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Abstract

The dependence of load-carrying capacity on span length of beams, which contained a combination of normal
strength concrete (NC) - High-performance fiber-reinforced concrete (HPFRC), was investigated in this study.
The used HPFRC contained 1.0 vol.% long hooked blended with 0.5% short smooth fibers. Two types of span
length were designed as 300 mm and 450 mm while dimensions of beam sections were identical with depth ×
width of 150 × 150 mm2. Each span included five types of partial structural materials as follows: Short 1 and
Long 1 had no reinforcement with full of section using HPFRC, Short 2 and Long 2 had reinforcements with
a full of section using HPFRC, Short 3 and Long 3 had reinforcements with a half of section using HPFRC at
beam bottom, Short 4 and Long 4 had reinforcements with a third of section using HPFRC at beam bottom,
Short 5 and Long 5 had reinforcements with a half of section using HPFRC at beam top. All beams were tested
under three-point bending test. The shorter beam generally exhibited the greater load-carrying capacity than the
long beam using same section type. The shear failure mode was dominant in case of the span/depth ratio less
than 3. The HPFRC located at bottom of beam created the more effectiveness for enhancement of load-carrying
capacity and stiffness of the beam, in comparison with the HPFRC placed at top of beam. The most effective
zone of beam for HPFRC strengthening was at extreme tension fiber.

Keywords: high-performance; composite beam; shear failure; bending resistance; load-carrying capacity.
https://doi.org/10.31814/stce.nuce2021-15(2)-03 © 2021 National University of Civil Engineering

1. Introduction

Traditional normal strength concrete (NC) has long been applied as one of the main construction
materials. However, this material is characterized by a relative weak tensile strength accompanied
by low cracking resistance. This causes the quick deterioration of civil infrastructures and attracts re-
searchers’ attention for developing new better concretes. High-performance fiber-reinforced concretes
(HPFRCs) have been considered as one of promising construction materials for enhancing structural
and cracking resistances. The superior properties of HPFRCs accompanied by work-hardening be-
haviors with multiple tiny cracks after the first crack; this phenomenon leads to high strengths in
both tension and compression, high ductility and large energy absorption capacity [1–4]. Besides,
the densified microstructure and fiber-bridging mechanism of HPFRC also produce its high cracking
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resistance [5–7]. The superior properties of HPFRCs are greatly expected to bring low maintenance
and management cost as well as high durability of civil infrastructures. In Vietnam, the application of
HPFRCs is more and more popular, e.g., the deck slab of Thang Long bridge (Hanoi), as described in
Fig. 1a and towers of the extradosed bridge of Metro line 1 (Ho Chi Minh city), as described in Fig.
1b. In addition to applying for constructing structures, HPFRC may be used for rehabilitating existing
structures. Some available references [8–11] provided the information on the practicable combination
between HPFRC (or UHPFRC) and NC for strengthening a concrete beam. Recently, the composite
beams using NC and HPFRC together were reported in the previous studies by the first author [12, 13].
On the other hand, load-carrying capacity of beams and failure modes were significantly dependent
on span-length/depth ratio [14, 15], and hence, this experimental research would focus on this matter,
i.e., the span length-dependent load-carrying capacity of reinforced normal concrete-HPFRC beams.
The research is believed to provide useful information in application of HPFRC for rehabilitating
existing flexural members.
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(a) HPFRC used for rehabilitating deck slab,
Thang Long bridge, Hanoi
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Figure 1. Recent applications of HPFRCs for bridges in Vietnam

2. Influence of span-length on flexural resistances

2.1. Load versus deflection relationship

The studied flexural resistances would be evaluated including load-carrying capacity and corre-
sponding deflection capacity. Fig. 2 performs the moment and shear distributions under three-point
bending load. As presented in Fig. 2, the moment (M = PL/4) revealed the highest value at mid-span
and shear force (V = P/2) was uniform along the beam, i.e., the critical zone in failure of beam
might be around mid-span and/or support vicinity of beam. Regarding theory of linear elasticity, the
mid-span deflection (δ) of a beam under three-point bending could be the total of deflection due to
moment (δM) and deflection due to shear force (δV ), as given in Eq. (1) [16].

δ = δM + δV =
PL3

48EI

1 + 2 (1 + ν)
ψ

(
h
L

)2 (1)
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Figure 2. Moment and shear distributions under three-point bending load

where δ is the deflection at mid-span, P is the applied load, L is span-length while h is the depth of
beam section, ν and ψ are the Poisson’s ratio and shear coefficient of the material, respectively, E is
the elastic modulus of material and I is the moment of inertia of beam.

In Eq. (1), the first and second term in bracket indicate the fraction of δM and δV , respectively.
With ν = 0.2 for concrete, 1/ψ = 1.5 for the rectangular section, the short beam and long beam,
characterized by h/L = 1/2 and h/L = 1/3, respectively, would lead to their mid-span deflections as
given in Eqs. (2) and (3), respectively. As shown in these equations, shear force would increase the
mid-span deflection 0.9 times in the short beam and 0.4 times in the long beam. In a very long beam,
h/L = 1/10 for example, δV becomes rather small in comparison with δM, about 4% only. This means
the failure of the long beam would be dominated by the bending moment.

δh/L=1/2 = δM + δV =
1.9PL3

48EI
(2)

δh/L=1/3 = δM + δV =
1.4PL3

48EI
(3)

2.2. Failure modes in beam according to cracking behavior

Failure modes in a RC beams can generally be classified into two main forms: flexural failure
with its identification of vertical crack and shear failure with its identification of diagonal crack. The
failure of the RC beam happens as the internal moment or shear force exceeds moment resistance or
shear resistance, respectively. Considering a RC beam subjected to loading, the failure of beam may
be influenced by the following factors: shear span to effective depth ratio, longitudinal reinforcing bar
ratio, aggregate type, concrete strength, loading type and support conditions.

Fig. 3 displays main failure modes of a RC beam, the descriptions of these failures accompanied
with their cracking behaviors were detailed as follows [17]:
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a. Flexure failure
This failure of structure is caused by the crushing of the concrete in compression zone after

yielding of the reinforcing bar, it often occurs at bottom in mid-span zone due to moment. The crack
initiates from the bottom with vertical direction toward the neutral axis of beam, as illustrated in
Fig. 3(a).

b. Flexure-shear failure
This failure usually occurs in RC beam with low amount of stirrups and longitudinal reinforce-

ment. The crack initiates at beam bottom with vertical direction owing to flexural tensile stress
then propagates in a diagonal direction over the whole cross section until collapse, as illustrated in
Fig. 3(b).

c. Shear compression failure
This failure often occurs in RC beam with low amount of web reinforcement but adequate longi-

tudinal reinforcement. Shear crack may easily start from former flexural cracks but it does not propa-
gate through the compression zone. The failure is governed by concrete crushing in compression zone
above the tip of the shear crack and named shear compression failure, as illustrated in Fig. 3(c).
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Figure 3. Failure modes of the RC beam
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d. Shear tension failure
This failure occurs in RC beam with a debond between main longitudinal reinforcement and

surrounding concrete. The debond may be caused by an inadequate anchorage of the longitudinal
bars or concrete cover. Cracks appear along the longitudinal reinforcement till they join with a flexure-
shear crack causing shear tension failure, as shown in Fig. 3(d).

e. Web crushing failure
This failure often appears in thin-webbed RC beams with large amount of transverse reinforce-

ment, the concrete crushing occurs in the diagonal struts, as shown in Fig. 3(e).

f. Arch rib failure
This failure usually occurs in deep beams or short beams in which the direct force transferring

from the load location to the bearings is dominant, as illustrated in Fig. 3(f).
In fact, some failure modes can totally be as a combination of more than one of failure modes

mentioned above, for example, shear tension failure and shear compression failure.

3. Experiment

3.1. Materials and beam preparation

Fig. 4 presents the experimental outline with two ratios of span length/depth of beam: 2 for shorter
beams and 3 for longer beams; each ratio of span length/depth includes five section types as detailed
in Fig. 4. All beams were designed with a constant depth and width of 150 mm, full length of the
short beams and long beams were 400 mm (span-length of 300 mm) and 600 mm (span-length of
450 mm), respectively. Table 1 displays the composition of plain HPFRC and normal concrete (NC).
The compressive strengths, using cylindrical-shaped specimens with 150 mm in diameter and 300
mm in height, of HPFRC and NC were 79.6 MPa and 20.2 MPa, respectively. The direct tensile
strength of HPFRC experimentally was 9.81 MPa [13] whereas that of NC was estimated to be 1.48
MPa according to ACI 318 [18]. Beam Type 1 had no reinforcing bar while other types, from beam
Type 2 to beam Type 5, were designed using 2 bars in tensile zone with diameter of 12 mm (As =

2.26 cm2, cover t0 = 25 mm) and 2 bars in compressive zone with diameter of 6 mm (A
′

s = 0.57 cm2,
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cover d′ = 25 mm). The yield strength of steel bars was fy = 400 MPa while that of stirrup was
f ′y = 240 MPa. Stirrup spacing was 120 mm in both of short and long beams. NC and HPFRC were
mixed immediately after each other. It was noticed that the tested beams were designed regarding
intended failures, not for full-scale and/or scale-down test, therefore, these tests are also needed in
further investigations.

The fiber size and aspect ratio were reported to importantly affect the tensile behaviors of HPFRC
[19, 20]. The combination between short and long fibers could create the synergy effect on enhancing
mechanical properties of HPFRC [13, 21, 22]. Hence, the HPFRC placed in beams were used hybrid
fibers: long hooked fibers with volume fraction of 1.0% and short smooth fibers with volume fraction
of 0.5%. Features of the hybrid fibers were shown in Table 2 and their photos were presented in Fig. 5.
The aspect ratios of long hooked and short smooth fibers were 35/0.5 and 13/0.2, respectively. All
specimens/beams after pouring were located in an experimental room for 2 days prior to demolding.
The specimens/beams after demolding were cured in water at 25±5 °C for 28 days and they would be
tested at 30-day age in dry condition.
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Table 1. Composition and compressive strength of HPFRC and NC used

Mixture
type

Cement
(Insee, PC40)

Silica
Fume

Silica
sand

Fly
ash

Superplas
-ticizer

Coarse
aggregate

Water
Compressive

strength (MPa)

HPFRC 0.80 0.07 1.00 0.20 0.04 0.26 79.6
NC 1.00 - 2.23 - - 4.62 0.63 20.2

Direct tensile strength of HPFRC was 9.81 MPa [13]

3.2. Test setup

All beams were tested under three-point bending load using a universal test machine with 1
mm/min crosshead speed in displacement control mode. The frequency of data acquisition under tests
was 1 Hz. During experiment, the load history and its corresponding deflection of the tested beams
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Table 2. Features of the hybrid fibers used

Notation Diameter (mm) Length (mm) Aspect ratio (L/D) Tensile strength (MPa)

Long Hooked 0.5 35 70 > 1200
Short Smooth 0.2 13 65 > 2500

were recorded in the test machine, these data were then analyzed and evaluated. Fig. 6 illustrates the
test set-up under three-point bending load.

Figure 6. Test set-up under three-point bending load

4. Experiment result and discussion

4.1. Load versus deflection behaviors of the studied beams

(a) Behaviors of the short beams (b) Behaviors of the long beams

Figure 7. Load versus deflection behavior of the studied beams
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Figs. 7(a) and 7(b) display the load versus deflection responses of the short and long beams,
respectively. Generally, the short beams generated the higher load-carrying capacity but lower deflec-
tion capacity. These results were entirely acceptable because the shorter span-length would produce
the lower internal moment and lower deflection with same applied load, as presented in Section 2.
Table 3 provides the load-carrying capacity (maximum load, Pmax) and the angle (θ) and mode of
failure cracks of the tested beams.

Table 3. Load-carrying capacity and failure mode of the beams

Beam
name

Pmax
(kN)

θ

(degree)
Failure mode

Beam
name

Pmax
(kN)

θ

(degree)
Failure mode

Short 1 100.39 85 flexure Long 1 79.48 85 flexure
Short 2 233.57 65 flexure-shear Long 2 160.67 60 flexure-shear
Short 3 158.49 50 arch rib Long 3 147.47 55 arch rib
Short 4 148.90 45-75 arch rib Long 4 134.93 80 flexure-shear
Short 5 106.59 45 shear comp. Long 5 126.28 35-75 shear comp.

The significances in the increases of Pmax between short and long beams were shown in Fig. 8.
Comparatively, the increases of load-carrying capacities were from 1.07 times (Short 3/Long 3) to
1.45 times (Short 2/Long 2), except for Short 5/Long 5 with a decrease of 0.84 times. This special
case was thought due to a mistake at Short 5 or Long 5 and should be confirmed again in further
study. Although the long beam was slender than the short, its shear effect was still important, e.g.,
the deflection due to shear up to 40% the deflection due to moment according to Eq. (3). This caused
both short and long beams to demonstrate generally same failure modes.

Figure 8. Load-carrying capacities
of the studied beams

As the thickness of HPFRC layer decreased
(Type 2 > Type 3 > Type 4), the load-carrying
capacity of the beams was reduced. This trend
was completely suitable because the strength of
HPFRC was greater than that of NC, and a lower
HPFRC thickness placed at beam bottom would
cause a lower mechanical resistance of beam.
Moreover, although beam Type 3 and Type 5 con-
tained a half of HPFRC on beam section, HPFRC
placed in tensile zone (beam Type 3) was observed
to be more effective than HPFRC placed in com-
pressive zone (beam Type 5). This phenomenon
could be attributed that the tensile resistance and
compressive resistance of beam Type 3 was more
balanced. On the contrary, in beam Type 5, the ten-
sile resistance of beam may be much weaker than
compressive resistance and this led to the easier
failure in tensile zone. Compared to Type 4, de-
spite the fact that Type 3 with its thicker HPFRC
produced the higher load-carrying capacity, its efficacy in using HPFRC was observed to be lower.
In detail, as the HPFRC thickness increased 1.67 times (from 50 mm of Type 4 to 75 mm of Type

33



Nguyen, D.-L., et al. / Journal of Science and Technology in Civil Engineering

3), the load-carrying capacity increased only 1.06 times (from 148.90 kN of Short 4 to 158.49 kN
of Short 3), and 1.09 times (from 134.93 kN of Long 4 to 147.47 kN of Long 3). This indicated that
the HPFRC could be effectively used to rehabilitate existing structures with its amount enough at the
extreme tension fiber.

4.2. Cracking behaviors of the studied beams

Fig. 9 displays the cracking behaviors of the studied beams. As summarized in Table 3, the beam
Type 1 with no reinforcing bar revealed the flexure failure mode while others exhibited the flexure-
shear, arch rib or shear compression failure, although some cases were not clear. For beam Type
2-Type5, the main crack did not appear at the mid-span but propagated towards the location of applied
load at mid-span, as shown in Fig. 9.

4.3. Flexural strength in relationship with compressive strength of HPFRC

The flexural strength ( fMOR) of HPFRC under the three-point bending loading can be computed
from Pmax using Eq. (4). Based on experiments, the fMOR of the short and long beams (Type 1) were
13.39 MPa and 15.90 MPa, respectively. Adopting ACI 318 [18] for NC, the flexural strength could
be proportional to the square root of compressive strength, as given in Eq. (5). This relationship could
also be considered for HPFRCs [23, 24] and used in this study, as given by Eq. (6). The coefficients
α of the short and long beams were 1.50 and 1.78, respectively. These values were much higher
than that of NC (equal to 0.65), this could be explained that the tensile resistance of HPFRC was
significantly improved owing to fibers embedded in HPFRC, the fibers may generate deflection-
hardening by crack-bridging mechanism. The comparative coefficients could be used to predict each
other.

fMOR = 1.5
PmaxL

bh2 (4)

fr = 0.65
√

f ′c (5)

fMOR = α
√

f ′c−HPFRC (6)

where f
′

c and f ′c−HPFRC are the compressive strength using a cylinder specimen of 150×300 mm. L is
span-length while b and h are the width and depth of beam section, respectively.

4.4. Comparative stiffnesses of the tested beams

The term of “stiffness” in this study was defined as the slope before crack of load versus deflection
response curve of the tested beam, which was presented in Fig. 7. The comparison was performed for
two couples: Type 1 – Type 2 with different reinforcement and Type 3 - Type 5 with different location
of HPFRC layer. Table 4 provides the stiffness values of two couples: Type 2 with reinforcement bar
was stiffer than Type 1 with no reinforcement bar, Type 3 with location of HPFRC layer at bottom
was stiffer than Type 5 with location of HPFRC layer at top. As shown in Table 4, the stiffness of
beam seemed to be dependent upon not only moment of inertia but also span-length of beam. The
short beams generally exhibited the higher stiffness in comparison to the long beams with same type
of section. These results were entirely appropriate since the longer beam would generate the larger
deflection with an identical load, regarding Eq. (1). Only the couple of Short 1 – Long 1 showed
the contrary tendency, this special case might be due to a mistake at Short 1 or Long 1 and required
further investigation to confirm.
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(a) Short 1 with full of HPFRC and no reinforcing bar (b) Long 1 with full of HPFRC
and no reinforcing bar

(c) Short 2 with full of HPFRC (d) Long 2 with full of HPFRC

(e) Short 3 with one-half using HPFRC at bottom (f) Long 3 with one-half
using HPFRC at bottom
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Table 4. Stiffness of the beams

Short beam Stiffness (kN/mm) Long beam Stiffness (kN/mm) Ratio short to long

Short 1 49.91 Long 1 59.66 0.84
Short 2 81.28 Long 2 68.32 1.19
Short 3 76.24 Long 3 67.81 1.12
Short 5 72.77 Long 5 37.78 1.93

5. Conclusions

The observations and conclusions can be drawn from the experimental tests as follows:
- The span length-dependent load-carrying capacity of normal reinforced concrete-HPFRC beams

was clearly observed that the shorter beam would produce the greater load-carrying capacity under
three-point bending, regardless of beam type.

- The shear failure mode was observed to be dominant in case of the ratio span length to depth less
than 3, excepted that the HPFRC beams with no reinforcing bar revealed the flexural failure mode.

- Compared to normal concrete, the scale coefficients of flexural strength regarding square root of
the compressive strength of HPFRC were notably high. The cause was thought due to fibers embedded
in HPFRC with crack-bridging mechanism. Besides, the coefficients of flexural strength of HPFRC
explored from the short and long beams could be used to predict each other.

- Compared to the HPFRC layer located at top of beam, the HPFRC layer located at bottom of
beam created the more effectiveness for enhancing load-carrying capacity and stiffness of the beam.
The most effective zone of beam for HPFRC strengthening was extreme tension fiber. The stiffness
of beam seemed to be dependent upon not only moment of inertia but also span-length of beam.
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