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Abstract

Unsaturated soil behaviors characterize the failure mechanisms of geotechnical infrastructures with transient
seepage conditions. Therefore, an accurate estimate of the unsaturated groundwater flow is vital in improving
hazard management and assessment. This study attempts to develop a numerical scheme for 2-D transient anal-
ysis under unsaturated conditions. First, the unsaturated groundwater flow was described using the mass conser-
vation law. Then, the Finite Difference Method and Backward Euler approximation were applied for space and
time discretization, respectively. Furthermore, the simple Picard iteration was applied to linearize the govern-
ing equation. The reliability of the presented method was verified with the analytical solution. The evaluation
results demonstrated the sufficiency of the proposed method, quantitatively expressed by the maximum error of
0.04% for opened boundary conditions and 0.15% for closed boundary conditions. The significant advantage
of the proposed method is the flexibility with various soil-water characteristic curve models and associated
hydraulic conductivity functions, which helps to improve the applicability in practice.
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1. Introduction

Groundwater can flow exclusively through the pore space filled with water. Thus, the hydraulic
conductivity of unsaturated soils clearly depends on volumetric water content θ and matric suction (ψ).
Modeling unsaturated groundwater flow is based on the mass conservation law for the water phase, a
given soil water characteristic curve (SWCC) model, and the associated hydraulic conductivity func-
tion (HCF). Due to the dependence of θ and hydraulic conductivity ψ, the mass conservation equation
becomes highly nonlinear, well known as the Richards equation. Many studies have attempted to solve
the Richards equation analytically and numerically.

Most analytical solutions employ the exponential SWCC model and Gardner’s HCF (1958) be-
cause of their linearization capability [1]. Based on the one-dimensional analytical solution for the
vertical rainfall infiltration proposed by Srivastava and Yeh [2], Zhan and Ng [3] conducted a para-
metric study to assess the influence of hydraulic parameters on the infiltration mechanism into un-
saturated soils. The analytical solutions were also commonly used in stability analysis for a partially
saturated slope induced by rainfall infiltration [4, 5].
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On the contrary, numerical analyses provide significant flexibility in the choice of both the SWCC
model and HCF. The nonlinear governing equation of unsaturated groundwater flow can be linearized
under iterative schemes, e.g., Picard, modified Picard, and Newton-Raphson. Additionally, computa-
tional techniques, e.g., finite difference method [6], finite element method [7], finite volume method
[8], or coupled finte-discrete element method [9], are adopted to solve these problems approximately.
The general mixed-form of the Richards equation was suggested for a perfectly conserved solution
[6]. Moreover, a great effort was also made to enhance the numerical scheme [10].

This paper developed a numerical scheme for transient analysis under unsaturated conditions.
First, the mass conservation law was applied to describe the unsaturated groundwater flow. Then,
the finite difference method and backward Euler approximation were utilized for space and time dis-
cretization. Also, the nonlinearity of the governing equation resulting from the inclusion of the SWCC
model and its associated HCF was linearized using the simple Picard iteration. Finally, an analytical
solution with different hydraulic boundary conditions verified the presented model’s performance.

2. Materials

The recycled aggregate is widely used and regarded as an economical backfill material for geotech-
nical constructions, in which groundwater flow has an utmost important role. For the laboratory ex-
periment, four different recycled aggregate samples were collected from different areas. The dry unit
weight of the recycled aggregate is 1.566-1.785 (g/m3). The samples were initially oven-dried at 95 °C
for 48 (hr) and then mixed with distilled water. Before conducting the pressure plate extractor (PPE)
tests, the samples were kept in a humidity-controlled desiccator for 24 (hr) to ensure uniform water
distribution. The size of the samples was 10 (mm) in height and 50.2 (mm) in diameter.

Table 1. Summary of SWCC models, relative hydraulic conductivity, and specific moisture capacity

SWCC Model
Effective volumetric

water content
Relative hydraulic

conductivity function
Specific moisture

capacity

Brooks and
Corey [11] S e =

(ψ/ψb)−λ ψ > ψb

1 ψ ≤ ψb
Kr =

(ψ/ψb)−(2+τλ+2λ) ψ > ψb

1 ψ ≤ ψb
S = −λ (θS − θR)

ψ−λ−1

ψ−λb

Van Genuchten
[12] S e =

1[
1 + (αψ)n]m Kr = S τ

e

[
1 −

(
1 − S 1/m

e

)m]2
S =

−mn(αψ)n

ψ
[
1 + (αψ)n]m+1 (θS − θR)

Kosugi
[13] S e =

1
2

erfc
(

ln (ψ/ψm)
√

2σ

)
Kr = S e

1/2
[
1
2

erfc
(

ln (ψ/ψm) + σ2

√
2σ

)]2

S =
θR − θS

ψ
√

2πσ
e−

(
ln(ψ/ψm)
√

2σ

)2

Fredlund and
Xing [14]

θ = C (ψ)
θS{

ln
[
e + (ψ/a)n]}m

C (ψ) =
− ln (1 + ψ/ψr)

ln
(
1 + 106/ψr

) + 1
Kr =

b∫
ln(ψ)

θ(ey)−θ(ψ)
ey θ′ (ey) dy

b∫
ln(ψaev)

θ(ey)−θs
ey θ′ (ey) dy

S = C′ (ψ)
θS{

ln
[
e + (ψ/a)n]}m

−C (ψ)
θS{

ln
[
e + (ψ/a)n]}m+1

×
mn(ψ/a)n−1

a
[
e + (ψ/a)n]

Exponential
model S e = eαψ Kr = eαψ S = α (θS − θR) eαψ

* θ = θR + (θS − θR) S e; D.G. Fredlund and Xing (1994): C′ (ψ) =
−1

(ψr + ψ) ln
(
1 + 106/ψr

) .
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A series of PPE tests were carried out complying with the standard procedure of ASTM 3152
to determine the correlation between θ and matric suction. Matric suction increment was controlled
by air pressure along with the axis-translation technique. Principal components of the PPE apparatus
include a pressure chamber, pressure control equipment, and ceramic disks. During the experiment,
the air pressure was gradually applied to drain the pore water out through the ceramic disks placed
at the bottom of the specimens. This process continued until the equilibrium state was held by the
matric suction, and the volumetric water content of the samples was then measured. This procedure
was repeated to determine the correlation between θ and matric suction. Based on the experimental
results, model parameters of the SWCC models, as summarized in Table 1, were determined by the
nonlinear curve-fitting program of Soilvision. Note that θR and θS are the volumetric water content
of sample at the residual state and saturated state, respectively; λ, hb, α, n,m, hm, and σ are model
parameters determined by curve-fitting technique; Ks is the saturated hydraulic conductivity (L/T ).
Table 2 shows the determined model parameters of each SWCC model for the four samples.

Table 2. Model parameters of SWCC models obtained by a curve-fitting technique

SWCC models Parameters
Sample

1 2 3 4

Van Genuchten
[12]

θS 0.0877 0.0715 0.0814 0.0788

θR 0.0037 0.0027 0.0079 0.0053

α 0.0061 0.0033 0.0092 0.0067

n 1.6284 1.4444 1.3875 1.5083

Kosugi
[13]

θS 0.0879 0.0717 0.0817 0.0789

θR 0.0059 0.0066 0.0125 0.0082

hm 465.01 1308.9 601.59 549.54

σ 1.5301 1.8968 2.0649 1.7478

Brooks and
Corey [11]

θS 0.0869 0.0709 0.0806 0.0782

θR 0.0016 5.51 × 10−5 0.0042 0.0021

hb 94.842 151.84 59.416 76.004

λ 0.4671 0.3143 0.2884 0.3576

Fredlund and
Xing [14]

θS 0.08772 0.0715 0.0812 0.0786

a 220.59 463.03 133.55 166.41

m 1.2503 1.1090 0.7168 0.8267

n 1.3895 1.1845 1.4790 1.666

Exponential
model

θS 0.0875 0.0704 0.0793 0.0786

θR 0.0038 0.0081 0.0142 0.0112

α 0.0013 0.0005 0.001 0.0015
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Figs. 1 and 2 show the determined SWCC models and the relationship between specific moisture
capacity (S ) and matric suction, respectively. The specific moisture capacity means the rate of change
of θ on the pore water pressure. The correlation between the SWCC models and the experimental data
was evaluated by examining the Nash-Sutcliffe efficiency coefficient (R

2
). Based on the assessment

result, as shown in Table 3, the exponential SWCC model shows a relatively inferior correlation with
the experimental results among the SWCC models considered. Especially, this tendency was more
clearly demonstrated in the case of the relationship between S and matric suction, as shown in Fig. 2.
Going into details, the exponential SWCC model yielded the lowest average and maximum R

2
for

all of the four samples (R2 = 0.9822,R2
max = 0.9861); on the other hand, the other SWCC models

showed these values above 0.9992. Especially, the Fredlund and Xing [14] SWCC model best fitted
the experimental data (R2 = 0.9993; R2

min = 0.9986), which is the most suitable for the recycled
aggregate samples. No doubt that the more the model parameters involved in the SWCC model, the
better it fits the experimental results: 3 in the Fredlund and Xing [14] SWCC model, and 1 in the
exponential SWCC model. However, many model parameters lead to a more complicated and highly
nonlinear form of the Richards equation. Besides, close observation on Figs. 1 and 2 indicates that the
transition from saturated to unsaturated conditions is not smooth in the Brooks and Corey [11] SWCC
model.

Figure 1. SWCC models correlated to experimental results

Fig. 3 shows a relationship between relative unsaturated hydraulic conductivity and matric suc-
tion. Even though the SWCC models closely matched each other, as illustrated in Fig. 1, the relative
hydraulic conductivity significantly differed at the same matric suction.
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Figure 2. Relationship between specific moisture capacity and matric suction

Figure 3. Relationship between relative hydraulic conductivity and matric suction
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Table 3. Correlation between SWCC models and experimental data

*Nash-Sutcliffe efficiency coefficient (R2) Sample 1 Sample 2 Sample 3 Sample 4

Van Genuchten [12] 0.9994 0.9999 0.9983 0.9987
Kosugi [13] 0.9970 0.9984 0.9939 0.9953

Brooks and Corey [11] 0.9993 0.9977 0.9999 0.9997
D.G. Fredlund and Xing [14] 0.9995 0.9998 0.9986 0.9992

Exponential 0.9861 0.9849 0.9736 0.9842

*R2 = 1 −
∑n

i=1 (obsi − simi)2∑n
i=1

(
obsi − obsi

)2 .

3. Numerical modeling

3.1. General mixed-form Picard iteration for 2-D unsaturated groundwater flow

Among three popular forms of the Richards equation, i.e., h-based form, θ-based form, and mixed-
form, Celia et al. [6] recommended using the mixed-form expressed as Eq. (1), because it ensures the
mass conservation and requires no additional computational effort than the standard h-based form.

∂θ

∂t
dV = ∇ · q (1)

where dV is the volume of element (L3), q =
[
qx qy

]T
is the fluid flow (L3/T), t is the time (T). To

numerically solve Eq. (1) in two dimensions, the standard FDM and backward Euler approximation
were utilized for space and time discretization, respectively, as follows:

∇ · q =
∂qx

∂x
dx +

∂qy

∂y
dx

≈
(qx)i, j+1/2 − (qx)i, j−1/2

∆x
dx +

(
qy

)
i+1/2, j

−
(
qy

)
i−1/2, j

∆y
dy

(
i = 1 . . . ny; j = 1 . . . nx

) ∂θ
∂t
≈
θn+1 − θn

∆t

(2)

where ∆x,∆y = space interval between nodes in the x and y direction, respectively (L); nx, ny = number
of space interval in x and y direction, respectively; n = time step; ∆t = time increment (T).

Under unsaturated conditions, Darcy law can also describe the fluid flow rate. However, the value
of hydraulic conductivity, at this time, depends on the matric suction or ψ.

qx = Kx(ψ)
∂h
∂x

Ayz = Kx(ψ)
∂ψ

∂x
Ayz

qy = Ky(ψ)
∂h
∂y

Axz = Ky(ψ)
(
∂ψ

∂y
+ 1

)
Axz

(3)

where h = total hydraulic head (L); Axy, Ayx = cross-sectional areas, which are orthogonal to the
corresponding fluid flows (L2).
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Inserting Eq. (3) into the first term of Eq. (2), then the right-hand side (RHS) of Eq. (1) becomes:

RHS =

(
Ky

)
i+1/2, j

∆y2 ψi+1, j −


(
Ky

)
i+1/2, j

+
(
Ky

)
i−1/2, j

∆y2 +
(Kx)i, j+1/2 + (Kx)i, j−1/2

∆x2

ψi, j

+

(
Ky

)
i−1/2, j

∆y2 ψi−1, j +
(Kx)i, j+1/2

∆x2 ψi, j+1 +
(Kx)i, j−1/2

∆x2 ψi, j−1 +

(
Ky

)
i+1/2, j

−
(
Ky

)
i−1/2, j

∆y

(4)

where Kx,Ky = hydraulic conductivity in x, y direction, respectively (L/T).
Because θ and K depend on ψ, Eq. (1) is nonlinear so that the simple Picard iteration method

was applied to linearize this equation. Furthermore, Celia et al. [6] suggested utilizing the truncated
Taylor series to fully ensure mass conservation to expand θn+1,m+1 (m = iterative step) ψ. Finally, the
numerical scheme for solving the mixed-form Richards equation in two dimensions is described as
follows:

LHS = −
(Ky)n+1,m

i+1/2, j

∆y2 δm
i+1, j +

A +
S n+1,m

i, j

∆t

 δm
i, j −

(Ky)n+1,m
i−1/2, j

∆y2 δm
i−1, j

(
δm

i, j = ψn+1,m+1
i, j − ψn+1,m

i, j

)
RHS =

(Ky)n+1,m
i+1/2, j

∆y2 ψn+1,m
i+1, j − [A]ψn+1,m

i, j +
(Ky)n+1,m

i−1/2, j

∆y2 ψn+1,m
i−1, j +

(Kx)n+1,m
i, j+1/2

∆x2 ψn+1,m
i, j+1

+
(Kx)n+1,m

i, j−1/2

∆x2 ψn+1,m
i, j−1 + ... +

(Ky)n+1,m
i+1/2, j − (Ky)n+1,m

i−1/2, j

∆y
+
θn

i, j − θ
n+1,m
i, j

∆t

A =
(Ky)n+1,m

i+1/2, j + (Ky)n+1,m
i−1/2, j

∆y2 +
(Kx)n+1,m

i, j+1/2 + (Kx)n+1,m
i, j−1/2

∆x2

(5)

For a given initial condition, the increment of ψ at each node (δm
i, j) after every iterative step can

be obtained by solving Eq. (5). The value of ψ along with θ, K and S should be updated for the next
iteration step. This procedure repeats until a given convergence criterion is satisfied. Among widely-
used convergence criteria, Huang et al. [15] proposed a criterion based on the value of θ as Eq. (6) to
enhance the numerical performance. ∣∣∣∣θn+1,m+1

i, j − θn+1,m
i, j

∣∣∣∣ ≤ δθ (6)

where δθ = given tolerance.
It is of interest that when representing Eq. (5) in a matrix form, the coefficient matrix is tridiag-

onal. Therefore, to reduce the computational cost, one does not need to store the full square matrix,
but only for the non-zero components, as three vectors.

The value of hydraulic conductivity between two adjacent nodes can be estimated by one of the
following two methods: (i) based on the geometric mean of ψ at the two nodes in a given direction or
(ii) based on the geometric mean of the hydraulic conductivity values at each node in a given direction.
In addition, a weight function can enhance interpolation accuracy, which was discussed in detail by
Van Dam and Feddes [10]. According to the numerical experiment, this study suggested applying the
latter method.

Regarding the boundary conditions for unsaturated groundwater flow problems, the Dirichlet
boundary conditions resulted in a similar computation process in saturated conditions. However, when
dealing with the Neumann boundary conditions, the conventional techniques for saturated conditions,
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such as pseudo nodes and one-sided differences, cannot be directly applied because the unsaturated
hydraulic conductivity depends on θ or ψ. For example, in the case of a rainfall infiltration problem
when a vertical flow rate on the surface boundary is given, the Neumann boundary conditions can be
treated as follows:

∂qy

∂y
=

(
qy

)
i+1/2, j

−
(
qy

)
i−1/2, j

∆y
=

qin
y

∆y
−

(
Ky

)
i−1/2, j

∆y2

(
ψi, j − ψi−1, j

)
−

(
Ky

)
i−1/2, j

∆y
∂qx

∂x
=

(Kx) i, j+1/2

∆x2 ψi, j+1 −
(Kx)i, j+1/2 + (Kx)i, j−1/2

∆x2 ψi, j −
(Kx)i, j−1/2

∆x2 ψi, j−1

(7)

Inserting Eq. (7) into Eq. (1), the computational procedure for these surface nodes can be ordi-
narily implemented. Furthermore, when the volumetric water content at these nodes equals to θs, the
run-off phenomenon is assumed to occur.

3.2. Model validation

The developed numerical scheme was adopted to estimate the hydraulic response of an unsaturated
soil column, with the height of L (m) and the width of a (m), to a specific pore water pressure head.
The initial condition of the soil column was dry, i.e. ψ (x, z, 0) = ψd < 0, before the hydraulic pressure
head was applied to the top boundary. This problem is called 2-D Green-Ampt. problem [16]. The
analytical solution presented by Tracy [1] was employed to verify the numerical model, in which the
exponential SWCC model and the Gardner [17] HCF were used. The hydraulic response of the soil
column was estimated on two types of boundary conditions as follows:

- Open-flow through the domain sides’ boundary conditions:

ψ (0, z, y) = ψ (a, z, t) = ψ (x, 0, t) = ψd

ψ (x, L, t) =
1
α

ln
(
eαψd +

(
1 − eαψd

)
sin

πx
a

) (8)

- Close-flow through the domain sides’ boundary conditions:

ψ (x, 0, t) = ψd

ψ (x, L, t) =
1
α

ln
(
eαψd +

1 − eαψd

2

(
1 − cos

2πx
a

)) (9)

Model parameters for the exponential SWCC model of Sample 1 and Sample 2, from the soil
water retention test, were chosen for calculation, which are summarized in Table 4.

Table 4. Modeling parameters used for validating numerical scheme

Parameters Unit Sample 1 Sample 2

a m 10 10
L m 10 10
hd m −20 −20
α kPa−1 0.0013 0.0005
θS - 0.0875 0.0704
θR - 0.0038 0.0081
KS m/day 0.3 0.3
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(a) Open-flow sides’ boundary conditions

(b) Close-flow sides’ boundary conditions

Figure 4. Analytical solutions, numerical solutions and relative errors for Sample 1

(a) Open-flow sides’ boundary conditions

(b) Close-flow sides’ boundary conditions

Figure 5. Analytical solutions, numerical solutions and relative errors for Sample 2

Figs. 4 and 5 present the analytical and numerical solutions along with the relative errors between
the two solutions, in the cases of Sample 1 and Sample 2, respectively. The verification showed
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an excellent agreement between the analytical and numerical solutions. In the case of Sample 1,
the maximum relative error for the open-flow and the close-flow sides’ boundary conditions were
0.05 (%) and 0.15 (%), respectively. In the case of Sample 2, those of the open-flow and the close-
flow sides’ boundary conditions were 0.04 (%) and 0.15 (%), respectively. Therefore, the developed
numerical model was fairly reliable for solving the two-dimensional unsaturated groundwater flow
problems.

4. Conclusions

The results of the PPE tests indicated the inferior performance of the exponential SWCC model,
among the SWCC models examined, to mathematically represent the relationship between θ and ψ
of the recycled aggregate as the economical backfill material. On the other hand, the Fredlund and
Xing [14] SWCC model was the most suitable model. Also, even though the SWCC models exam-
ined matched closely to each other, the gaps between the associated HCFs and the specific moisture
capacity functions still existed.

Using the 2-D analytical solution suggested by Tracy [1], the developed numerical scheme was
demonstrated to be reliable in modeling the unsaturated groundwater flow. The main advantages of
the proposed numerical scheme include (i) ability to apply for different types of the SWCC model, the
heterogeneity of soil properties, and various boundary conditions; (ii) possibility to detect and switch
the rainfall infiltration to run-off mode when the ponding phenomenon occurs on the surface.
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