βh ≤ n ≤ 0.5h

Vc = 1, −0.5βh ≤ n ≤ 0.5βh
(7)

Figure 2. A hexagonal cross-section with DOFs on each edge and material distribution
through the thickness direction

It is worth noting that the gradation index k can take on any value between 0 and infinity. When
k reaches infinity, entire metal will cover the outside, while core ceramic βh will be positioned in the
middle. If k is 0 , the material is now purely ceramic in all cross-section areas.

The internal strain energy within the whole domain V can be written as follows in terms of strains
and stresses:

U =
1
2

∫
V
σTεdV =

1
2

∫
V
εTC(n)εdV (8)
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where C(n) is the material matrix for stress-strain.

2.2. Beam frame modal

Because the lowest eigenmodes frequently occur in thin-walled profiles, it has been discovered
that the beam frame model can be used to obtain more accurate behaviors in practice. A multi-beam
Euler element with a 3-degree-of-freedom node is considered on each edge of a given cross-section,
as shown in Fig. 2.

The displacements are determined using the following formula:

U = Hu (9)

where u denotes nodal displacement and H is the displacement interpolation matrix, which includes
linear Lagrange and Hermite cubic interpolation functions.

As shown in Fig. 2, the nodal displacement vector for an element with nodes ith and (i + 1)th is
defined as:

u =
{

ui
s ui

n φi ui+1
s ui+1

n φi+1
}T

(10)

For the beam frame modal, the stiffness of an element can be calculated as:

KBF
e =

∫
V

BTCBdV =

∫ le

0

∫ bBF

0

∫ h/2

−h/2
BTCBdndzds (11)

The explicit form of the stiffness matrix at the element level is:

KBF
e =



KBF
11 KBF

12 KBF
13 KBF

14 KBF
15 KBF

16
... KBF

22 KBF
23 KBF

24 KBF
25 KBF

26
... KBF

33 KBF
34 KBF

35 KBF
36

... KBF
44 KBF

45 KBF
46

... KBF
55 KBF

56
sym. . . . . . . . . . . . . KBF

66


(12)

Then the global stiffness matrix KBF is created by assembling element stiffness matrices KBF
e as

follows:

KBF =

N∑
e=1

TT
e KBF

e Te (13)

After that, the equations are collected in a systematic manner to solve the standard eigenvalue
problem: [

KBF KL

sym. 0

] {
Ψχ

ϕ

}
= λ

{
Ψχ

0

}
(14)

where KL,Ψχ,ϕ and λ are represented as constraint matrix, nodal displacement vector, Lagrange
multiplier and eigenvalue, respectively. The orthogonality of distortions is then handled over cross
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area A in terms of translational displacements and rotational angle as follows:∫∫
A
ψ
χ
sψ

x
sdnds = 0∫∫

A
ψ
χ
sψ

y
sdnds = 0∫∫

A
ψ
χ
sψ

θ
sdnds = 0

(15)

where ψχs symbolizes distortion shape function for s-direction; ψx
s , ψ

y
s, ψ

θ
s represent in-plane rigid body

translations for the x- and y-axis and torsional rotation about the z-axis, respectively.
Warping is then calculated based on constant shear flow conditions

ψW
z (s) =

∫
s

(
dψχs
ds

ds
)

ds (16)

For out-of-plane rigid body modes, orthogonality is applied completely to the warping.

2.3. Finite element formulations

An element with two nodes i and j that correspond to two hexagonal cross-sections i and j is
considered throughout the length of the beam. It should be noted that the planes comprising these
sections are always defined to be normal to the beam center line, which leads to the center of each
cross-section tracing from one end to the other end for all cross-sections. As a result, by using a
sufficient number of straight elements, the technique allows the beam to vary in curvature.

Two sets of local coordinates are used to model thin-walled beam elements: (ni, si,mi) coordinate
is defined as mi is normal to cross-section plane, si is associated with contour direction, and ni is
orthogonal to si and mi;

(
n′i , si,m′i

)
coordinate is defined as n′i is normal to mid-surface of face ith, and

m′i is orthogonal to
(
n′i , si

)
The strain can now be rewritten using Eqs. (5) and (9) as follows:

ε =



(
∂Ψs(s)
∂s

− n
∂2Ψn(s)
∂s2

)
·H

Ψz(s)
∂H
∂z
− nΨn(s)

∂2H
∂z2

Ψs(s)
∂H
∂z

+
∂Ψz(s)
∂s

·H − 2n
∂Ψn(s)
∂s

∂H
∂z


· u = Bu (17)

in which B symbolizes the strain-displacement matrix.
The variation of total potential energy can be calculated in general form using Eq. (8) as:

δΠ =

∫
V
δuTBTCBudV −

∫
V

fδudV −
∫

S
t̂δudS

= δuT
(∫

V
BTCBdV

)
u − Fδu

(18)

where f and t̂ denote the body force vector and surface traction on an area S , respectively.

6



Do, D. T. T., et al. / Journal of Science and Technology in Civil Engineering

The principle of minimum total potential energy is then applied, as follows:

δΠ = 0 (19)

All components must be performed in local coordinates to accurately describe stresses and strains.
Natural coordinates (ξ, η, ζ) and direction cosine vectors n̂′i j of

(
n′i , si,m′i

)
can be used to carry out this

transformation as follows:
∇u′ =

(
n̂′i j

)T
· ∇u · n̂′i j (20)

in which
∇u = J−1 · ∇uξηζ (21)

with J denoting the Jacobian matrix.

3. Artificial neural network

Fig. 3 depicts a feed-forward neural network as an artificial neural network (ANN) with connec-
tions that do not form a cycle. This network is made up of N layers, with information flowing in only
one direction from the input layer to the (N−1) hidden layers and finally to the Nth output layer. Every
two-unit has a connection in the neighboring layers, to which a connection weight is added. Each unit
in the current layer receives a sum of the output values of the units in the previous layer multiplied by
the corresponding connection weights and provides the activation function’s output value for the sum
as shown below.

Op
j = f

(
U p

j

)
= f

np−1∑
i=1

wp−1
ji × Op−1

j + θ
p
j

 (22)

in which U p
j and Op

j represent the input and output values of the activation function of the jth unit in

the pth layer, respectively; and wp−1
ji denotes the connection weight between the ith unit in the (p−1)th

layer and the jth unit in the pth layer; θp
j denotes the bias of the jth unit in the pth layer; and f denotes

the activation function.

Figure 3. A feed-forward neural network structure

An identity mapping is used in this study for the activation function in the regression problem.
In which Softplus which is a nonlinear function and widely used in ANN is used in this study. This
activation function is described as follows:

f (x) = ln
(
1 + ex) (23)
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A training pattern is a pair of input and output data. A corresponding target data will be predicted
from input data in the training pattern. These target data are compared to the corresponding output
data to calculate the value of some predefined error functions. The mean square error (MSE) is one of
the most commonly used methods for evaluating regression problems, and it is described as follows:

EMS E =
1
n

n∑
j=1

(
O j − T j

)2
(24)

in which n is the result of the number of training elements multiplied by the number of output neurons;
O j is the training pattern’s output data; and T j is the target data predicted from the training pattern’s
input data.

During the training phase, an optimizer of the gradient descent method minimizes a loss function
similar to Eq. (24) to find the optimal weight parameter. In this study, Adam optimizer [19], which
is a method for powerful stochastic optimization, is utilized. This method only requires first-order
gradients and requires very little memory. Furthermore, its benefits combine those of two currently
well-known methods: AdaGrad and RMSProp.

Mini-batch gradient descent (mBGD) [20] computes error for each of examples in the training
data set. This technique is used to divide the training data set into small batches in order to compute
model error and then update model coefficients. mBGD is the result of a trade-off between the effi-
ciency of BGD and the robustness of stochastic gradient descent. Some benefits of mBGD have been
discovered. The effectiveness of this approach is particularly evident in the memory without all train-
ing data because the frequency updated by this model is higher than BGD. mBGD could converge
faster and avoid local solutions. Therefore, mBGD is used in this study.

4. Numerical example

In this study, a cantilever beam with a hexagonal cross-section shown in Fig. 1 as in study [10]
in which cross-section axially varies from one end (z = 0) to the other end (z = L) is considered. The
lengths of each edge of the two cross-sections at the ends are 30 mm and 10 mm, respectively. The
length and thickness of the beam are 1.5 m and 2 mm, respectively. The skin-core-skin thickness β
is 0.2. Al2O3-Al material is considered in which the properties of this material are given as: ceramic
Al2O3: Ec = 380 GPa, νc = 0.3, ρc = 3960 kg/m3; metal Al: Em = 70 GPa, νm = 0.3, ρm =

2702 kg/m3. A concentrated moment Mz = 100 Nm acting at the tip of the beam is considered.
During the analysis performed by ANN, data sets are randomly created by the finite element analysis
which is presented in study [10]. In which, the number of elements along the length of the beam
is 50 and each edge of the cross-section consists of two elements. In the ANN, material distribution
through thickness which is represented by k (gradation index in Eq. (7)) and thickness t are considered
as inputs. In which the values of k are generated randomly by the uniform distribution (rand function)
in the range [0, 20] and t in the range [1, 10] (mm) with a 0.1 mm jump. While the compliance(
C = uT Ku

)
and twist angle along axial direction are considered as outputs. 1000 created data sets

are used for training process to find optimal weights by using ANN. Based on these optimal weights,
output data is predicted from an arbitrary input data. The dataset is divided into two groups: training
and test sets, which correspond to 800 and 200 data pairs, respectively. In which the training dataset
is used for learning and the test dataset is only used to assess performance, i.e. generalization of a
process. Mini-batch size used in this study is ten. In the training phase, the influence of the number
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of hidden layers and epochs on the loss value is evaluated. In which, the number of nodes or units in
each hidden layer is 100.

Three cases of a number of hidden layers (one, two, and three hidden layers) and six cases of
epochs (500, 1000, 2000, 3000, 4000, and 5000 epochs) are considered for this investigation. Table 1
displays the obtained mean square error (MSE), mean absolute percentage error (MAPE) for training
and test sets and training time.

Table 1. MSE and MAPE for training and test sets, as well as training time
with a variety of hidden layers and epochs

Hidden layer structure 100

Epochs 500 1000 2000 3000 4000 5000
MSE Training 9.11E-04 2.06E-04 1.60E-04 1.12E-04 8.52E-05 6.30E-05

Test 9.98E-04 2.36E-04 1.74E-04 1.27E-04 9.65E-05 6.91E-05
MAPE Training 5.84E+00 2.40E+00 2.16E+00 1.83E+00 1.64E+00 1.29E+00

Test 6.02E+00 2.55E+00 2.23E+00 1.98E+00 1.79E+00 1.39E+00
Time (second) 25 52 98 154 215 264

Hidden layer structure 100-100

Epochs 500 1000 2000 3000 4000 5000
MSE Training 5.89E-05 3.50E-05 1.67E-05 1.39E-05 3.27E-06 1.67E-06

Test 5.69E-05 3.13E-05 1.27E-05 1.02E-05 3.38E-06 1.91E-06
MAPE Training 1.09E+00 8.16E-01 6.34E-01 5.38E-01 3.87E-01 2.37E-01

Test 1.16E+00 8.65E-01 6.29E-01 5.43E-01 3.84E-01 2.38E-01
Time (second) 45 98 196 286 378 539

Hidden layer structure 100-100-100

Epochs 500 1000 2000 3000 4000 5000
MSE Training 4.58E-05 2.65E-05 5.49E-06 3.43E-06 9.44E-07 1.65E-07

Test 3.96E-05 2.38E-05 5.06E-06 3.67E-06 8.38E-07 1.85E-07
MAPE Training 8.54E-01 7.34E-01 4.56E-01 4.56E-01 1.22E-01 6.08E-02

Test 9.79E-01 7.40E-01 4.60E-01 4.66E-01 1.19E-01 6.83E-02
Time (second) 72 119 237 378 456 579

From the table, it can be seen that as the number of hidden layers or epochs increases, the MSE
and MAPE gradually decrease, implying that the accuracy increases. The best results are obtained by
three hidden layers and 5000 epochs with MSE 1.6527E-07 for training and 1.8521E-07 for testing.
Besides, the accuracy reaches 99.94% for training and 99.93% for testing. Fig. 4 depicts the obtained
convergence history of the loss function of the training and test sets in the best case with three hidden
layers and 5000 epochs. From the figure, it can be seen that training and test loss converge to zero and
they remain stable at the last stage of the process. Therefore, optimum weights can be found.

To verify the accuracy of the proposed method, the configuration of the final ANN with three
hidden layers and 5000 epochs is used to predict beam behavior. Results obtained by this model are
compared to those of finite element method (FEM) [10]. Inputs are gradation indices with k = 0, 1, 5
and 10; and thickness t is chosen to be 0.2. These input data sets are unseen data and not included in
the train and test data sets. In terms of outputs, Fig. 5 shows a comparison of the twist angle along

9



Do, D. T. T., et al. / Journal of Science and Technology in Civil Engineering

Figure 4. The convergence history of loss function of the beam under concentrated moment obtained by ANN
with three hidden layers and 5000 epochs

the axial direction with various gradation indices obtained by the proposed method and FEM. From
the table, it can be seen that the results obtained by the proposed method agree well with the results
obtained by the FEM. Fig. 6 also shows the compliance values obtained by both methods in those
cases. As shown in the figure, the values obtained by the two methods are almost identical. Therefore,
the accuracy of the present method has been demonstrated through numerical examples.

Figure 5. Twist angle variation with respect to axial coordinate of the beam obtained by FEM and ANN
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Figure 6. Compliance of the beam obtained by FEM and ANN

5. Conclusions

In this paper, we have presented a non-traditional computational approach based on ANN for ana-
lyzing the mechanical behavior of non-uniform hexagonal cross-sections for thin-walled functionally
graded beams under static loading. The ANN is used as an alternative to the FEM to reduce the com-
putational cost in the optimization problems. Gradation index and thickness are considered inputs
while the compliance and displacement are considered as outputs of the ANN setting. To obtain opti-
mal weights, the training process is not computationally expensive. Based on these obtained optimal
weights, the compliance and twist angle along the axial direction are correctly predicted by the ANN,
reflecting the accuracy and efficiency of the present formulation.

This study can be extended to find material distribution or the size and shape of non-uniform
cross-sections for thin-walled functionally graded beams through optimization. Furthermore, the use
of ANN for more complex structures is expected.
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