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Abstract

Acoustic properties of foams, such as macroscopic transports and sound absorption, are significantly influenced
by their local morphology. The present paper develops a polynomial chaos expansion (PCE)-based surrogate
model for characterizing the microstructure-properties relationships of acoustic monodisperse foams. First, the
acoustic properties of the considered structures are estimated numerically by homogenization techniques using
an idealized periodic unit cell and the Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model. The reference
maps of transport parameters are then used to construct the PCE–based surrogates in the design space involving
a set of foamy microstructural parameters such as membrane content, cell size, and porosity. Finally, after a
validation phase and assessing convergence characteristics, the generated surrogates are employed to design
some foam-based absorbers to illustrate the accuracy and computational efficiency of the proposed method.
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1. Introduction

In noise engineering, one of the most common problems raised in recent years is finding materials
or structures with the desired sound absorption performance [1–3]. Compared with other traditional
solutions (i.e., fibrous or granular), cellular materials or solid foams have been developed and widely
applied for various fields due to their acoustic properties [4–6] and other relevant advantages such
as their lightweight and high specific surface area [7]. This sound-absorbing material is a highly
porosity cellular structure that can absorber partially the energy of the sound wave propagating inside.
By controlling the foamy morphology features, the desirable sound absorption coefficient of a given
foam-based absorber can be achieved at the considered frequency bands (e.g., low or high frequency
targets [8]).

Methodologically, to characterize sound absorbing materials, three main approaches are widely
used, namely the phenomenological, semi-phenomenological, and empirical ones. These methods are
supported by analytical, numerical, and experimental developments and techniques. In the equivalent-
fluid method [2], a porous medium with a rigid frame is represented by an effective density and an
effective bulk modulus, this serves a powerful framework for modeling and characterizing the func-
tional properties of studied materials. Numerically, these macro-scale complex parameters can be
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defined using two alternative ways based on finite element method (FEM): direct numerical simu-
lations [9] and multiscale homogenization (direct [10, 11] and hybrid [4, 12, 13] schemes). In the
direct multiscale calculation, the effective properties are directly formed from the calculated dynamic
viscous and thermal permeability functions. The hybrid multiscale calculation allows computing the
characteristic lengths and transport factors. From these macroscopic transports, the effective prop-
erties are also calculated through the corresponding semi-phenomenological models (e.g., JCAPL
model). Experimentally, standing impedance tube measurements can be used to undertake the above
parameter estimations [14–16].

To address the computational burden of time-consuming system simulations for characterizing
materials, a meta-model or surrogate model can be a potential candidate. Modeling seems to take
computing cost depending the level of structure complex, while surrogating is technique we can for-
mulate the system response or map based on a scare or less computed data. Using the surrogate model,
we can generate analytically any points in the input space for investigating and searching the global
or target criteria. Surrogate modeling techniques (e.g., neural network [17], multivariate polynomials
[18]) are therefore often used for establishing the link between the input variables and the functional
responses of acoustic systems (e.g., absorber, anechoic [19]). The aim of this paper is to generate a
PCE-based surrogate model for predicting the acoustic absorption of membrane foams. The surrogate
is reconstructed based on the reference map that is deduced from the multiscale computations.

The paper is organized as follows. Section 2 provides briefly multi-scale modeling of acoustic
foam materials with hybrid numerical homogenization via reconstructed Kelvin unit cell. In Section
3, the reference map of transport parameters is used to construct the surrogates. Section 4 illustrates
the computational efficiency and predictability of the generated surrogates for designing some foam-
based absorbers after a verification work. Conclusions are finally provided in Section 5.

2. Multi-scale modeling of foam structure

2.1. Foamy morphology and periodic unit cell

Foamy structure is made of membranes or films, ligaments or Plateau’s borders (junction of three
membranes) and vertices or nodes (junction of four ligaments), see Fig. 1(a). Whereas closed mem-
branes are necessary to ensure the mechanical stability of liquid foam [20, 21], membranes can be
open or totally absent in solid foams, allowing for the foam cells (pores) to be connected through
windows.

Figure 1. Modeling local microstructure of monodisperse foams with membranes
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A periodic unit cell (PUC) having a size Cs (Fig. 1(b)) is used to represent the structure of
monodisperse foam materials. The cell is based on the Kelvin pattern and counted 14 faces (8 hexagons
and 6 squares). As we are mostly interested in the effect of the closure ratio of windows, the unit cell is
made of idealized ligament having a length Ll = Cs/(2

√
2) and an equilateral triangular cross section

with edge side r [21],

r ≈ Cs
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For each window, the closure ratio of membrane is defined as:

δc = 1 −
√

Aap
/
Apo (2)

where Aap is the aperture area (the area of the aperture circles with diameter tos and toh), and Apo

is the window area (the area of the corresponding polygonal face with edge size of tws and twh) see
Fig. 1(c).

Using the PUC configuration Ω (within fluid phase Ω f and solid-fluid interface ∂Ω f ), the purely
geometrical parameter the thermal characteristic length Λ′ also named as hydraulic radius can be
estimated by

Λ′ = 2
∫∫∫

Ω f

dV
/∫∫∫

∂Ω f

dS (3)

2.2. Numerical calculations of transport parameters

This section presents the first-principles calculations of six transport properties (e.g., the ther-
mal and viscous permeabilities, the thermal and viscous characteristic lengths, and static and high
frequency tortuosities).

a. Stokes equation with no-slip boundaries
At the low frequency limit (when ω → 0), in the pore domain of porous media, viscous effects

dominate, and a steady-state flow is created. This flow of an incompressible Newtonian fluid at very
low Reynolds numbers is governed by the usual Stokes equations as [22]

η∆v − ∇p = −G with ∇ · v = 0 in Ω f

v = 0 on ∂Ω f
(4)

where v, p, and η are respectively the velocity, pressure, and viscosity of the fluid. In general, G =

∇pm is a macroscopic pressure gradient acting as a source term. Symbols ∆ and ∇ are respectively the
Laplacian and nabla differential operators, while “·” denotes the classical inner product in R3. The
local static viscous permeability can be obtained from the local velocity field as,

v = −1/η k∗0G (5)

Then, the components of the static viscous permeability tensor k0 and the static viscous tortuosity
tensor α0 are calculated as [23],

k0i j = φ
〈
k∗0i j

〉
; α0i j =

〈
k∗0pik

∗
0p j

〉
〈
k∗0ii

〉 〈
k∗0 j j

〉 , 1 ≤ i ≤ j ≤ 3, (6)
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where p is the Einstein summation notation, and the symbol 〈•〉 indicates a fluid-phase average for-

mulated by 〈•〉 = 1/
∣∣∣Ω f

∣∣∣ ∫∫∫
Ω f

•dV . It can be noted that referring to a symmetry feature of the

considered geometry, the second-order transport tensors k0 and α0 are isotropic (i.e., k0i j = k0δi j and
α0i j = α0δi j where δi j is the Kronecker symbol). It means that the definition of these static transport
parameters can be as a scalar instead of their full form of a second-order tensor.

b. Conduction problem with insulation boundaries
In high-frequency regime, when ω large enough (i.e., ω → ∞), inertial forces dominate over

viscous ones and the saturating fluid tends to behave as a nearly ideal one without viscosity except
in the vicinity of the boundary layer. In this case, the inertial flow of the perfect incompressible fluid
formally behaves according to the electric conduction phenomenon [24]. Consequently, the quantities
of interest in the inertial flow problem be obtained by solving the following set of potential equations:

∇ · E = 0 with E = −∇ϕ + e in Ω f

E · n = 0 on ∂Ω f
(7)

where e is a given macroscopic electric field, E is the local solution of the boundary problem having
−∇ϕ as a fluctuating part, and n is the unit normal to the boundary of the pore region ∂Ω f . Herein,
assuming that porous material composes of a non-conductive solid matrix and a conductive fluid.

The components of the viscous characteristic length tensor Λ and the through thickness high-
frequency tortuosity tensor α∞ can be calculated as [25],

Λi j = 2

∫∫∫
Ω f

EpiEp jdV∫∫
∂Ω f

EpiEp jdS
; α∞i j =

〈
EpiEp j

〉
〈Eii〉

〈
E j j

〉 (8)

c. Heat equation with isothermal boundaries
At the low frequency limit (i.e., in the static case), heat diffusion in porous media is governed by

the Poisson equation [26],
∇2τ = −1 in Ω f

τ = 0 on ∂Ω f
(9)

From the obtained field τ over the whole representative cell, the static thermal permeability is
defined as the average value of the field solution, while the static thermal tortuosity is estimated
similarly to the path for two above tortuosity functions. These factors are estimated as [24]

k′0 = 〈τ〉; α′0 =
〈
τ2

〉
/〈τ〉2 (10)

The full set of above estimated transport parameters is used to describe the sound absorbing layer
with effective properties through the semi-phenomenological model in the next section.

2.3. Estimation of sound absorption

Following the equivalent-fluid theory, the effective density and the effective bulk modulus are
defined in the semi-phenomenological model (i.e., JCALP model) as following equations [25, 27, 28]

ρ̃ (ω) =
ρ0α∞
φ

1 +
1

j$′

1 − P + P

√
1 +

M
2P2 j$

 (11)
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K̃ (ω) =
γP0

φ

γ − (γ − 1)
1 +

1
j$′

1 − P′ + P′
√

1 +
M′

2P′2
j$′

−1
−1

(12)

with
$ =

ω

ν

k0α∞
φ

; $′ =
ω

ν′
k′0
φ

(13)

M =
8α∞

k0Λ2φ
; P =

M
4(α0/α∞ − 1)

; M′ =
8k′0
Λ′2φ

; P′ =
M

4(α′0 − 1)
(14)

where ρ0 denotes the density of the saturating fluid (i.e., air), γ = Cp/Cv is the ratio of the pressure
volume-specific heat Cp and the constant pressure-specific heat Cv, P0 is the atmospheric pressure,
ω = 2π f is the angular frequency. Four non-dimensional shape factors M,M′, P, and P′ depend on
material transport parameters including the open porosity φ, the thermal and viscous characteristic
lengths

(
Λ′,Λ

)
, the static viscous and thermal permeabilities

(
k0, k′0

)
, the high frequency tortuosity

α∞, and the static tortuosities
(
α0, α

′
0

)
.

Then, the wavenumber k̃(ω) and the characteristic impedance Z̃c(ω) of the homogeneous acoustic
layer can be calculated as

k̃(ω) = ω

√
ρ̃(ω)
K̃(ω)

; Z̃c(ω) =

√
ρ̃(ω)K̃(ω) (15)

Under normal incidence acoustic plane wave, the sound absorption coefficient of an sound ab-
sorber backed by a rigid wall (i.e., without airgap) is defined as

Aα(ω) = 1 −

∣∣∣∣∣∣ jZ̃c(ω)cot[k̃(ω)L] − Z0

jZ̃c(ω)cot[k̃(ω)L] + Z0

∣∣∣∣∣∣2 (16)

where Z0 is the characteristic impedance of ambient air, and L is the layer thickness.

3. Polynomial chaos expansion-based surrogate

Using the reference maps of several above-estimated transport parameters, the general polyno-
mial expansion techniques present as follows are used to construct the surrogate model describing
structure-transport relationships of foams.

3.1. Polynomial chaos expansion

Since the reference map m 7→ q(m), with m belongs to some admissible closed set Sm =

×d
i=1 [ai, bi] in Rd, typically introduces some smoothness due to its multiscale nature, polynomial

approximation techniques are natural candidates for the construction of the surrogate map q̂ and
are considered thereafter. Upon introducing the normalized vector-valued parameter ξ = {ξi}

d
i with

ξ ∈ [−1, 1] such that:
ξi := 2mi/(bi − ai) + (ai + bi)/(ai − bi) (17)

The surrogate model q̂ is then sought for as a polynomial map in ξ:

q̂(ξ) =

+∞∑
α,|α|=0

ψαPα(ξ) (18)
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where α is a multi-index in Nd with |α| =
d∑

i=1

αi, and Pα(ξ) =

d∏
i=1

Pαi (ξi) is a the multidimensional

Legendre polynomial with Pαi (ξi) is the univariate Legendre polynomial of order αi [29], given as
with αi ≥ 1:

Pαi+1 (ξ) =
2αi + 1
αi + 1

ξPαi (ξ) −
αi

αi + 1
ξPαi−1 (ξ) (19)

in which two first polynomials as P0 (ξ) = 1 and P1 (ξ) = ξ.
From the orthogonality of these polynomials, namely,

E
{
PαPβ

}
:=

1
2d

∫
[−1,1]d

Pα(x)Pβ(x)dx =

d∏
i=1

δαiβi

2αi + 1
(20)

where δi j is Kronecker delta, it follows that

ψα =

 d∏
i=1

(2αi + 1)

E {q̂Pα} (21)

Let
{
γi, ξ̂i

}nQ

i=1
be the nQ weights and integration nodes according to the Gauss-Legendre quadrature

rule. The polynomial coefficients, for polynomial chaos expansion is truncated at order p, are thus
approximated as

ψα =
1
2d

nQ∑
i=1

γiq
(
ξ̂i

)
Pα

(
ξ̂i

)
, ∀α ∈ Ap (22)

where Ap =
{
α ∈ Nd : |α| ≤ p

}
, and N = card

(
Ap

)
= (d + p)!(d!p!).

3.2. Reference sampling and convergence assessing

A periodic unit cell represented for cellular membrane foams is employed for a simple unit cell of
the hybrid method. This unit cell is first reconstructed for cellular structure at porosity of φ having a
given cell size of Cs = 1 mm and the closure membrane rate of δc (see Fig. 1). The membrane closed
rate is varied in a range of δc =

[
δmin

c , δmax
c

]
= [0.1 0.9], while for foams within high porosity, the

second variable is selected in a range of φ =
[
φmin, φmax

]
= [0.90 0.99].

From the above support Sm (d = 2) or ξ = (ξ1, ξ2), the considered map is introduced as Sq :=
(q1, q2, . . . , q7) =

(
Λ̄′, Λ̄, k̄0, k̄′0, α∞, α0, α

′
0

)
. Noted that herein four non-dimensional transport proper-

ties are evaluated as
Λ̄′(Λ̄) = Λ̄′(Λ̄)/Cs; k̄0

(
k̄′0

)
= k0

(
k′0

)
/C2

s (23)

The convergence analysis with respect to the total number nQ of quadrature points and the order p
of the approximated expansion is evaluated with the error functions nQ 7→ εN0

(
nQ

)
and p 7→ εp(p)

below [30],
εnQ

(
nQ

)
=

∥∥∥ψα (
nQ + 1

)
− ψa

(
nQ

)∥∥∥2
/
∥∥∥ψα (

nQ
)∥∥∥2 (24)

εp(p) =

√
E

{(
q̂p(ξ) − q(ξ)

)2
}
/E

{
q2(ξ)

}
(25)

Finally, let ϑp be the relative error and measured as,

ϑp =
∣∣∣q(m) − q̂p(m)

∣∣∣ /q̂p(m) (26)
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where q̂p is estimated from the p -order surrogate model.
To sum up the above-described method, the flow chart of modeling foams using polynomial sur-

rogates is drawn in Fig. 2.

Figure 2. Flow chart of modeling foams using polynomial surrogates

4. Results and discussion

In this section, the characterization, the predictability, and the application of the PCE-based sur-
rogate model are investigated and discussed.

4.1. Validation of FEM scheme and acoustic model

To validate the FEM scheme used for computing the reference map, we first employ it for a clas-
sical cubic lattice, i.e., face-centered cubic (FCC), see Fig. 3(a). This structure has a porosity of 0.24,
sphere radius of 1 mm, and solder joints with a radius of 150 µm. First, the present computed trans-
port properties are compared with the estimations in Ref. [10]. As listed in Table 1, a good agreement
is obtained. Then, the sound absorbing coefficients are compared to demonstrate the consistent find-
ings between the present hybrid numerical computation and the direct numerical one [10, 31]. The
absorbers are based on the FCC packing (Fig. 3(a)) having two different thicknesses L = (50; 100)
mm. The considered frequency ranges from 1 Hz to 10 kHz. In the direct approach, the SAC value
is estimated from the effective factors taken from Table 3.4 and Table 3.5 in Ref. [31]. As shown in
Figs. 3(c)–(d), the obtained curves of both absorbers reveal that the frameworks can predict consis-
tently the acoustic behavior. The horizontal dashed line is the high-frequency sound absorption limit
of 0.56 for the FCC pattern at a porosity φ = 0.26 [32]. The observations presented above strongly
validate the proposed technique.

Table 1. Computed transport properties of the FCC structure

Reference
Λ′ Λ k0 k′0 α∞ α0 α′0

(mm) (mm) (×10−10 m2) (×10−10 m2) (-) (-) (-)

[10] 0.247 0.159 6.70 27.0 1.65 2.49 1.85
Present 0.247 0.157 6.76 26.3 1.66 2.65 1.89
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(a)

(b)

(c)

(d)

Figure 3. Solid domain (a) and mesh model of fluid phase (b) of PUC based on the FCC lattice.
The sound absorption for the thickness of 50 mm (c) and 100 mm (d)

4.2. Assessment of the surrogate characteristics

The first convergence characteristic is investigated on the values of the polynomial coefficients.
Fig. 4 presents several maps nQ 7→ εnQ

(
nQ

)
for a set of four transports Λ′, k0, k′0, and α∞ as shown

in sub-figure (a) to (d), respectively. The results are from left to right corresponding an increase in
p, and the dash lines denote the tolerance value (i.e. εQ = 10−2

)
except for the case of the purely

geometrical factor, the thermal characteristic length with εQ = 10−4. The curves state that with a
given truncated order of polynomial expansion, we can select the optimal values of nQ that provide
the constraint tolerance error (see, solid markers). Noticed that for three remaining factors (i.e., Λ̄, α0,
and α′0

)
, similar observations can be made.

Next, within a high value of nQ = 20, the L-norm error εq(p) is measured for all seven macro-
scopic transport parameters as shown in Fig. 5. The results indicate clearly that the polynomial order
of p > 9, the surrogate model can produce a least squared error, ε < 10−2. In the considered range of
p, it can be seen that the performance of the meta-model seems not to be improved by continuously
increasing of order p except in the thermal characteristic length (see lines with square marker).

For sake of visibility, Fig. 6 depicts the distance mapping between the reference and surrogate
functions (with a gird of 30 times 30 combinations evaluated). Herein, four transports Λ̄,Λ′, k̄′0, and
α0 are plotted from (a) to (d), respectively. This illustrates again the above-stated convergence charac-
teristics of the surrogates. In terms of computational cost, the evaluation of the cost function with the
surrogate model took about 128 seconds for a grid of 100× 100 sampling points. Proceeding with the
reference multiscale solutions (where only one quarter of the PUC is used, by periodicity) requires
about 39 hours with 30 sampling points along each direction.
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(a) (b)

(c) (d)

Figure 4. Graph of nQ 7→ εnQ

(
nQ

)
for p = 2k + 1 with 2 ≤ k ≤ 8. The results in sub-figures (a) to (d)

are representative for factors Λ′, k0, k′0, and αα

Figure 5. Graph of error map p 7→ εq(p) for nQ = 20 and p = 2k + 1 with 2 ≤ k ≤ 8
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Figure 6. Graph of distance mapping (δc, φ) 7→ ϑq (δc, φ) estimated with the polynomial expansions at order
p = 11 (color surface) and p = 15 (while surface). The results are for Λ̄,Λ′, k̄′0, and α0 from (a) to (d)

4.3. Acoustic properties of foam-based absorbers

Fig. 7 provides the effect of geometrical factors on foamy transport properties (cross makers: ref-
erence and lines: surrogates with p = 11 and nQ = 10). The thicker lines are for porosities ranging
from 0.9 to 0.99. Regardless of porosities under consideration, the factors of lengths and permeabili-
ties decrease with an increase in the membrane ratio (Figs. 7(a)–(b)), while three tortuosity functions
experience a sharp growth (Figs. 7(c)–(d)). These trends are in good agreement with the findings in
Refs. [4, 6] and that can be explained by the reduction of the throat size in highly closed membrane
foams. The lines track perfectly the markers that demonstrate good predictability of surrogates.

Next, the single-layer absorber is considered to illustrate the surrogate model in terms of predict-
ing sound absorption. All predictions below are produced with foams with a cell size of 1 mm. Fig. 8
plots the sound absorption of foam layer within a thickness of 0.02 m with two porosities, φ = 0.90
(left panel) and φ = 0.99 (right panel). Arrow indicates an increase in δc from 0.1 to 0.9. The ob-
tained curves reveal that the open porosity affects slightly the sound absorption behavior, while the
membrane level has a significant effect. In addition, for foam nearly closed-cell structures its sound
absorption behavior shows quarter-wavelength resonances at several frequencies, while the open-cell
foam with low porosity provides a higher sound absorption compared with highly porosity foams.

In the next investigations, we only work with surrogate models of transport properties, and the
sound absorptions are still estimated through the JCAPL model. The curves in Fig. 9 are for a case of
foam with a porosity of 0.99, but the membrane level ranges from open cell to nearly close cell ones
(i.e., [0.1 0.9]). Clearly, the thicker the absorber layer the better sound absorptions, and the membrane
range providing a higher absorption is extended to a low value of nearly 0.92 (see the large zone with
a high-value absorption in the right panel compared with the left one in Fig. 9).
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(a) (b)

(c) (d)

Figure 7. Effect of geometrical factors on transport properties: (cross markers) reference and (lines) surrogate
values. The thicker the line the higher porosity

Figure 8. Effect of geometrical factors on the sound absorption properties for φ = 0.90 (left) and φ = 0.99
(right): (cross markers) reference and (lines) surrogate values

Finally, for designing sound absorbers, the averaging sound absorption index Aα = 1/N
N∑

i=1

Aα (ωi)

is provided and defined from N discrete angular frequencies in the range of interest. Herein, we in-
troduce three frequency bands,

[
f1, fN

]
= [50 500], [500 1500], and [1500 4500] Hz, namely RF1 to
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Figure 9. Sound absorption capacity of foam-based absorbers. Results correspond L = 20 mm (left part)
and L = 60 mm (right part)

RF3. To continue with the foam having high porosity of 0.99 as shown in Fig. 8, but the moderated
level of membrane (i.e., δc = 0.5) is selected. It is seen from Fig. 10 that for a certain foam material,
we can achieve successfully the sound absorption targets by varying only the layer thickness L. It is
obvious that the challenging of low-frequency absorption is remarked for layers with L < 80 mm (i.e.,
Aα < 0.4), whereas a high-level absorption (i.e., Aα > 0.8) over both RF2 and RF3 ranges can be
obtained via L > 50 mm.

Figure 10. Sound absorption of absorbers with varying the layer thickness

5. Conclusions

The numerical and PCE-surrogate approach is proposed to characterize the microstructure-property
correlations of acoustic cellular foams. The convergence characteristics of the surrogate models reveal
that: (i) having a low computational cost, the surrogate can predict all transport properties within a
tolerance error of 10−2; (ii) using these surrogate maps of macroscopic transports, we can estimate
accurately and efficiently the absorption property (at individual frequencies or over a whole range of
interest) of foam structures over the design space. Finally, while the suggested application only dealt
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with foam layers, it should be noticed that our framework can readily accommodate hybrid morpho-
logical structures (e.g., polydisperse/graded morphology, composite/multi-layered absorbers) where
sparse grids should be employed instead of the regular full one.
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