
Journal of Science and Technology in Civil Engineering, NUCE 2021. 15 (2): 90–100

GENERAL NON-UNIFORM QUADRILATERAL
CROSS-SECTIONS FOR THIN-WALLED

FG SANDWICH BEAMS

Tan-Tien Nguyena, Quoc-Hung Nguyena,∗, Thang D. Lea, Hiep D. Lea

aFaculty of Engineering, Vietnamese-German University,
Le Lai street, Thu Dau Mot city, Binh Duong province, Vietnam

Article history:
Received 23/02/2021, Revised 04/03/2021, Accepted 29/03/2021

Abstract

The paper aims at introducing an analysis of thin-walled functionally graded sandwich beams for general non-
uniform quadrilateral cross-sections. Generally, the materials are assumed to be graded through the thickness
following a predefined shape while Poisson’s ratio kept as a constant due to its less domination. The cross-
section linearly varies from one end to another end of the beam. In order to relax the difficulties in modeling
as well as capturing the behaviors of thin-walled functionally graded beams, a higher-order approach has been
applied including warping, coupling distortions as well as Poisson’s distortion. A multi-separated beam on each
edge of the cross-section which is an application of the so-called beam-frame-modal method is adopted. Subse-
quently, the effects of these major importance along with anisotropy of materials are then fully considered. As a
consequence, the analysis is able to extensively applied to closed-section beam-shells with different curvatures.
In order to illustrate the accuracy and computational efficiency of the method, various examples have been
conducted in which the results obtained from finite element package as ABAQUS are employed.
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1. Introduction

Recent years have seen many applications of the novel Functionally Graded Materials (FGMs) [1]
and thin-walled structures [2]. Due to its high strength-to-weight ratio and effectiveness-thermal resis-
tance, FGMs continues to be one of ideal candidates that may be superseded conventional multi-layer
materials in the near future that widely applied in various areas, e.g. aerospace technology, automo-
bile, submarine structures, etc. The advantages of FGMs can be explained by the fact that abrupt
transitions from one to another material surface are completely eliminated. As a result, cracking or
inter-lamina stresses has been tackled in a better performance.

Given the very first analysis of the thin-walled structures, a considerable attention had been gained
by Vlasov [3] and other authors [4–6]. The analysis was normally performed by considering a linear
warping, however some effects, e.g. distortion, higher-order warping, were somewhat underestimated.
Consequently, analytical solutions were provided [7, 8]. Moreover, to further facilitate in solving gov-
erned equations, several finite element methods had been established and then found to be conve-
niently effective whereas shear strain at mid-surface was usually neglected [9].
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With the potential application of thin-walled structures, the theory has remarkably been improved
over the years. Kollár et al. [10], for example, obtained a closed form solution for flexural-torsional
buckling problems of thin-walled open section columns in which both restrained warping and shear
deformation effects were taken into account. Recently, Nagashima et al. [11] successfully developed
X-FEM model for buckling analysis of thin-walled composite structures with delaminations that sig-
nificantly reduced computational cost since additional works such as meshing or DOFs increasing
were not strictly required.

More recently, Kim et al. [12] performed a study of static and vibration problems concerned with
single and multi-cell cross-sections. As reported by the authors, a general varying cross-section as
well as higher-order approaches had utilized. As a consequence, the effectiveness and accuracy were
proven quite favorable.

In parallel to the development of computer science and automation technology, e.g. 3D printer
technique that enables the advanced FGMs fabrication to be increasingly accessible, many efforts
have been made. Among studies found in the literature, a very first investigation was introduced by
Aboudi et al. [13]. As reported in the paper, a higher-order theory of functionally graded materials
was fully expanded for a variety of structures together with uniform and gradient thermomechanical
loadings. Wali et al. [14] analyzed FGM shell structures by means of a double directors shell element
whereas the shear correction factor was totally removed. Regards to thin-walled beams, Librescu et
al. [15] presented a comprehensive study on static and eigenvalue problems of spinning beams. From
the paper, the material variation was assumed to be graded through the thickness direction following
a simple law distribution of the constituent phases such as metal or ceramic.

From all above-mentioned studies and highlights, there also remands a need in developing a con-
forming approach for the applicability of thin-walled quadrilateral cross-section beams with function-
ally graded materials. The analysis, therefore, is able to achieve accurate results of the behavior of the
beam as well as offering a profitably potential application in practical engineering design.

Primarily, the paper emphases on thin-walled beam modeling with functionally graded materials
that provides one hand a highly accurate solution based on a finite element method with higher-order
consideration of warping and distortions, reflects on the other hand a computational efficiency for
deeper investigating towards FG materials, interaction of geometric features as well. The model is
validated via several tests from available FEM tools as ABAQUS. In addition, some aspect ratios, e.g.
material variations, skin-core-skin thickness have also parametrically investigated.

2. Theory of thin-walled beam

2.1. Kinematics

Along axial direction, the displacements of a point for general positions on a cross-section are
obtained by using a combination of one-dimensional translation and rotation as well as several higher-
order modes. Based on stress-strain relations, material transformation, governing equations are then
established by means of the principle of the minimum potential energy.

In general, the contour displacements on the general quadrilateral cross-section as described in
Fig. 1 can be calculated as:

u = Ψ · U (1)

where

ū =


ūn

ūs

ūz

 (2)
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Figure 1. Geometries and coordinates of a thin-walled quadrilateral cross-section

where s, n-axes are in-plane coordinates that are tangential and normal to the mid-surface of a cross-
section, respectively, and z-coordinate is set to parallel to the axial direction of the beam. In Fig. 1, αi

refers to the angle corresponding to edge ith and the x-axis whereas ri, pi are the distances calculated
from the shear center to the center line of edge and the vertex ith, respectively.

The shape functions constructed by the variable s along contour coordinates of a cross-section
including rigid body translations and rotations as well as higher-order deformations are introduced
as:

Ψ =


Ψn(s)
Ψs(s)
Ψz(s)

 (3)

Using Kirchhoff-Love assumptions, the displacements for arbitrary positions on a given cross-
section are generally determined as follows:

u∗ =


u∗n
u∗s
u∗z

 =


ūn

ūs − n
∂ūn

∂s

ūz − n
∂ūn

∂z


(4)

Regard to other thin-walled theories, as an acceptable solution, shear strains at the mid-plane are
usually negligible due to its complexity in multi-dimensional and multi-variable problems. However,
in order to obtain results more accurate and fully capture the behavior of the thin-walled FG sandwich
beam, these effects are also taken into account in this analysis. The strain vector in case of plane stress
can be approximated as:

ε =


εs

εz

γsz

 =



∂u∗s
∂s
∂u∗z
∂z

∂u∗z
∂s

+
∂u∗s
∂z


'



(
∂Ψs(s)
∂s

− n
∂2Ψn(s)
∂s2

)
· U

Ψz(s)
∂U
∂z
− nΨn(s)

∂2U
∂z2

Ψs(s)
∂U
∂z

+
∂Ψz(s)
∂s

· U − 2n
∂Ψn(s)
∂s

∂U
∂z


(5)
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Figure 2. DOFs on each edge and material distribution through-the-thickness direction 127 

of a quadrilateral cross-section. 128 
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Figure 2. DOFs on each edge and material distribution through-the-thickness direction
of a quadrilateral cross-section

In this paper, through the thickness direction, the sandwich material is adopted where ceramic
material at middle plane is defined by βh ranging from −0.5βh to +0.5βh then approaches outwards
to full metal both sides as shown in Fig. 2. The effective property as Young’s modulus through-the-
thickness direction can be determined via Young’s modulus of metal Em or ceramic Ec by relation:

E(n) = (Ec − Em)Vc + Em (6)

where the ceramic’s volume fraction is formulated as follows: Vc =

[
− |n| + 0.5h
0.5 (1 − β) h

]k

, − 0.5h ≤ n ≤ −0.5βh or 0.5βh ≤ n ≤ 0.5h

Vc = 1, − 0.5βh ≤ n ≤ 0.5βh
(7)

It should be emphasized that the power-law index k may be received a wide range value from 0 to
infinity. This means when k is sufficiently large enough to approximate infinity, full metal will cover
outside whereas fully ceramic thickness βh located at the middle. On the other hand, when k drops to
zero the entire cross-section is now totally ceramic.

Concerning to the deformations, the energy with respect to strains and stresses within the given
domain V is defined as follows:

U =
1
2

∫
V
σT εdV =

1
2

∫
V
εT C(n)εdV (8)

where C(n) denotes stress-strain material matrix.

2.2. Beam frame modal

As reported in many studies, warping and distortion deformations contribute a major domination
in behaviors of structures in which thin-walled beams with closed cross-section can be as a case.
Several attempts have been made in order to tackle better for these difficult behaviors. For thin-walled
closed profiles, it is seen from literature that beam frame model can achieve to more accurate results
in practice since the lowest eigenmodes occur more frequently than others. For a given edge on each
cross-section, a separated multi-beam Euler element is employed with a 3-degree-of-freedom node as
described in Fig. 2.
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The displacements are then calculated as follows:

U = Hu (9)

where u and H refer to the so-called nodal displacement and displacement interpolation matrix, re-
spectively, whereas linear Lagrange and Hermite cubic interpolation functions are included.

The nodal displacement vector for a element with nodes ith and (i + 1)th as depicted in Fig. 2 is
defined as:

u =
{

ui
s ui

n φi ui+1
s ui+1

n φi+1
}T

(10)

The stiffness of an element for the beam frame modal can be derived as:

KBF
e =

∫
V

BTCBdV =

∫ le

0

∫ bBF

0

∫ h/2

−h/2
BT CBdndzds (11)

The explicit form of stiffness matrix in element level can be expressed as:

KBF
e =



KBF
11 KBF

12 KBF
13 KBF

14 KBF
15 KBF

16
... KBF

22 KBF
23 KBF

24 KBF
25 KBF

26
... KBF

33 KBF
34 KBF

35 KBF
36

... KBF
44 KBF

45 KBF
46

... KBF
55 KBF

56
sym. . . . . . . . . . . . . KBF

66


(12)

The global stiffness matrix KBF are then obtained by collecting element stiffness matrices KBF
e

as (see more details in Appendix A):

KBF =

N∑
e=1

TT
e KBF

e Te (13)

These above-mentioned equations are then systematically assembled to the typical eigenvalue
problem as: [

KBF KL

sym. 0

] {
Ψχ

ϕ

}
= λ

{
Ψχ

0

}
(14)

where KL is the constraint matrix, Ψχ refers as nodal displacement vector, ϕ and λ are denoted as
Lagrange multiplier and eigenvalue, respectively. In general, the orthogonality of distortions has been
handled with regard to the in-plane displacements (x and y-coordinates) and rotation (about z axis)
over entire area A as: ∫ ∫

A
ψ
χ
sψ

x
sdnds = 0∫ ∫

A
ψ
χ
sψ

y
sdnds = 0∫ ∫

A
ψ
χ
sψ

θ
sdnds = 0

(15)

where distortion shape functions in contour direction are defined as ψχs ; and ψx
s , ψy

s, ψ
θ
s are in-plane

rigid body translations and rotation, respectively.
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It should be mentioned here that distortion configurations are quite easily developed as a result of
smaller energy distributions for the very first eigenmodes from Eq. (14) or the first two lowest mode
for torsional distortion.

From the constant shear flow conditions, warping is then determined as

ψW
z (s) =

∫
s

(
dψχs
ds

ds
)
ds (16)

The out-of-plane warping is completely checked for orthogonality with rigid body modes.

2.3. Finite element formulations

Through the axial direction of the beam, a two-noded element defined by i and j corresponding to
two quadrilateral cross-sections I and J is considered. Noted that the planes containing these sections
have been set to be always normal to the beam centerline. As a result, the center for each cross-section
can be traced from one end to the another end. Therefore, taking this advantage, the beam can be
extensively applied on different curvatures by adopting sufficient number of straight elements.

In order to describe the element, two sets of local coordinate systems which are mutually inter-
related are employed as: (ni, si,mi) consists of mi that is illustrated to be normal to the considered
cross-section whereas si associated with contour direction and ni is defined to be orthogonal to both
si and mi; (ni, si,mi) is indicated by setting ni normal to mid-surface created by edge ith (cross-sections
I and J) whereas mi specifies to mutually perpendicular to (ni, si).

By using Eqs. (5) and (9), the strain vector can now be rewritten as:

ε =



(
∂Ψs(s)
∂s

− n
∂2Ψn(s)
∂s2

)
·H

Ψz(s)
∂H
∂z
− nΨn(s)

∂2H
∂z2

Ψs(s)
∂H
∂z

+
∂Ψz(s)
∂s

·H − 2n
∂Ψn(s)
∂s

∂H
∂z


· u = Bu (17)

where B refers as the strain-displacement matrix.
Using Eq. (8), variation of total potential energy is then expressed in general form as:

δΠ =

∫
V
δuT BT CBudV −

∫
V

fδudV −
∫

S
t̂δudS

= δuT
(∫

V
BT CBdV

)
u − Fδu

(18)

where f and t̂ are the so-called body force vector and surface traction defined on an area S , respec-
tively.

Finally, to derive the governing equation, the principle of minimum total potential energy can be
stated as:

δΠ = 0 (19)

In order to describe stresses and strains, all components have to be performed in local coordinates.
This transformation can generally be conducted through natural coordinates (ξ, η, ζ) and direction
cosine vectors n̂′i j of

(
n′i , si,m′i

)
by relation:

∇u′ = (n̂′i j)
T · ∇u · n̂′i j (20)
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where
∇u = J−1 · ∇uξηζ (21)

with J referring to the Jacobian matrix.

3. Numerical example

3.1. Numerical verification

To verify the accuracy of this study, displacements obtained from the analysis are compared to
simulation results from ABAQUS. As a special case, the materials are set to be isotropic by using the
gradation index k = 0. Properties of the beam are given as: Young’s modulus E = 200 GPa, Poisson’s
ratio ν = 0.3. A cantilever beam subjected to a couple Fy = 1000 N applied on the upper edge of
a given cross-section which linearly varies from the fixed end (z = 0) to the tip (z = L) has been
considered. The geometries of cross-sections are described as shown in Fig. 3 (unit: mm) with the
thickness h = 2 mm and the length m.

Journal of Science and Technology in Civil Engineering, NUCE 2018    

p-ISSN 1859-2996 ; e-ISSN 2734 9268 

9 

 

3. Numerical example 209 

3.1 Numerical verification 210 

 To verify the accuracy of this study, displacements obtained from the analysis 211 

are compared to simulation results from ABAQUS. As a special case, the materials 212 

are set to be isotropic by using the gradation index 0k  . Properties of the beam are 213 

given as: Young's modulus 200E  GPa, Poisson's ratio 0.3  . The cantilever beam 214 

carrying a couple 1000yF  N applied on the upper edge of a cross-section which 215 

linearly varies from the fixed end ( 0)z   to the tip ( )z L  is considered. The 216 

geometries of cross-sections are described as shown in  217 

(a) section at 𝒛 = 𝟎       (b) section at 𝒛 = 𝑳 

 218 

Figure 3 (unit: mm) with the thickness 2h  mm and the length m. 219 

 220 

 221 

(a) section at 𝒛 = 𝟎       (b) section at 𝒛 = 𝑳 

 222 

Figure 3. Geometries and loading locations for numerical verification. 223 

 224 

 The non-dimensional displacements 

3

| 0

3

z

xyz xyz

Ehb
u u

FL


  of a left-bottom point in 225 

,x y  and z  axes along longitudinal direction of the beam are tabulated as shown in 226 

Table 1. From displayed results, it can be observed that the numerically predicted 227 

displacements are in a good agreement with those obtained from ABAQUS. It should 228 

be mentioned that the solution can be achieved with only one interior node for each 229 

edge.  However, a very small difference at the end may be seen in z  direction. From 230 

the above observations, it therefore can be concluded that the present model is able to 231 

reach a highly accurate results but spending less computational cost. 232 

 233 

(a) Section at z = 0

Journal of Science and Technology in Civil Engineering, NUCE 2018    

p-ISSN 1859-2996 ; e-ISSN 2734 9268 

9 

 

3. Numerical example 209 

3.1 Numerical verification 210 

 To verify the accuracy of this study, displacements obtained from the analysis 211 

are compared to simulation results from ABAQUS. As a special case, the materials 212 

are set to be isotropic by using the gradation index 0k  . Properties of the beam are 213 

given as: Young's modulus 200E  GPa, Poisson's ratio 0.3  . The cantilever beam 214 

carrying a couple 1000yF  N applied on the upper edge of a cross-section which 215 

linearly varies from the fixed end ( 0)z   to the tip ( )z L  is considered. The 216 

geometries of cross-sections are described as shown in  217 

(a) section at 𝒛 = 𝟎       (b) section at 𝒛 = 𝑳 

 218 

Figure 3 (unit: mm) with the thickness 2h  mm and the length m. 219 

 220 

 221 

(a) section at 𝒛 = 𝟎       (b) section at 𝒛 = 𝑳 

 222 

Figure 3. Geometries and loading locations for numerical verification. 223 

 224 

 The non-dimensional displacements 

3

| 0

3

z

xyz xyz

Ehb
u u

FL


  of a left-bottom point in 225 

,x y  and z  axes along longitudinal direction of the beam are tabulated as shown in 226 

Table 1. From displayed results, it can be observed that the numerically predicted 227 

displacements are in a good agreement with those obtained from ABAQUS. It should 228 

be mentioned that the solution can be achieved with only one interior node for each 229 

edge.  However, a very small difference at the end may be seen in z  direction. From 230 

the above observations, it therefore can be concluded that the present model is able to 231 

reach a highly accurate results but spending less computational cost. 232 

 233 

(b) Section at z = L

Figure 3. Geometries and loading locations for numerical verification

Table 1. Non-dimensional displacements of the beam for comparison (×10−2)

Method z/L 0.0 0.2 0.4 0.6 0.8 1.0

This study ūx 0.0 0.0426 0.0796 0.1297 0.1709 −0.2570
ūy 0.0 −0.0268 −0.0824 −0.1340 −0.2259 −1.0197
ūz 0.0 −0.0012 −0.0013 0.0012 −0.0148 −0.0896

ABAQUS ūx 0.0 0.0427 0.0797 0.1290 0.1750 −0.2855
ūy 0.0 −0.0274 −0.0826 −0.1360 −0.2214 −1.0675
ūz 0.0 −0.0010 −0.0013 0.0013 −0.0144 −0.1003

The non-dimensional displacements ūxyz =
Ehb3

|z=0

FL3 uxyz of a left-bottom point in x, y and z-axes
along longitudinal direction of the beam are tabulated as shown in Table 1. From displayed results,
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it can be observed that the numerically predicted displacements are in a good agreement with those
obtained from ABAQUS. It should be mentioned that the solution can be achieved with only one
interior node for each edge. However, a very small difference at the end may be seen in z-direction.
From the above observations, it therefore can be concluded that the present model is able to reach a
highly accurate results but spending less computational cost.

3.2. Flexural-torsional analysis

As a first example, the cantilever sandwich beam with cross-sections given in Fig. 4 is analyzed.
Al2O3-Al material has been adopted in which alumina Al2O3 stands for ceramic (Ec = 380 GPa,
ρc = 3960 kg/m3) and aluminum Al refers as metal (Em = 70 GPa, ρc = 2702 kg/m3). Poisson’s ratio
ν and skin-core-skin factor β are 0.3 and 0.2, respectively.
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 243 

(a) section at 𝒛 = 𝟎       (b) section at 𝒛 = 𝑳 

 244 

Figure 4. A varying quadrilateral cross-section and loading for flexural-torsional 245 

analysis. 246 

 247 

 In order to highlight the effect of material variations on deflections of the beam, 248 

the non-dimensional axial variable ( / )z L  versus displacements of points 1 1A B  is 249 

plotted as shown in Figure 5. From the figures, a large gap between three cases 250 

( 0,1,10)k   can be seen. The increase of k  leads to a larger deflection. However, this 251 

is no longer true in x  axis.  For z  direction, moreover, the beam is almost invariant 252 

(b) Section at z = L

Figure 4. A varying quadrilateral cross-section and loading for flexural-torsional analysis
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from the fixed end to about 75% of L  and then drops significantly till the tip. 253 

Conversely, in x direction, the displacements of the beam tend towards different 254 

variations. The 2 / 3  left beam's length moves upwards, whereas the others 255 

dramatically fall down. This fact can be explained due to the effects of material 256 

distributions, couplings and important role from distortions as well as warping as 257 

illustrated in Figure 6. In addition, the couple force lying on a x y coordinate has a 258 

major dominance to its own plane rather than out-of-plane. 259 

 260 

 261 

Figure 5. Displacements of points 1 1A B  in x, y, z-directions with various material 262 

distributions. 263 

 264 

 265 

Figure 5. Displacements of points A1 − B1 in x, y, z-directions with various material distributions

In order to highlight the effect of material variations on deflections of the beam, the non-
dimensional axial variable (z/L) versus displacements of points A1 − B1 is plotted as shown in Fig. 5.
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From the figures, a large gap between three cases (k = 0, 1, 10) can be seen. The increase of k leads
to a larger deflection. However, this is no longer true in x-axis. For z-direction, moreover, the beam is
almost invariant from the fixed end to about 75% of L and then drops significantly till the tip. Con-
versely, in x-direction, the displacements of the beam tend towards different variations. The 2/3 left
beam’s length moves upwards, whereas the others dramatically fall down. This fact can be explained
due to the effects of material distributions, couplings and important role from distortions as well as
warping as illustrated in Fig. 6. In addition, the couple force lying on a x − y coordinate has a major
dominance to its own plane rather than out-of-plane.
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 266 

(a) In-plane distortion 267 

 268 

(b) Out-of-plane warping 269 

Figure 6. Warping and distortion distributions in-plane and out-of-plane on the cross section. 270 

 271 

  272 

 The skin-core-skin effect related to material changes with various ratios   is 273 

performed as described in Figure 7. As seen from the figures, the variation of   leads 274 

to distinct fluctuations. While the deflection in x direction decreases as   increases, 275 

it develops inversely in y  axis. This phenomena can be clarified by the contribution 276 

of the stiffer through-the-thickness phase as ceramic that enhances the stiffness to be 277 

primary importance in y  axis but not in x axis. 278 

(a) In-plane distortion
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 279 

Figure 7. Effect of skin-core-skin on displacements in x− and y-directions with k = 2. 280 

4. Conclusions 281 

 An analysis of general non-uniform quadrilateral cross-sections for thin-walled 282 

functionally graded sandwich beams has been presented. Generally, a prescribed 283 

shape function of ceramic is utilized to express through-the-thickness variation of 284 

materials. Based on beam frame modal and the framework of finite element method, a 285 

rigorous model of thin-walled structures applicable to both straight and curved beams 286 

is built. As a result, the approach has found to be profitable in terms of computational 287 

efficiency, adaptability and accuracy aspects. Through numerically obtained results 288 

and discussion, several remark outcomes can be drawn as follows: 289 

 The established thin-walled model can extensively be applied on different 290 

curvatures by adopting straight multi-beam elements. 291 

 Displacements of thin-walled FG beams are predominantly dependent on 292 

material distributions concerning to gradation index. 293 

 Skin-core-skin ratio plays a major importance in contribution of flexural-294 

torsional stiffness, and therefore significantly affects to behaviors of the beam. 295 
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 299 

Appendix  300 

The explicit expressions of stiffness matrices are obtained as: 301 

Figure 7. Effect of skin-core-skin on displacements in x- and y-directions with k = 2
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The skin-core-skin effect related to material changes with various ratios β is performed as de-
scribed in Fig. 7. As seen from the figures, the variation of β leads to distinct fluctuations. While the
deflection in x-direction decreases as β increases, it develops inversely in y-axis. This phenomena can
be clarified by the contribution of the stiffer through-the-thickness phase as ceramic that enhances the
stiffness to be primary importance in y-axis but not in x-axis.

4. Conclusions

An analysis of general non-uniform quadrilateral cross-sections for thin-walled functionally graded
sandwich beams has been presented. Generally, a prescribed shape function of ceramic is utilized to
express through-the-thickness variation of materials. Based on beam frame modal and the framework
of finite element method, a rigorous model of thin-walled structures applicable to both straight and
curved beams is built. As a result, the approach has found to be profitable in terms of computational
efficiency, adaptability and accuracy aspects. Through numerically obtained results and discussion,
several remark outcomes can be drawn as follows:

- The established thin-walled model can extensively be applied on different curvatures by adopting
straight multi-beam elements.

- Displacements of thin-walled FG beams are predominantly dependent on material distributions
concerning to gradation index.

- Skin-core-skin ratio plays a major importance in contribution of flexural-torsional stiffness, and
therefore significantly affects to behaviors of the beam.
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Appendix A.

The explicit expressions of stiffness matrices are obtained as:

KBF
11 =

Ecβh
le

+
(Ec + kEm) (1 − β) h

(k + 1) le
; KBF

14 = −
Ecβh

le
−

(Ec + kEm) (1 − β) h
(k + 1) le

KBF
22 =

γ0h3 (Ec − Em)
l3e

+
h3Em

l3e
; KBF

23 =
γ0h3 (Ec − Em)

2l2e
+

h3Em

2l2e

KBF
25 = −

γ0h3 (Ec − Em)
l3e

−
h3Em

l3e
; KBF

26 =
γ0h3 (Ec − Em)

2l2e
+

h3Em

2l2e

KBF
33 =

γ0h3 (Ec − Em)
3le

+
h3Em

3le
; KBF

35 = −
γ0h3 (Ec − Em)

2l2e
−

h3Em

2l2e

KBF
36 =

γ0h3 (Ec − Em)
6le

+
h3Em

6le
; KBF

44 =
Ecβh

le
+

(Ec + kEm) (1 − β) h
(k + 1) le

KBF
55 =

γ0h3 (Ec − Em)
l3e

+
h3Em

l3e
; KBF

56 = −
γ0h3 (Ec − Em)

2l2e
−

h3Em

2l2e

KBF
66 =

γ0h3 (Ec − Em)
3le

+
h3Em

3le

(A.1)

where the coefficient γ0 given by:

γ0 = β3 +
3 (1 − β)

k + 1
−

6(1 − β)2

k + 2
+

3(1 − β)3

k + 3
(A.2)

Others are zeros.
The transformation matrix Te can be expressed as:

Te =



cosαe sinαe 0 0 0 0
− cosαe 0 0 0 0

1 0 0 0
cosαe sinαe 0

− cosαe 0
sym. 1


(A.3)
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