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Abstract

This article presents a semi-analytical finite strip method based on Marguerre’s shallow shell theory and Kirch-
hoff’s assumption. The formulated finite strip is used to study the buckling behavior of thin-walled circular
hollow sections (CHS) subjected to uniform bending. The shallow finite strip program of the present study is
compared to the plate strip implemented in CUFSM4.05 program for demonstrating the accuracy and better
convergence of the former. By varying the length of the CHS, the signature curve relating buckling stresses to
half-wave lengths is established. The minimum local buckling point with critical stress and corresponding criti-
cal length can be found from the curve. Parametric studies are performed to propose approximative expressions
for calculating the local critical stress and local critical length of steel and aluminium CHS.
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1. Introduction

The semi-analytical finite strip method (SAFSM) pioneered by Cheung [1] is a derivative of the
finite element method. In plated structural members, the SAFSM uses trigonometric functions in
the longitudinal direction and polynomial functions in the transversal direction. Thus, this method
can be considered as an application of Fourier series in the analysis of structures. Because selected
trigonometric functions must satisfy boundary conditions, the SAFSM is convenable to analyze mem-
bers which have two ends such as: simple-simple, clamped-clamped, simple-clamped, clamped-free,
clamped-guided [2–5]. An outstanding application of the SAFSM is the buckling analysis of thin-
walled members. When the local buckling is in the consideration, thin walls of the member are buck-
led by numerous half-wave length in the longitudinal direction. The boundary conditions have very
little influence on the local buckling. Therefore, sinusoidal functions which satisfy simply supported
members are extensively used in the literature [6–11]. The SAFSM reduces greatly simulation and
computation time in the analysis of thin-walled members because a few strips are used for modelling
the cross section of the member, and the mathematical manipulation is analytically realized in the
longitudinal direction. Thus, 3D problems are reduced to 2D ones. An interesting presentation of the
SAFSM in the buckling analysis is the signature curve which relates buckling stresses to half-wave
lengths [12]. From this curve, the local and distorsional buckling are simply detected by local mini-
mums. Most of finite strips were developed based on the Kirchhoff or Mindlin plate theories except
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the shallow strip in [13] formulated on Marguerre’s shallow shell theory [14]. The shallow strip was
used to investigate the buckling behavior of cold-formed sections with curved corners, this strip is not
used to analyze circular hollow sections (CHS) yet.

CHS is widely used in civil and industrial engineering such as: columns, tubular piles, tubular
members of truss, tanks, pipelines, electric poles, wind turbines, . . . When the ratio of diameter to
thickness is high, CHS is susceptible to be locally buckled. The traditional design against the local
buckling of CHS follows two steps: first, the critical stress is determined by a linear buckling analysis
then an empirical factor is applied to account the discrepancy between linear critical stress and ex-
perimental results. This approach has shown a satisfaction in the practice design [15]. Therefore, the
study on the linear buckling of CHS is necessary [16–18]. Due to the gradient stress distributed on
the cross section, there are not explicit analytical expressions for calculating the local critical stress of
the CHS subjected to uniform bending. Instead, the local critical stress of CHS under uniform bend-
ing can be approximatively determined by the formula of the local critical stress of CHS under axial
compression as advised by [15, 16, 19].

The present work poses to study the buckling behavior of thin-walled circular hollow sections
(CHS) under uniform bending by the SAFSM. The finite strip is formulated from the shallow shell
theory of Marguerre [13, 14] and Kirchhoff’s assumption. The exactness and the convergence of
the shallow finite strip is proved when comparing to the plate finite strip implemented in CUFSM
4.05 program [20]. The shallow finite strip is used to numerically analyze CHS when the length
is varied. From that, the signature curve of CHS is obtained. The local buckling of CHS subjected
to uniform bending can be detected from the curve, the results are critical stress and critical length.
Numerous steel and aluminium CHS with the ratio between thickness and radius varying are analyzed
to proposed approximative expressions for the determination of local critical stress and local critical
length. Small coefficient of variation and high coefficients of determination validate the proposed
expressions.

2. Formulation of finite strip
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Figure 1. Shallow shell finite strip with
3-nodal line

Fig. 1 draws a cylindrical 3 nodal-line finite
strip which is formulated from Marguerre’s shal-
low shell theory [13, 14] and Kirchhoff’s assump-
tion. The relation between strains and displace-
ments is written as:

εx =
∂u
∂x
− z

∂2w
∂x2 +

∂h
∂x
∂w
∂x

(1)

εy =
∂v
∂y
− z

∂2w
∂y2 +

∂h
∂y
∂w
∂y

(2)

γxy =
∂u
∂y
+
∂v
∂x
− 2z

∂2w
∂x∂y

+
∂h
∂x
∂w
∂y
+
∂h
∂y
∂w
∂x

(3)

Rotations are calculated from the out-of-plane translation:

θx =
∂w
∂y

(4)
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θy =
∂w
∂x

(5)

where u, v, and w are translations w.r.t x, y and z directions in the Cartesian coordinates of the ref-
erence plane; θx and θy are rotations about x and y axis; h is the distance from a point in the curved
middle surface to the reference plane.

Noted that in the shallow shell of Marguerre, the manipulation is realized on the reference plane
instead of the curved surface.

Three translations u, v, and w of simply supported finite strip can be expressed by series of sinu-
soidal functions in the longitudinal direction and polynomial functions in the transversal direction [1]
below:

u(x, y) =
r∑

m=1

{
H1 H2 H3

} 
u1m

u2m

u3m

 sin
mπy

a
(6)

v(x, y) =
r∑

m=1

{
H1 H2 H3

} 
v1m

v2m

v3m

 cos
mπy

a
(7)

w(x, y) =
r∑

m=1

{
Hw1 Hθ1 Hw2 Hθ2 Hw3 Hθ3

}


w1m

θ1m

w2m

θ2m

w3m

θ3m


sin

mπy
a

(8)

in which:

H1 = 1 −
3x
b
+

2x2

b2 ; H2 =
4x
b
−

4x2

b2 ; H3 = −
x
b
+

2x2

b2 (9)

Hw1 = 1 −
23x2

b2 +
66x3

b3 −
68x4

b4 +
24x5

b5 ; Hθ1 = x −
6x2

b
+

13x3

b2 −
12x4

b3 +
4x5

b4 (10)

Hw2 =
16x2

b2 −
32x3

b3 +
16x4

b4 ; Hθ2 = −
8x2

b
+

32x3

b2 −
40x4

b3 +
16x5

b4 (11)

Hw3 =
7x2

b2 −
34x3

b3 +
52x4

b4 −
24x5

b5 ; Hθ3 = −
x2

b
+

5x3

b2 −
8x4

b3 +
4x5

b4 (12)

The distance from a point in the curved middle surface to the reference plane, h in Eqs. (1)–(3) is
interpolated as:

h(x, y) =
{

H1 H2 H3
} 

h1
h2
h3

 .1 (13)

The stiffness matrix of a finite strip in the local axes can be obtained from the strain energy.

U =
1
2

t/2∫
−t/2

∫
A

{ε}T [D] {ε}dAdz (14)
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in which A is the area of the reference plane of the curved strip. {ε} are strains determined by Eqs.
(1)÷(3)

{ε} =
{
εx εy γxy

}
(15)

[D] is the matrix of elasticity.

[D] =


E

1 − υ2

υE
1 − υ2 0

υE
1 − υ2

E
1 − υ2 0

0 0 G

 (16)

Replacing Eqs. (6)÷(8) and (13) into Eqs. (1)÷(3), the strains can be obtained as following:

{ε} =

r∑
m=1

[Bm] {δm} =

r∑
m=1

[
B1m B2m B3m

] {
δ1m δ2m δ3m

}T
(17)

where for nodal line i and mth harmonic, typical term has the form:

[Bim] =


dHi

dx
sm 0 −z

d2Hwi

dx2 sm +
dh
dx

dHwi

dx
sm −z

d2Hθi

dx2 sm +
dh
dx

dHθi

dx
sm

0 −Hikmsm zHwik2
msm zHθik2

msm

Hikmcm
dHi

dx
cm −2z

dHwi

dx
kmcm +

dh
dx

Hwikmcm −2z
dHθi

dx
kmcm +

dh
dx

Hθikmcm

 (18)

{δim} =
{

uim vim wim θim
}T

(19)

with
km =

mπ
a

; sm = sin (kmy) ; cm = cos (kmy) (20)

Replacing Eq. (17) into Eq. (14) to get the stiffness matrix of the shallow strip.

[K]e =


[K11]e 0 ... 0

0 [K22]e ... 0
... ... ... ...

0 0 ... [Krr]e

 (21)

where

[Kmm]e =

t/2∫
−t/2

a∫
0

b∫
0

∫
A

[Bm]
T

[D] [Bm] dxdydz (22)

Noted that for the simply supported finite strip, sinusoidal terms are uncoupled. Therefore, the
stiffness matrix has a diagonal form as indicated in Eq. (21).

In the linear elastic buckling analysis, the geometric matrix can be determined from the potential
energy done by initial membrane stresses {σo} on nonlinear membrane strains {εNL} [11].

W =
1
2

∫
A

2 {σo} {εNL} tdA (23)

where
{σo} =

{
σox σoy τoxy

}
(24)

{εNL} =
{
εNLx εNLy γNLxy

}T
(25)
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Figure 2. Linear distributed of longitudinal
initial stress

The nonlinear strains are determined from
nonlinear parts of Green’s deformations:

εNLx =
1
2

(∂u
∂x

)2

+

(
∂v
∂x

)2

+

(
∂w
∂x

)2 (26)

εNLy =
1
2

(∂u
∂y

)2

+

(
∂v
∂y

)2

+

(
∂w
∂y

)2 (27)

γNLxy =

(
∂u
∂x
∂u
∂y
+
∂v
∂x
∂v
∂y
+
∂w
∂x

∂w
∂y

)
(28)

In the present work, only longitudinal initial
stress σoy, and longitudinal nonlinear strain εNLy

are considered as presented in [13]. The longitudi-
nal initial stress can be seen as linearly distributed
in the transversal direction within a strip (Fig. 2).

σoy = σoy1 −
(
σoy1 − σoy3

) x
b

(29)

Hence, the potential energy (Eq. (23)) can be rewritten:

W =
1
2

∫
A

[
σoy1 −

(
σoy1 − σoy3

) x
b

] (∂u
∂y

)2

+

(
∂v
∂y

)2

+

(
∂w
∂y

)2 tdA (30)

The geometric matrix can be determined when the Eqs. (6)÷(8) are substituted into Eq. (30). It is
noted that for simply supported finite strip, harmonic terms are uncoupled, thus the geometric matrix
has a diagonal form [1]:

[KG]e =


[KG11]e 0 ... 0

0 [KG22]e ... 0
... ... ... ...

0 0 ... [KGrr]e

 (31)

The eigenequation is used for the linear elastic buckling analysis:

([K] + λ [KG]) {δ} = 0 (32)

in which the eigenvalue λ giving buckling load and the corresponding eigenvector {δ} related to
the buckling shape of the structure. [K] and [KG] are stiffness matrix and geometric matrix of the
structure in global axes. The global stiffness matrix and geometric matrix of the structure are given
by the summation of local ones which are transferred from the local axes into the global axes. Despite
the presentation of multiple series in the longitudinal direction (Eq. (6)–(8)), but in practice, the use
of the first harmonic term, m = 1 is sufficient for the linear elastic analysis.
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3. Validation and parametric studies
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to the local critical length. Thus, the use of the first harmonic term is sufficient to study the 167 

buckling behavior of CHS. Another comment that can be deduced is the long CHS of 168 

different boundary conditions being locally buckled with the same critical stress of the 169 

simply supported one because of long distances, the boundary conditions at two ends of 170 

CHS influence very little on the local buckling. 171 

Figure 3. Convergent study

To validate the shallow shell finite strip formu-
lated in the previous section, firstly the convergent
study is performed and compared to a result cal-
culated by Sylvestre [17], and CUFSM4.05 pro-
gram [20] in which the finite strip based on Kirch-
hoff’s plate theory is implemented. As follows, a
steel CHS with radius of 50 mm and thickness of
1 mm is analyzed, the modulus of elasticity and
Poisson ratio are 210000 N/mm2 and 0.3, respec-
tively. Sylvestre [17] who utilized the Generalized
Beam Theory (GBT) provided numerically the lo-
cal critical stress with the value of 2590 N/mm2,
this critical stress corresponds to a critical length,
13 mm of CHS. Respectively, 24, 48, 60, 96, 120,
160, and 200 nodal lines are used to model the
CHS by the shallow strip of the present work and plate strip of CUFSM4.05 program. The convergent
results are depicted in Fig. 3. Both plate strip and shallow strip approach to a value very little higher
than Sylvestre’s critical stress (plate strip – 2604 N/mm2, shallow strip – 2597 N/mm2, both with 200
nodal lines). But the shallow strip gives a better convergence because even using 60 nodal lines (30
shallow strips), the result is already 2601 N/mm2.

The above results are obtained when only the first harmonic term, m = 1 in Eqs. (6)–(8) is used.
The buckling shape corresponding to the local critical stress and local critical length drawn by the
shallow strip program is presented in Fig. 4(a). Figs. 4(b, c) depict two other buckling shapes with
the same local critical stress but different harmonic terms, i.e., m = 5 and m = 50. That is, a longer
CHS is locally buckled with numerous half-waves, each half-wave is equal to the local critical length.
Thus, the use of the first harmonic term is sufficient to study the buckling behavior of CHS. Another
comment that can be deduced is the long CHS of different boundary conditions being locally buckled
with the same critical stress of the simply supported one because of long distances, the boundary
conditions at two ends of CHS influence very little on the local buckling.
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Fig. 4. Buckling shapes modelled by 60 shallow strips (120 nodal lines). 174 

Secondly, for better understanding the buckling behavior of the above CHS, the signature 175 

curve is established. This curve can be easily provided by FSM when the length of the CHS 176 

varies. Noted that the first harmonic term is always used. Fig. 5 shows signature curves 177 

when the CHS is modeled by 60, 96, and 120 nodal lines of the shallow strip program and 178 

by 200 nodal lines by CUFSM 4.05 program. All signature curves can detect the unique 179 

local buckling of the CHS. But after the local buckling point, the modeling by 60 nodal 180 

lines (or 30 shallow finite strips) gives stiffer solutions. While the rest give a very good fit 181 

each other. Henceforth, the modeling of CHS with 60 shallow strips (120 nodal lines) will 182 

be used. 183 

The local buckling shape was depicted in Fig. 4. Fig. 6 draws other buckling shapes 184 

corresponding to longer lengths of CHS. 185 

(a) m = 1, L = 13 mm,
σcr = 2600 N/mm2
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(b) m = 5, L = 65 mm,
σcr = 2600 N/mm2
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(c) m = 50, L = 650 mm, σcr = 2600 N/mm2

Figure 4. Buckling shapes modelled by 60 shallow strips (120 nodal lines)
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Fig. 5. Signature curves buckling stress – length of CHS 50x1mm. 187 

 

 

m=1, L=100mm, scr=3478 N/mm2 
 

m=1, L=1000mm, scr=4874 N/mm2 

Fig. 6. Buckling shapes of longer CHS modeled by 60 shallow strips (120 nodal lines). 188 

Thirdly, the research about the dependence of the local buckling on thickness to radius and 189 
length to radius ratios is performed. Due to the gradient stress distributed on the cross 190 
section of CHS, there are not explicit analytical expressions for the local critical stress and 191 
local critical length of CHS subjected to uniform bending. Therefore, the formulas 192 
established for CHS under uniform compression are instead mentioned in safety side as 193 
advised by [14, 20]. The local critical stress of CHS under uniform compression can be 194 
obtained from the formula following: 195 

Figure 5. Signature curves buckling stress –
length of CHS 50×1mm

Secondly, for better understanding the buck-
ling behavior of the above CHS, the signature
curve is established. This curve can be easily pro-
vided by FSM when the length of the CHS varies.
Noted that the first harmonic term is always used.
Fig. 5 shows signature curves when the CHS is
modeled by 60, 96, and 120 nodal lines of the
shallow strip program and by 200 nodal lines by
CUFSM 4.05 program. All signature curves can
detect the unique local buckling of the CHS. But
after the local buckling point, the modeling by 60
nodal lines (or 30 shallow finite strips) gives stiffer
solutions. While the rest give a very good fit each
other. Henceforth, the modeling of CHS with 60
shallow strips (120 nodal lines) will be used.

The local buckling shape was depicted in Fig. 4. Fig. 6 draws other buckling shapes corresponding
to longer lengths of CHS.
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(a) m = 1, L = 100 mm, σcr = 3478 N/mm2
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Thirdly, the research about the dependence of the local buckling on thickness to radius and 189 
length to radius ratios is performed. Due to the gradient stress distributed on the cross 190 
section of CHS, there are not explicit analytical expressions for the local critical stress and 191 
local critical length of CHS subjected to uniform bending. Therefore, the formulas 192 
established for CHS under uniform compression are instead mentioned in safety side as 193 
advised by [14, 20]. The local critical stress of CHS under uniform compression can be 194 
obtained from the formula following: 195 

(b) m = 1, L = 1000 mm, σcr = 4874 N/mm2

Figure 6. Buckling shapes of longer CHS modeled by 60 shallow strips (120 nodal lines)

Thirdly, the research about the dependence of the local buckling on thickness to radius and length
to radius ratios is performed. Due to the gradient stress distributed on the cross section of CHS, there
are not explicit analytical expressions for the local critical stress and local critical length of CHS sub-
jected to uniform bending. Therefore, the formulas established for CHS under uniform compression
are instead mentioned in safety side as advised by [16, 19]. The local critical stress of CHS under
uniform compression can be obtained from the formula following:

σcr,c =
E√

3(1 − υ2)

t
R

(33)

This local critical stress corresponds to the local critical length given by:

Lcr,c = π
4

√
R2t2

12(1 − υ2)
(34)
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Dividing Eq. (34) by R:

Lcr,c

R
= π

4

√
1

12(1 − υ2)

( t
R

)2
(35)

From Eqs. (33), (35), it can be found that the local critical stress depends on t/R and L/R ratios.
In other words, local critical stresses are equals for two CHS of the same t/R and L/R ratios. One
can guess the local critical stress of CHS subjected to uniform bending depending also on t/R and
L/R ratios. The shallow finite strip program can numerically demonstrate this guess. Three thickness
to radius ratios are in the consideration, namely t/R = 1/25, 1/50, and 1/100. Two steel CHS are
analyzed for each t/R ratio. Signature curves relating buckling stress to L/R ratio are provided in
Fig. 7. The signature curves of steel CHS with same t/R ratio coincide totally not only at the local
critical point but at other buckling points.
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Figure 7. Signature curves buckling stress – L/R ratio of CHS

Finally, from the above research, expressions for determining the local critical length, Lcr,b and
local critical stress, σcr,b of steel CHS and aluminium CHS under uniform bending can be proposed
by parametric studies.

About the local critical length, Tables 1 and 2 present parametric studies for steel CHS and alu-
minium CHS. The t/R ratios are chosen so that CHS is considered thin-walled. The ratio of Lcr,b to
Lcr,c is calculated, in which Lcr,c is determined from Eq. (34).

It can be found from Tables 1 and 2 that with each t/R ratio, the values of Lcr,b/Lcr,c are almost the
same for steel CHS and aluminium CHS. Therefore, an approximative expression can be commonly
proposed for CHS under uniform bending:

Lcr,b =

[
−21.376

( t
R

)2
+ 2.1567

( t
R

)
+ 1.0152

]
π

4

√
R2t2

12(1 − υ2)
(36)
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Table 1. Parametric study of local critical length for steel CHS: E = 2.1 × 105 N/mm2, υ = 0.3

t/R Lcr,b/Lcr,c numerical analysis Lcr,b/Lcr,c Eq. (36)

1/20 1.0713 1.0696
1/25 1.0647 1.0673
1/50 1.0474 1.0498
1/75 1.0423 1.0402
1/100 1.0358 1.0346
1/150 1.0325 1.0286
1/200 1.0270 1.0254
1/300 1.0223 1.0222
1/400 1.0184 1.0205
1/500 1.0157 1.0194

CV: 0.0024
R2: 0.9823

Table 2. Parametric study of local critical length for aluminium CHS: E = 0.7 × 105 N/mm2, υ = 0.33

t/R Lcr,b/Lcr,c numerical analysis Lcr,b/Lcr,c Eq. (36)

1/20 1.0747 1.0696
1/25 1.0649 1.0673
1/50 1.0501 1.0498
1/75 1.0435 1.0402
1/100 1.0361 1.0346
1/150 1.0316 1.0286
1/200 1.0277 1.0254
1/300 1.0219 1.0222
1/400 1.0188 1.0205
1/500 1.0155 1.0194

CV: 0.0028
R2: 0.9781

About the local critical stress, Tables 3 and 4 show parametric studies for steel CHS and alu-
minium CHS. The ratio of σcr,b to σcr,c is calculated, in which σcr,c is determined from Eq. (33).

It can be found from Tables 3 and 4 that with each t/R ratio, the values of σcr,b/σcr,c are almost
the same for steel CHS and aluminium CHS. Therefore, an approximative expression of the critical
stress can be commonly proposed for CHS under uniform bending:

σcr,b =

[
−7.1619

( t
R

)2
+ 0.9402

( t
R

)
+ 1.0065

]
E√

3(1 − υ2)

t
R

(37)
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Table 3. Parametric study of local critical stress for steel CHS: E = 2.1 × 105 N/mm2, υ = 0.3

t/R σcr,b/σcr,c numerical analysis σcr,b/σcr,c Eq. (37)

1/20 1.0359 1.0356
1/25 1.0322 1.0326
1/50 1.0224 1.0224
1/75 1.0180 1.0178
1/100 1.0155 1.0152
1/150 1.0126 1.0124
1/200 1.0111 1.0110
1/300 1.0094 1.0096
1/400 1.0087 1.0088
1/500 1.0082 1.0084

CV: 0.00024
R2: 0.9994

Table 4. Parametric study of local critical stress for aluminium CHS: E = 0.7 × 105 N/mm2, υ = 0.33

t/R σcr,b/σcr,c numerical analysis σcr,b/σcr,c Eq. (37)

1/20 1.0358 1.0356
1/25 1.0321 1.0326
1/50 1.0224 1.0224
1/75 1.0181 1.0178
1/100 1.0155 1.0152
1/150 1.0127 1.0124
1/200 1.0111 1.0110
1/300 1.0095 1.0096
1/400 1.0087 1.0088
1/500 1.0082 1.0084

CV: 0.00027
R2: 0.9992

4. Conclusions

A 3-nodal lines finite strip based on Marguerre’s shallow shell theory and Kirchhoff’s assumption
is formulated and proves a better convergence than the plate finite strip. This shallow finite strip
is efficient in the linear buckling analysis of circular hollow section. The signature curve detects a
unique local buckling point of CHS subjected under uniform bending. Numerical solutions show the
dependence of the local critical stress on thickness to radius and length to radius ratios. Through
parametric studies performed by the shallow finite strip program, two approximative expressions for
determining the local critical length and local critical stress are proposed. These expressions can
provide more accurate values of the local buckling of CHS under uniform bending than the usual
advice of using the classical solution of axially compressed CHS.
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