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Abstract

In recent years, together with the boom of the industrial revolution 4.0, terms such as artificial intelligence
(AI) are gradually gaining popularity engineering domain. This study proposed a number of AI models for
predicting the axial strength in circular steel tube confined concrete (STCC) columns. Particularly, artificial
neural networks (ANNs), support vector regression (SVR), linear regression (LR), and M5P were applied in this
study. This study applied 136 samples of short and intermediate STCC columns infilled with normal strength
concrete, high strength concrete, or ultimate high strength concrete to evaluate the AI models. Compressive
strengths of concrete cylinders was ranged from 23.20 Mpa to 188.10 Mpa. The AI models were assessed by
statistical indexes including MAPE, MAE, RMSE, and R. The analytical results revealed that the M5P the
most effective AI model comparing to others. Comparing with the other models, predicted data obtained by the
M5P model show the highest agreement with the actual data in predicting the axial strength of STCC columns.
Particularly, the MAPE and R of M5P models were 10.62% and 0.977 respectively. Similarly, the RMSE by the
M5P model was 330.38 kN which is the lowest value among 419.39 kN by the LR model, 337.84 kN by the
ANNs model, and 857.11 kN by the SVR model. Therefore, the M5P model can be considered as a useful tool
to accurately predict the compressive capacity of the STCC columns.

Keywords: artificial intelligence; circular steel tube confined concrete columns; axial strength; support vector
regression.
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1. Introduction

A concrete-filled steel tube (CFST) is a type of steel-concrete composite structure. CFST has
many outstanding benefits such as high load capacity, good dynamic load capacity, and fast construc-
tion. Additionally, this column type also has pros over steel columns is high fire resistance [1–4].
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Therefore, there are a number of studies researching and analyzing CFST columns. For example, a
model was proposed for modeling behavior of multi-cell concrete-filled steel tube (MCFST) columns
under axial load [5]. A model was developed for estimating the axial strength of recycled aggregate
concrete-filled steel tube columns [6].

A steel tube confined concrete (STCC) column is one of the types of CFST columns as the con-
crete core is loaded only. Many studies showed that STCC columns have advantages outperforming
CFST columns. For example, Han et al. found that STCC columns exhibit very high levels of en-
ergy dissipation and ductility, particularly when subjected to high axial loads over CFST columns [7].
Other studies also showed that STCC columns yielded the load performing greater improvements in
strength and ductility compared to conventional CFST columns [7–9]. Therefore, this study focuses on
analyzing STCC columns infilled with normal strength concrete, high strength concrete, and ultimate
high strength concrete.

Concerning the development of artificial intelligence (AI), today there are more and more scien-
tists and organizations researching and developing AI methods to handle complex problems [10–13].
For example, an artificial neural networks (ANNs) model was applied to predict the shear strength
of reinforced concrete beams [14] and to predict the strength of rectangular CFST beam-columns
[15], to analyze probabilistic pushover of reinforced concrete frame structures [16]. The gradient tree
boosting (GTB) model was proposed in [17] to predict strength CFST columns. The effectiveness of
the GTB model was confirmed by comparing its performance with other AI methods such as random
forest (RF), support vector machines (SVMs), decision tree (DT) and deep learning (DL).

The SVMs model is also a powerful AI model [18], which has been utilized in numerous engi-
neering applications. For instance, the SVMs model was used to determine soil quality [19], forecast
the cement strength [20], and project schedule [21]. The support vector regression (SVR) is a variant
of the SVM model, that has been used to predict energy use in buildings [22], and estimating the
preliminary cost of buildings [23]. The k-nearest neighbors model was integrated with Bayesian op-
timization, to predict the local damages of reinforced concrete panels under missile impact loading
[24].

Another AI algorithm the study wanted to mention is M5P which has been also applied in a variety
of works concerning engineering problems. For instance, Lin et al. [25] combined the M5P model
and hazard-based duration model for predicting urban freeway traffic accident durations. Moreover,
M5P was used to predict the compressive strength of normal and high-performance concretes [26].
Mohammed et al. [27] combined ANNs, M5P, and nonlinear regression approach with statistical
evaluations to predict the compressive strength of cement-based mortar modified with fly ash.

In this paper, therefore, given experimental data STCC columns, the authors used four useful
AI models to estimate the axial strength in the STCC columns. Particularly, artificial neural networks
(ANNs), support vector regression (SVR), linear regression (LR), and M5P were applied in this study.
As a contribution, the study examined various AI models in predicting the axial strength in circular
STCC columns. The findings of this study can support structural engineers to accurately estimate the
axial strength of the STCC columns.

2. Artificial intelligence models

2.1. Support vector regression

The SVR [28] is a supervised learning model belong to machine learning, that is used for regres-
sion problems. It has been used for capturing the non-linear relationship between the predictors and
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Figure 1. Training the SVR model

dependent variables. Fig. 1 demonstrates a framework of the SVR model. It uses a kernel function to
maps predictors to high-dimension feature space. A least-squares cost function is applied to train an
SVR model to yield linear equations in a dual space that reduces computing time. Particularly, SVR
models are taught by solving Eq. (1).

min
ω,b,e

J(ω, b, e) =
1
2
‖ω‖2 +

1
2

C
n∑

k=1

e2
k ; subject to yk = 〈ω, ϕ (xk)〉 + b + ek, k = 1, . . . , n (1)

where J(ω, b, e) is an objective function; ω is a linear approximator‘s parameter; ek is errors; C ≥ 0
is a regularization parameter; xk is predictors; yk is dependent variables (i.e., the axial strength in the
STCC columns); b is bias; and n is the dataset size.

2.2. Artificial neural networks

The concept of ANNs is introduced from the subject of biology where neural network plays an
important and main role in people’s body [29]. The ANNs model consists of 3 main components, they
are the input layer and the output layer consist of only 1 layer, the hidden layer can have 1 or more
layers depending on a specific problem. A nonlinear activation function is used to map inputs onto
outputs through hidden layers, which is presented as Eq. (2). Details of ANNs models can be found
in [29].

net k =
∑

wk jo j and yk = f ( net k) (2)

where netk is the activation of k-th neuron; j is the neurons in the previous layer; wk j is the weight
between k and j; o j is the output of neuron j, and yk is the transfer function.

2.3. Linear regression

LR is one of the most basic and simplest algorithms of machine learning however it is useful for
a large number of problems. LR is a statistical technique related to correlation [30]. The final goal of
LR is to determine the values of parameters for a linear function that cause the function to best fit a set
of data observations [31]. LR finds out a model that can show the relationship between two variables
and indicates how one can impact the other. When determining the values of the parameters, we can
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use the formula to predict the value for a new subject. The LR model obtains a linear relationship
between an output and inputs as Eq. (3).

Y = β0 +

n∑
i=1

βixi + ε (3)

where Y is an output; xi are independent variables; β0 is a constant; βi is a regression coefficient; ε is
an error; n is the number of inputs.

2.4. M5P

M5P was developed by Quinlan et al. [32], it is one of the regression models that the last nodes
are the linear regression function producing continuous numerical attributes. A model tree is used for
numeric prediction and it stores a linear regression model at each leaf that predicts the class value of
instances that reach the leaf.

In determining which attribute is the best to split the portion T of the training data that reaches
a particular node the splitting criterion is used. The standard deviation of the class in T is treated
as a measure of the error at that node and each attribute at that node is tested by calculating the
expected reduction in error. The standard deviation of the class in T is treated as a measure of the
error at that node and each attribute at that node is tested by calculating the expected reduction in
error [33]. Particularly, the three major steps for M5P tree development are tree construction, tree
pruning, and tree smoothing. The M5P process afforded to maximize a measure called the standard
deviation reduction (SDR) [34].

3. Results

3.1. Dataset
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Figure 2. STCC columns

The 136 samples of STCC columns were de-
rived from [7, 9, 35–43] to build the AI mod-
els. STCC columns were infilled with the normal
strength concrete ( fc ≤ 60 MPa), high strength
concrete (60 MPa < fc ≤ 120 MPa), and ultra high
strength concrete ( fc > 120 MPa). Table 1 presents
specific information of data attributes in which
predictors are the concrete compressive strength
( fc,cyl), the yield stress of steel ( fy), the column
diameter (D), the thickness of steel tube (t), col-
umn length (L), D/t, and L/D. The AI models
aim to predict the axial strength (Nmax) in the
STCC columns. Detailed data were presented in
Appendix A.

Fig. 2 shows the geometry of an STCC column [44, 45]. The concrete compressive strength ranges
between 23.20 MPa and 188.10 MPa, the yield stress of steel varies 185.70 to 486.00 MPa, and the
values of D are from 60.00 mm to 318.50 mm. the values of t are varied from 0.86 mm to 10.37 mm,
the values of D/t change from 15.90 to 220.93, the values of L/D vary from 1.75 to 24.12, and the
values of Nmax range from 215.00 kN to 9297.00 kN. Fig. 3 presents histograms of attributes of the
dataset.
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Table 1. Specific information of data attributes

Summary fc,cyl (Mpa) fy (Mpa) D (mm) t (mm) L (mm) D/t L/D Nmax (KN)

Ave. 77.63 345.37 145.12 4.35 819.55 50.57 6.20 2161.59
Std. dev. 53.53 69.38 44.40 2.35 568.18 47.94 5.30 1569.31

Min. 23.20 185.70 60.00 0.86 180.00 15.90 1.75 215.00
Max. 188.10 486.00 318.50 10.37 2750.00 220.93 24.12 9297.00
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Figure 3. Histograms of attributes of the dataset. 175 
Figure 3. Histograms of attributes of the dataset
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3.2. Model evaluation

Fig. 4 depicts the evaluation flowchart of the AI model in this study. The flowchart includes
the data collection, data preprocessing, learning the AI model, testing the AI model, and comparing
predictive accuracy. The k-fold cross-validation method was used in this study, in which 10 folds were
resampled equally and randomly from the original dataset.
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Figure 4. Model evaluation flowchart

As shown in Fig. 5, the original dataset was divided randomly into ten folds of data. Nine of ten
folds were combined to produce the learning data while the 10th fold was applied as the test data. With
this regard, the learning data were created nine times from the combination of nine distinguished folds.
For evaluating AI models, the learning data aimed to train the AL models while the test data aimed to
test the prediction performance of the AI models. The investigated AI models were performed in the
Weka which is an open source machine learning platform [46]. Model parameters were set as default
values, which were presented in Table 2.
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Figure 5. K-fold cross-valuation method for data separation

Table 2. Default settings of model parameters

Prediction models Default parameter settings

ANNs hiddenLayer = 4; learningRate = 0.3; and momentum = 0.2
M5P minNumInstances = 4 and batchSize = 100
SVR regularization parameter C = 1; Kernel function = RBRKernel; and Gamma = 0.01
LR attributeSelectionMethod = M5 method and eliminateColinearAttributes = True

The AI models were learned by using the learning data and after that, the learned models were
tested using the test data. Predictors which were fc,cyl, fy,D, t, L,D/t, and L/D were fed into the
learned model to produce the predicted axial strength in the STCC columns (Nmax). Mean absolute
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error (MAE), mean absolute percentage error (MAPE), correlation coefficient (R), and RMSE were
adopted to evaluate and compare the effectiveness of AI models. These indices were presented in Eqs.
(4)–(7).

RMSE =

√√
1
n

n∑
i=1

(Nmax − N′max)2 (4)

MAE =
1
n

n∑
i=1

∣∣∣Nmax − N′max

∣∣∣ (5)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣Nmax − N′max

Nmax
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n
(∑

N2
max

)
− (

∑
Nmax)2

√
n
(∑

N′2max

)
− (

∑
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(7)

where N′max and Nmax are predicted and actual axial strength in the STCC columns; and n is the data
size.

3.3. Analytical results

AI models were proposed in this study for predicting the axial strength in the STCC columns. The
AI models were the LR, ANNs, SVR, and M5P. Prediction results in Table 3, the R values obtained
by all models were quite similar, which were 0.963 for the LR model, 0.977 for the ANNs model,
0.882 for the SVR model, and 0.977 for the M5P model. These R values were very close to 1.00,
which depicts the high correlation between the actual data and predicted data of the axial strength in
the STCC columns. Clearly, the R of ANNs and M5P models had the highest value which was 0.977.

Table 3. Investigated machine learning models for the axial strength in STCC columns

Machine learning
Comparison among models

R RMSE (kN) MAE (kN) MAPE (%)

LR 0.963 419.39 307.32 27.06
ANNs 0.977 337.84 248.88 17.34
SVR 0.882 857.11 450.00 19.96
M5P 0.977 330.38 217.03 10.62

There was a difference in terms of the RMSE, MAE, and MAPE between the selected AI models.
Particularly, the M5P model yielded the lowest errors in the RMSE (330.28 kN), MAE (217.3 kN),
and MAPE (10.62%) compared to other AI models in Table 3. We can see that although the R-value
of the ANNs model yielded also 0.977 which was the same as the M5P model, other values of the
ANNs model had higher than that of the M5P model. The LR model obtained 0.963 in the R that was
quite a good value, 419.39 kN in the RMSE, 307.32 kN in the MAE, and 27.06% in the MAPE. The
R by the SVR model was 0.882, which is the lowest value, among others. Therefore, M5P is the best
model which is suitable for the STCC column data. Fig. 6 presented the actual and predicted values
of AI models.
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Figure 6. Comparison results by artificial intelligence models

According to the predictions obtained from the models (as seen in Fig. 4), the ultimate loads of
the predictions are closed to the test results in the range of 2000 – 4000 kN. This can be explained
by the fact that the concrete strength of STCC columns with the ultimate loads in the range of 2000
– 4000 kN are normal and high strength. Furthermore, very high concrete strength (higher than 120
MPa) was used for the STCC columns with the ultimate load higher than 4000 kN. The database of
STCC columns using very high concrete strength was extremely limited.

4. Conclusions

This study proposed four AI models for predicting the axial strength in circular steel tube confined
concrete (STCC) columns. The artificial neural networks, support vector regression, linear regression,
and M5P were applied in the study. The 136 samples of short and intermediate STCC columns in-
filled with normal strength concrete, high strength concrete, or ultimate high strength concrete with
compressive strengths of cylinders ranging from 23.20 Mpa to 188.10 Mpa were used to develop
the proposed model. The k-fold cross-valuation method was applied for data separation to aid the
multi-evaluation. Accordingly, ten folds were resampled equally from the data of the collected STCC
columns.

The AI models were assessed by statistical indexes including MAPE, MAE, RMSE, and R. The
analytical results revealed that the M5P was the most effective AI model comparing to others. Partic-

120



Ngo, N.-T., et al. / Journal of Science and Technology in Civil Engineering

ularly, the R was 0.977, the MAPE was 7.00%, the MAE was 143.47 kW and the RMSE was kN by
the M5P model.

As a contribution of the study, the authors showed a number of AI models, applied axial strength
in circular STCC columns data to evaluate and find out the effective AI model. Hence, the M5P model
can aid structural engineers to accurately estimate the compressive capacity of the STCC columns.
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[6] Nour, A. I., Güneyisi, E. M. (2019). Prediction model on compressive strength of recycled aggregate
concrete filled steel tube columns. Composites Part B: Engineering, 173:106938.

[7] Han, L.-H., Yao, G.-H., Chen, Z.-B., Yu, Q. (2005). Experimental behaviours of steel tube confined
concrete (STCC) columns. Steel and Composite Structures, 5(6):459–484.

[8] Liu, J., Zhou, X., Gan, D. (2016). Effect of friction on axially loaded stub circular tubed columns.
Advances in Structural Engineering, 19(3):546–559.

[9] Johansson, M. (2002). Composite action and confinement effects in tubular steel-concrete columns.
Doktorsavhandlingar vid Chalmers Tekniska Hogskola, I+1–77.

[10] Dao, D. V., Trinh, S. H., Ly, H.-B., Pham, B. T. (2019). Prediction of compressive strength of geopolymer
concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches. Applied
Sciences, 9(6):1113.

[11] Qi, C., Ly, H.-B., Chen, Q., Le, T.-T., Le, V. M., Pham, B. T. (2020). Flocculation-dewatering prediction
of fine mineral tailings using a hybrid machine learning approach. Chemosphere, 244:125450.

[12] Dao, D. V., Ly, H.-B., Vu, H.-L. T., Le, T.-T., Pham, B. T. (2020). Investigation and optimization of the
C-ANN structure in predicting the compressive strength of foamed concrete. Materials, 13(5):1072.
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Appendix A. Data of STCC columns [7, 9, 35–43]

Sample no. fc,cyl (MPa) fy (MPa) D (mm) t (mm) L (mm) D/t L/D Nmax (KN)

1 48.30 363.30 165.00 2.82 562.50 58.51 3.41 1759.00
2 38.20 363.30 165.00 2.82 571.00 58.51 3.46 1649.00
3 38.20 256.40 190.00 1.94 659.50 97.94 3.47 1652.00
4 48.30 306.10 190.00 1.52 658.00 125.00 3.46 1841.00
5 38.20 185.70 190.00 1.13 657.00 168.14 3.46 1308.00
6 38.20 210.70 190.00 0.86 657.50 220.93 3.46 1240.00
7 56.40 363.30 165.00 2.82 581.00 58.51 3.52 2040.00
8 56.40 256.40 190.00 1.94 655.50 97.94 3.45 2338.00
9 56.40 185.70 190.00 1.13 661.50 168.14 3.48 1862.00
10 56.40 210.70 190.00 0.86 664.50 220.93 3.50 1940.00
11 43.92 336.00 108.00 4.00 324.00 27.00 3.00 1235.00
12 36.60 390.00 159.00 5.00 650.00 31.80 4.09 2120.00
13 36.60 402.00 159.00 6.80 650.00 23.38 4.09 2830.00
14 36.60 355.00 159.00 10.00 650.00 15.90 4.09 3400.00
15 37.49 307.00 60.00 1.48 180.00 40.54 3.00 220.00
16 37.49 307.00 60.00 1.48 180.00 40.54 3.00 215.00
17 37.49 307.00 60.00 1.48 180.00 40.54 3.00 215.00
18 37.49 307.00 120.00 1.48 360.00 81.08 3.00 610.00
19 37.49 307.00 120.00 1.48 360.00 81.08 3.00 660.00
20 37.49 307.00 120.00 1.48 360.00 81.08 3.00 660.00
21 37.49 307.00 180.00 1.48 540.00 121.62 3.00 1311.00
22 37.49 307.00 180.00 1.48 540.00 121.62 3.00 1280.00
23 37.49 307.00 180.00 1.48 540.00 121.62 3.00 1280.00
24 37.49 307.00 240.00 1.48 720.00 162.16 3.00 2300.00
25 37.49 307.00 240.00 1.48 720.00 162.16 3.00 2300.00
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Sample no. fc,cyl (MPa) fy (MPa) D (mm) t (mm) L (mm) D/t L/D Nmax (KN)

26 37.49 307.00 240.00 1.48 720.00 162.16 3.00 2150.00
27 31.75 287.33 114.30 3.35 342.90 34.12 3.00 816.20
28 56.99 287.33 114.30 3.35 342.90 34.12 3.00 995.70
29 31.75 342.95 114.30 6.00 342.90 19.05 3.00 1380.00
30 56.99 342.95 114.30 6.00 342.90 19.05 3.00 1425.30
31 23.20 371.00 101.60 3.03 304.80 33.53 3.00 635.00
32 23.20 371.00 101.80 3.03 305.40 33.60 3.00 679.00
33 23.20 371.00 101.80 3.03 305.40 33.60 3.00 632.00
34 24.30 452.00 216.50 6.61 649.50 32.75 3.00 3568.00
35 24.20 335.00 318.50 10.37 955.50 30.71 3.00 6901.00
36 40.20 371.00 101.60 3.03 304.80 33.53 3.00 864.00
37 40.20 371.00 101.70 3.03 305.10 33.56 3.00 803.00
38 38.20 452.00 216.50 6.61 649.50 32.75 3.00 4200.00
39 39.20 335.00 318.40 10.37 955.20 30.70 3.00 7742.00
40 51.30 371.00 101.50 3.03 304.50 33.50 3.00 859.00
41 51.30 371.00 101.90 3.03 305.70 33.63 3.00 926.00
42 46.70 452.00 216.40 6.61 649.20 32.74 3.00 4283.00
43 52.20 335.00 318.30 10.37 954.90 30.69 3.00 9297.00
44 36.20 363.00 168.60 3.90 645.00 43.23 3.83 1771.00
45 80.20 306.10 190.00 1.52 658.50 125.00 3.47 2870.00
46 74.70 210.70 190.00 0.86 657.50 220.93 3.46 2433.00
47 77.10 363.30 165.00 2.82 571.00 58.51 3.46 2608.00
48 77.10 256.40 190.00 1.94 656.00 97.94 3.45 3083.00
49 77.10 306.10 190.00 1.52 658.00 125.00 3.46 2830.00
50 77.10 185.70 190.00 1.13 662.00 168.14 3.48 2630.00
51 108.00 185.70 190.00 1.13 661.00 168.14 3.48 3220.00
52 77.10 210.70 190.00 0.86 664.00 220.93 3.49 2553.00
53 64.50 433.00 159.00 4.80 650.00 33.13 4.09 2210.00
54 64.50 433.00 159.00 4.80 650.00 33.13 4.09 2210.00
55 64.50 433.00 159.00 4.80 650.00 33.13 4.09 2240.00
56 93.80 390.00 159.00 5.00 650.00 31.80 4.09 2970.00
57 93.80 402.00 159.00 6.80 650.00 23.38 4.09 3410.00
58 93.80 355.00 159.00 10.00 650.00 15.90 4.09 3400.00
59 86.21 287.33 114.30 3.35 342.90 34.12 3.00 1242.20
60 102.43 287.33 114.30 3.35 342.90 34.12 3.00 1610.60
61 86.21 342.95 114.30 6.00 342.90 19.05 3.00 1673.90
62 102.43 342.95 114.30 6.00 342.90 19.05 3.00 1943.40
63 67.94 350.00 165.00 2.81 500.00 58.72 3.03 2160.00
64 67.94 350.00 165.00 2.76 500.00 59.78 3.03 2250.00
65 95.80 363.00 168.60 3.90 645.00 43.23 3.83 3339.00
66 158.46 377.00 164.20 2.50 652.00 65.68 3.97 3501.00
67 158.46 398.00 189.00 3.00 756.00 63.00 4.00 4837.00
68 165.49 363.00 168.60 3.90 648.00 43.23 3.84 4216.00
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Sample no. fc,cyl (MPa) fy (MPa) D (mm) t (mm) L (mm) D/t L/D Nmax (KN)

69 167.87 399.00 169.00 4.80 645.00 35.21 3.82 4330.00
70 158.75 405.00 168.70 5.20 645.00 32.44 3.82 4751.00
71 151.91 452.00 168.80 5.70 650.00 29.61 3.85 4930.00
72 158.75 409.00 168.10 8.10 645.00 20.75 3.84 5254.00
73 164.35 428.00 114.33 6.30 200.00 18.15 1.75 2866.00
74 164.35 428.00 114.33 6.30 200.00 18.15 1.75 2595.00
75 180.88 445.90 152.40 5.00 552.33 30.48 3.62 3645.94
76 185.82 445.90 152.40 5.00 548.50 30.48 3.60 3997.48
77 182.78 445.90 152.40 5.00 540.70 30.48 3.55 4224.02
78 188.10 373.40 152.40 6.30 553.00 24.19 3.63 3692.81
79 185.73 373.40 152.40 6.30 554.70 24.19 3.64 3807.97
80 178.41 373.40 152.40 6.30 552.70 24.19 3.63 4033.01
81 169.96 392.60 152.40 8.80 551.87 17.32 3.62 4200.84
82 185.73 392.60 152.40 8.80 559.67 17.32 3.67 4288.54
83 178.79 392.60 152.40 8.80 549.83 17.32 3.61 4354.06
84 31.75 287.33 114.30 3.35 571.50 34.12 5.00 749.40
85 31.75 287.33 114.30 3.35 800.10 34.12 7.00 736.80
86 31.75 287.33 114.30 3.35 1143.00 34.12 10.00 563.60
87 56.99 287.33 114.30 3.35 571.50 34.12 5.00 937.00
88 56.99 287.33 114.30 3.35 800.10 34.12 7.00 932.90
89 56.99 287.33 114.30 3.35 1143.00 34.12 10.00 904.20
90 31.75 342.95 114.30 6.00 571.50 19.05 5.00 1218.70
91 31.75 342.95 114.30 6.00 800.10 19.05 7.00 1000.40
92 31.75 342.95 114.30 6.00 1143.00 19.05 10.00 909.70
93 56.99 342.95 114.30 6.00 571.50 19.05 5.00 1389.30
94 56.99 342.95 114.30 6.00 800.10 19.05 7.00 1244.40
95 56.99 342.95 114.30 6.00 1143.00 19.05 10.00 1141.30
96 43.92 336.00 108.00 4.00 1296.00 27.00 12.00 839.00
97 43.92 336.00 108.00 4.00 1944.00 27.00 18.00 690.00
98 37.00 266.00 114.00 1.79 850.00 63.69 7.46 515.00
99 37.00 291.00 114.00 3.35 850.00 34.03 7.46 785.00
100 37.00 332.00 114.00 4.44 850.00 25.68 7.46 902.00
101 37.00 486.00 114.00 6.00 850.00 19.00 7.46 1334.00
102 25.00 486.00 114.00 5.91 1250.00 19.29 10.96 1177.00
103 33.00 266.00 114.00 1.93 1750.00 59.07 15.35 461.00
104 30.00 291.00 114.00 3.32 1750.00 34.34 15.35 628.00
105 37.00 486.00 114.00 5.94 1750.00 19.19 15.35 1138.00
106 28.00 266.00 114.00 1.78 2250.00 64.04 19.74 373.00
107 24.00 291.00 114.00 3.31 2320.00 34.44 20.35 535.00
108 28.00 486.00 114.00 6.14 2250.00 18.57 19.74 1000.00
109 36.00 266.00 114.00 1.72 2750.00 66.28 24.12 353.00
110 36.00 291.00 114.00 3.41 2750.00 33.43 24.12 569.00

125



Ngo, N.-T., et al. / Journal of Science and Technology in Civil Engineering

Sample no. fc,cyl (MPa) fy (MPa) D (mm) t (mm) L (mm) D/t L/D Nmax (KN)

111 31.00 332.00 114.00 4.49 2750.00 25.39 24.12 657.00
112 33.00 486.00 114.00 6.11 2750.00 18.66 24.12 941.00
113 25.00 486.00 114.00 5.94 1280.00 19.19 11.23 1285.00
114 36.00 266.00 114.00 1.73 2750.00 65.90 24.12 383.00
115 33.00 486.00 114.00 5.73 2750.00 19.90 24.12 824.00
116 86.21 287.33 114.30 3.35 571.50 34.12 5.00 1281.40
117 86.21 287.33 114.30 3.35 800.10 34.12 7.00 1206.50
118 86.21 287.33 114.30 3.35 1143.00 34.12 10.00 1200.00
119 102.43 287.33 114.30 3.35 571.50 34.12 5.00 1598.90
120 102.43 287.33 114.30 3.35 800.10 34.12 7.00 1513.50
121 102.43 287.33 114.30 3.35 1143.00 34.12 10.00 1481.20
122 86.21 342.95 114.30 6.00 571.50 19.05 5.00 1564.70
123 86.21 342.95 114.30 6.00 800.10 19.05 7.00 1509.30
124 86.21 342.95 114.30 6.00 1143.00 19.05 10.00 1389.10
125 102.43 342.95 114.30 6.00 571.50 19.05 5.00 1827.10
126 102.43 342.95 114.30 6.00 800.10 19.05 7.00 1788.90
127 102.43 342.95 114.30 6.00 1143.00 19.05 10.00 1613.50
128 180.88 445.90 152.40 5.00 949.70 30.48 6.23 3383.35
129 185.82 445.90 152.40 5.00 951.30 30.48 6.24 3724.06
130 182.78 445.90 152.40 5.00 950.50 30.48 6.24 3995.71
131 188.10 373.40 152.40 6.30 948.50 24.19 6.22 3861.14
132 185.73 373.40 152.40 6.30 947.30 24.19 6.22 3535.31
133 178.41 373.40 152.40 6.30 940.20 24.19 6.17 3584.70
134 169.96 392.60 152.40 8.80 942.93 17.32 6.19 3919.86
135 185.73 392.60 152.40 8.80 951.27 17.32 6.24 4178.66
136 178.79 392.60 152.40 8.80 943.77 17.32 6.19 4099.79
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