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Abstract

We present a generalized three-variable high order shear deformation theory (THSDT) using isogeometric
analysis (IGA) to analyze free vibration of functionally graded porous (FGP) plates reinforced by graphene
platelets (GPLs) in this work. It is named as FGP-GPLs for a short. The proposed theory only has got three
degrees of freedom (DOFs) per node as the same way of numerically solutions in three-dimensional (3D)
solids. THSDT fulfills the classical plate theory (CPT), the first-order shear deformation theory (FSDT) and
even the higher-order shear deformation theory (HSDT). IGA is chosen to analyze because of its noteworthy
advantages in numerical computational sides of plate problems. In addition, the displacement field of THSDT
needs the high continuity in approximated formulation with high-order derivatives for a weak form of fourth
order equation. According to IGA formulation based on the generalized THSDT, the shear locking phenomenon
is free. The variables of THSDT are less than HSDTs which contain five DOFs per node. The influences of
weight fractions, the coefficient porosity, dispersion patterns of GPLs and distribution types of porosity on
structure’s natural frequencies are studied through some numerical examples. In order to prove the reliability
and accuracy of present method, the numerical results are compared to available published works.

Keywords: FG-porous plate; graphene platelet reinforcements; three-variable high order shear deformation the-
ory (THSDT); isogeometric analysis; free vibration.
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1. Introduction

The materials with internal holes whose excellent properties such as lightweight, low density,
outstanding energy absorbent, heat resistance have been widely used in various fields of engineering
[1–5]. In spite of having tremendous properties, the porous materials cause the structural stiffness to
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reduce significantly [6]. In order to overpower this shortcoming, the people usually add one in two
types of reinforcement such as carbon nanotubes (CNTs) [7–9] and graphene platelets (GPLs) [10, 11]
into the porous materials to increase their mechanical properties.

In research field, the porous materials reinforced by GPLs [12] have been received much con-
sideration by the researchers because of their common application in different engineering structures
such as civil engineering, aerospace and specially in biomedical field [13–15]. The manufactured
porous materials such as metal foams which own assemblages of both encouraging physical and me-
chanical properties have been commonly used in structural materials with lightweight [16, 17] and
biomaterials [18]. The GPLs are spreaded in materials in order to alter the employment [19]. With
the mixture advantages of both GPLs and porosities, the mechanical properties of the porous material
are noticeably healthier but still retain their benefits. FGP-GPLs have been presented to achieve the
needed mechanical characteristics based on the correcting the sizes [20–22]. In recent years, there are
many works examined the influences of GPLs and porosities on the behaviors of plates and beams. It
can be listed that Kitipornchai et al. [23] analyzed the free vibration of and elastic buckling for FGP
beams reinforced by GPLs based on the Ritz method and Timoshenko beam theory. With the same
used theories, Chen et al. [24] studied the nonlinear free vibration, post-buckling performances of
FGP-GPLs beams. The uniaxial, biaxial, shear buckling and free vibration behaviors of FGP-GPLs
plates were also examined by Yang et al. [25] based on FSDT and using Chebyshev-Ritz method. In
addition, the static, free vibration and buckling of FGP-GPLs plates were also studied by Li et al. [26]
using IGA based on both FSDT and TSDT.

Many plate theories are used to analyze behaviors of plate structures including CPT, FSDT and
HSDT. Each plate theory has its advantages and disadvantages. However, different HSDTs have been
proposed described by a transverse shear function in order to prove more advantages than CPT and
FSDT. The transverse shear functions can illustrate the nonlinear of shear stresses across the thickness
direction of plate. Some functions have been proposed and given well results such as polynomial,
trigonometric and hyperbolic functions.

HSDT proves dominance in calculating the vibration responses of thin to thick plate structures.
Since HSDTs have five or seven unknowns in approximated formulation, computational cost exten-
sively rises with respect to DOFs. Hence, the reserachers have built a HSDT with only three variables.
Moreover, a three-variable formulation allows us to analyze plates as the same way of 3D solid. The
three-variable theories have been proposed by Endo et al. [27, 28] and by Senjanovic [29, 30] for
the first time. Recently, a new three-variable shear deformation plate theory of FGM plates has been
presented by Nguyen et al. [31] with the refined plate theory (RPT) is exploited. The relationship of
bending and shear displacements is considered for all three-variable theories. However, the theory of
Nguyen et al. [31] which is different to the previous works is using RPT. With RPT, calculation of
plate problems accounts the shear stress impact without presence of a shear correction factor (SCF).

In this study, free vibration analysis of the FGP plates reinforced by GPLs is studied in combi-
nation of a generalized THSDT and IGA method. The generalized THSDT with arbitary transverse
shear function shows high effectiveness in analyzing the behaviors of plate structures. The sides of the
length-to-thickness ratio, porosity coefficient, different porosity distribution types, GPL distribution
patterns and weight fraction of FGP-GPLs plates are also investigated and debated.

2. Mechanics of material for the FGP-GPLs plate

A FGP plate created from metal foams and reinforced by GPLs is illustrated as in Fig. 1, in which
the length, the width and the thickness of plate are a, b and h, respectively.
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Figure 1. Configuration of an FGP- GPLs plate. 
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Figure 2. Types of porosity distribution and three distinctive GPL distribution patterns. 

Figure 1. Configuration of an FGP-GPLs plate

Three different porosity distribution types along the thickness of plates including two types of
non-uniformly symmetric and a uniform are shown in Fig. 2. As presented in this figure, E′1 is Young’s
modulus of uniform porosity distribution, E′1 and E′2 represent the maximum and minimum Young’s
moduli of the non-uniformly distributed porous material without GPLs, respectively. In addition,
three distinctive GPL distribution patterns A, B and C depicted in Fig. 2 corresponds to three different
types of porosity dispersion. In any pattern, the volume fraction VGPL of GPLs varies smoothly in the
direction of thickness. The symbol S i j represents the maximum volume fraction, where i = 1, 2, 3 are
three porosity distribution types and j = 1, 2, 3 imply three dispersion patterns, respectively.

The plate has the Young’s moduli E(z), shear modulus G(z) and mass density ρ(z) which change
along the thickness direction for different porosity distribution types can be expressed as

E(z) = E1 [1 − e0λ(z)] ,
G(z) = E(z)/ [2(1 + v(z))] ,
ρ(z) = ρ1 [1 − emλ(z)] ,

(1)

where

λ(z) =


cos(πz/h), Non-uniform porosity distribution 1
cos(πz/2h + π/4), Non-uniform porosity distribution 2
λ, Uniform porosity distribution

(2)

in which E1 = E′1 and E1 = E′ for types of non-uniformly and uniform porosity distribution, respec-
tively. ρ1 denotes the maximum value of mass density of the porous core. The porosity coefficient e0
can be determined by

e0 = 1 − E2
′/E1

′ (3)

The mechanical properties of closed- cell cellular solids constructed by the Gaussian Random
Field (GRF) scheme [32] are given as

E(z)
E1

=

(
ρ(z)/ρ1 + 0.121

1.121

)2.3

for
(
0.15 <

ρ(z)
ρ1

< 1
)

(4)
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(c) Uniform porosity distribution

Figure 2. Three porosity distributions and three distinctive GPL distribution patterns

The coefficient of mass density em in Eq. (1) is probably identified as

em =
1.121

(
1 − 2.3

√
1 − e0λ(z)

)
λ(z)

(5)

Besides, Poisson’s ratio ν(z) is described as

v(z) = 0.221p′ + v1(0.342p′2 − 1.21p′ + 1) (6)

in which ν1 is the Poisson’s ratio of the metal matrix no having pores porosities and p′ is known as

p′ = 1.121
(
1 − 2.3

√
1 − e0λ(z)

)
(7)

In order to achieve a deep and reasonable comparison, the mass per unit of surface M of plates
with numerous porosity distributions is built to be similar and can be computed by

M =

∫ h/2

−h/2
ρ(z)dz (8)
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Then, the coefficient λ in Eq. (2) for uniform porosity distribution is given as

λ =
1
e0
−

1
e0

(
M/ρ1h + 0.121

0.121

)2.3

(9)

For three dispersion patterns, the volume fraction of GPLs shown in Fig. 2 can be presented as

VGPL =


S i1 [1 − cos(πz/h)] , Pattern A
S i2 [1 − cos(πz/2h + π/4)] , Pattern B
S i3, Pattern C

(10)

The volume fraction VGPL and weight fractions ΛGPL have the relationship together through equa-
tion as

ΛGPLρm

ΛGPLρm + ρGPL − ΛGPLρGPL

∫ h
2

− h
2

[1 − emλ(z)]dz =

∫ h
2

− h
2

VGPL [1 − emλ(z)]dz (11)

The Halpin-Tsai micromechanical model presents the Young’s modulus, E1, written as

E1 =
3
8

(
1 + ζLηLVGPL

1 − ηLVGPL

)
Em +

5
8

(
1 + ζwηwVGPL

1 − ηwVGPL

)
Em (12)

in which

ζL =
2lGPL

tGPL
, ζW =

2wGPL

tGPL
, ηL =

(EGPL/Em) − 1
(EGPL/Em) + ζL

, ηW =
(EGPL/Em) − 1
(EGPL/Em) + ζw

(13)

where wGPL, lGPL and tGPL imply the average width, length and thickness of graphene platelets, re-
spectively; Em and EGPL are Young’s moduli of metal matrix and graphene platelets, respectively. For
metal matrix with the presence of porosities, the mass density ρ1 and Poison’s ratio ν1 of the GPLs
are defined through the rule of mixture as

ρ1 = ρGPLVGPL + ρmVm (14)

ν1 = νGPLVGPL + νmVm (15)

where ρGPL and νGPL symbolize the mass density and Poisson’s ratio of GPLs, respectively; while
ρm, νm and Vm = 1 − VGPL denote the mass density, Poisson’s ratio and volume fraction of metal
matrix, respectively.

3. Theory and approximation of FGP-GPLs plate

3.1. A generalized three-variable high order shear deformation theory (THSDT)

The displacements of a random point in plate according to THSDT is written as [31]

u (x, y, z) = u0 − z
∂w0

∂x
+ c f f (z)

∂

∂x
∆w0

v (x, y, z) = v0 − z
∂w0

∂y
+ c f f (z)

∂

∂y
∆w0

w (x, y, z) = w0 + c f ∆w0

(16)
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Table 1. The list of common functions f (z)

Name Function f (z) Source

Case 1 f (z) = 0 FSDT [33]

Case 2 f (z) =
−4z3

3h2 TSDT [34]

Case 3 f (z) =
−z
8
−

2z3

h2 +
2z5

h4 HSDT [35]

Case 4 f (z) = tan−1
(
sin

πz
h

)
− z HSDT [36]

where u0, v0 are displacements in plane, w0 represents displacement through the thickness direction,
∆ = ∂2

,x2 + ∂2
,y2 is the Laplace operator and c f is a correction factor of the shear displacement which is

set later. The nonlinear distribution of some odd functions f (z) based on the generalized three-variable
high order shear deformation theory is given in Table 1.

The relationship between strain and displacement fields is computed as follows

 εxx

εyy

γxy

 =



∂u0

∂x
∂v0

∂y
∂u0

∂y
+
∂v0

∂x


− z



∂2w0

∂x2

∂2w0

∂y2

2
∂2w0

∂x∂y


+ c f f (z)



∂2

∂x2 ∆w0

∂2

∂y2 ∆w0

2
∂2

∂x∂y
∆w0


(17a)

= ε0 + zε1 + f (z)ε2 (17b) γxz

γyz

 = c f
(
1 + f (z),z

) 
∂

∂x
∂

∂y

 ∆w0 = c f
(
1 + f (z),z

)
εz (17c)

The resultants are stated as follows[
Nxx Nyy Nxy

]T
= Aε0 + Bε1 + Eε2 (18a)[

Mxx Myy Mxy
]T

= Bε0 + Dε1 + Fε2 (18b)[
Q13 Q23

]T
= Dsεs (18c)

where

(A,B,D,E,F) =

∫ h/2

−h/2

[
1, z, z2, c f f (z), c f z f (z)

]
Cbdz

Ds =

∫ h/2

−h/2
c f

(
1 + f (z),z

)
Csdz

(19)

and

Cb =

 C11 C12 0
C12 C22 0
0 0 C66

 ; Cs =

[
C55 0
0 C44

]
(20)
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where the correction factors c f based on the Laplacian of bending displacement w0 [31] is calculated
as

c f =

z0

∫ h/2

−h/2

zE(z)
1 − υ2 dz −

∫ h/2

−h/2

z2E(z)
1 − υ2 dz∫ h/2

−h/2

(
1 + f (z),z

) E(z)
2(1 + υ)

dz

(21)

in which z0 is the distance from the central plane to the neutral plane of the plate and is expressed as
follows:

z0 =

∫ h/2

−h/2
zE(z)dz∫ h/2

−h/2
E(z)dz

(22)

3.2. Garlerkin weak forms of FGP-GPL plates

For free vibration analysis, the weak form is determined as

∫
V

 εxx

εyy

γxy


T

Cb

 εxx

εyy

γxy

 dV +

∫
V

[
γxz

γyz

]T

Cs

[
γxz

γyz

]
dV +

∫
Ω

δũT m̄ ¨̃udΩ = 0 (23)

Then, setting Eq. (17) into Eq. (23) and remarking that I3 is a unit matrix of size 3 × 3, it can be
obtained

∫
Ω

 ε0
ε1
ε2


T 

∫ h/2

−h/2

 I3
zI3

c f f (z)I3

 Cb
[

I3 zI3 c f f (z)I3
]

dz


 ε0
ε1
ε2

 dΩ

+

∫
Ω

εT
s

{∫ h/2

−h/2
c f

(
1 + f (z),z

)
Cs

(
1 + f (z),z

)
dz

}
εsdΩ +

∫
Ω

δũT m̄ ¨̃udΩ = 0

(24)

Eq. (24) can be rewritten as below

∫
Ω


 ε0
ε1
ε2


T 


A B E
B D F
E F H̃



 ε0
ε1
ε2

 + εT
s D̃s
εs

dΩ +

∫
Ω

δũT

 I1 I2 I4
I2 I3 I5
I4 I5 I6

 ¨̃udΩ = 0 (25)

where

H̃ =

∫ h/2

−h/2

[
c2

f f 2(z)
]
Cbdz, D̃s

=

∫ h/2

−h/2
c2

f

(
1 + f (z),z

)2
Csdz,

(I1, I2, I3, I4, I5, I6) =

∫ h/2

−h/2
ρ(z)

[
1, z, z2, c f f (z), c f z f (z), c2

f f 2(z)
]
dz

(26)

and

ũ =


u1
u2
u3

 ; u1 =


u0
v0
w0

 ; u2 =


−
∂w0

∂x

−
∂w0

∂y
0


; u3 =


∂

∂x
∆w0

∂

∂y
∆w0

∆w0


(27)
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3.3. Isogeometric analysis (IGA) for THSDT

With IGA, we use the NURBS basis function (Non-Uniform Rational B-splines) to approximate.
The displacement field of the FGP plate can be approached as follows

uh (ξ, η) =

m×n∑
A

Re
A (ξ, η)dA (28)

where Re
A (ξ, η) expresses a NURBS basis function, m×n is the number of basis functions and dA is

the vector of nodal degrees of freedom related to control point A.
The in-plane and shear strains can be rewritten as

[
ε0 ε1 ε2

]T
=

m×n∑
A=1

[
B0 B1 B2

]T
dA, εs =

m×n∑
A=1

BsdA (29)

where

B0 =



∂RA

∂x
0 0

0
∂RA

∂y
0

∂RA

∂y
∂RA

∂x
0


, B1 = −



0 0
∂2RA

∂x2

0 0
∂2RA

∂y2

0 0 2
∂2RA

∂x∂y


,

B2 =



0 0
∂2

∂x2 ∆RA

0 0
∂2

∂y2 ∆RA

0 0 2
∂2

∂x∂y
∆RA


, Bs =


0 0

∂

∂x
∆RA

0 0
∂

∂x
∆RA



(30)

By replacing Eq. (28) for displacement field ui (i = 1, 2, 3) in Eq. (27), ui can be written as follows

[
u1 u2 u3

]T
=

m×n∑
A=1

[
N1 N2 N3

]T
dA (31)

in which

N1 =

 RA 0 0
0 RA 0
0 0 RA

 ; N2 = −

 0 0 RA,x

0 0 RA,y

0 0 0

 ;

N3 = −


0 0

∂

∂x
∆RA

0 0
∂

∂y
∆RA

0 0 0

 +

 0 0 0
0 0 0
0 0 ∆RA


(32)

3.4. Governing equations of motion

The fundamental governing equation of free vibration analysis can be resulted in the following
form (

K − ω2M
)

d = 0 (33)
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where K is the global stiffness matrix and is given by

K =

∫
Ω




B1
B2
B3


T 

A B E
B D F
E F H̃




B1
B2
B3

 + BT
s D̃sBs

dΩ (34)

And M is the global mass matrix. It is defined as

M =

∫
Ω




N1
N2
N3


T  I1 I2 I4

I2 I3 I5
I4 I5 I6




N1
N2
N3


 dΩ (35)

3.5. Imposing essential boundary conditions

For the set of boundary conditions (BCs), the employment of two standard BCs for a rectangular
plate are deliberated in this section as follows:

- Simply supported:
At x = 0, a:

v0 = 0 (36a)

w0 + α∆2w0 = 0 (36b)

At y = 0, b:

u0 = 0 (37a)

w0 + α∆2w0 = 0 (37b)

- Clamped:
At x = 0, a:

u0 = 0; v0 = 0 (38a)

w0 + α∆2w0 = 0;
∂w0

∂x
− γ

∂

∂x
∆2w0 (38b)

At y = 0, b:

u0 = 0; v0 = 0 (39a)

w0 + α∆2w0 = 0;
∂w0

∂y
− γ

∂

∂y
∆2w0 (39b)

Eqs. (36a), (37a), (38a) and (39a) are the classical BCs while Eqs. (36b), (37b), (38b) and (39b)
are the non-classical BCs. The classical BCs are able to directly force into the system equations like
as all papers related to IGA. For the non-classical BCs, the penalty method is used, referring to [31]
for more details.
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4. Numerical results

4.1. Convergence and verification analyses

We first consider a square functionally graded material (FGM) Al/Al2O3 plate with length-to-
thickness ratio a/h = 100 in order to prove and clarify the convergence of the proposed approach.
The FGM plate is subjected to SSSS and CCCC BCs. The properties of component materials can

be reviewed in Table 2. The non-dimensional frequencies are given $ = ωπ2
(
a2/h

) √
ρm

Em
in which

the subscript “m” indicates the metal elements and ω is the nominal natural frequencies of the FGM
plate. Table 3 illustrates the convergence of the first lowest frequency with respect to given meshes for
all cases. The obtained results are compared to exact solutions studied by Baferani et al. [37], a mesh
of 11 × 11 can be selected for analysis. In addition, the case 4 has more a good agreement than other
cases as well as closest to exact solutions. Therefore, case 4 is chosen to run the result of the first five
lowest frequencies for SSSS and CCCC Bcs in Tables 4 and 5, respectively. The present results for
SSSS plate are evaluated with those of the IGA based on FSDT and TSDT [26], the IGA using simple
FSDT proposed by Yin et al. (IGA-SFSDT) [38] and exact solutions [37]. For CCCC plate, because
there are not exact solutions the solutions are futher compared to IGA based on classical plate theory
(CPT) and physical neutral surface [39] (IGA-CPT-neu). It can be seen that all cases match excellent
compared to the published results. These reference solutions use IGA with FSDT or TSDT for five
DOFs for each node (control point). Althought the proposed method only has three DOFs per node,
there is a good agreement between the present work with those of the exact solutions. Moreover, an
increasing of gradient index leads to a decreasing of natural frequency of plate due to reducing of the
stiffness’s plate.

Table 2. Material properties

Material E (GPa) ρ (kg/m3) ν

Aluminum (Al) 70 2702 0.3
Alumina (Al/Al2O3) 380 3800 0.3

Copper 130 8960 0.34
GPL 1010 1062.5 0.186

Table 3. Influence of the mesh levels on the frequency parameter $ of a FGM square plate with SSSS BCs
(a/h = 100)

Mesh Case 1 Case 2 Case 3 Case 4

7×7 115.9056 115.9136 115.9095 115.8692
11×11 115.8702 115.8693 115.8688 115.8696
15×15 115.8703 115.8693 115.8688 115.8697

Exact [38] 115.8695
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Table 4. The first five normalized natural frequencies $ of a FGM square plate with SSSS BCs

Gradient index, n Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0 IGA-FSDT [26] 115.9056 289.7465 289.7465 463.2783 579.6187
IGA-TSDT [26] 115.9136 289.8146 289.8146 463.4071 579.9500

IGA-SFSDT [38] 115.8926 289.5800 289.5806 463.0741 579.7215
Exact [37] 115.8695 289.7708 - 463.4781 -

Present (Case 4) 115.8696 289.7824 289.6212 463.4521 579.7822

0.5 IGA-FSDT [26] 98.1469 245.3765 245.3765 392.3437 490.9582
IGA-TSDT [26] 98.1538 245.4364 245.4364 392.4539 491.2537

IGA-SFSDT [38] 98.1343 245.2169 245.2169 392.1448 490.0963
Exact [37] 98.0136 245.3251 - 392.4425 -

Present (Case 4) 98.0139 245.3192 245.3361 392.4489 491.0025

1 IGA-FSDT [26] 88.4403 221.1177 221.1177 353.5548 442.4573
IGA-TSDT [26] 88.4467 221.1738 221.1738 353.6574 442.7351

IGA-SFSDT [38] 88.4280 220.9643 220.9643 353.3613 441.6348
Exact [37] 88.3093 221.0643 - 392.4425 -

Present (Case 4) 88.3089 220.9521 221.1542 373.5044 441.7015

2 IGA-FSDT [26] 80.4065 201.0261 201.0261 321.4234 402.2333
IGA-TSDT [26] 80.4126 201.0782 201.0782 321.5199 402.4897

IGA-SFSDT [38] 80.3953 200.8879 200.8879 321.2475 401.5008
Exact [37] 80.3517 200.8793 - 321.4069 -

Present (Case 4) 80.3522 200.8811 201.0845 321.4111 401.6012

Table 5. The first five normalized natural frequencies $ of a FGM square plate with CCCC BCs

Gradient index, n Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0 IGA-FSDT [26] 211.3331 431.0821 431.0821 635.0710 773.2417
IGA-TSDT [26] 211.4169 431.3977 431.3977 635.6156 774.2260

IGA-SFSDT [38] 211.1468 430.3633 430.3633 634.1625 770.8950
IGA-CPT-neu [39] 211.3372 431.0061 431.0061 635.4464 772.7523
Present (Case 4) 211.3219 431.1210 431.1210 635.5945 773.1454

0.5 IGA-FSDT [26] 178.9901 365.1828 365.1828 538.0286 655.2518
IGA-TSDT [26] 179.0627 365.4593 365.4593 538.4984 656.1226

IGA-SFSDT [38] 178.8047 364.4639 364.4639 537.0816 652.9193
IGA-CPT-neu [39] 178.9493 364.9528 364.9528 538.0607 654.3228
Present (Case 4) 178.9399 365.0012 365.0012 538.4877 656.2542

1 IGA-FSDT [26] 161.3043 329.1291 329.1291 484.9212 590.6464
IGA-TSDT [26] 161.3711 329.3850 329.3850 485.3539 591.4565

IGA-SFSDT [38] 161.1242 328.4308 328.4308 483.9866 588.3962
IGA-CPT-neu [39] 161.2484 328.8502 328.8502 484.8293 589.5860
Present (Case 4) 161.2459 329.0142 329.0142 484.8752 590.2201

2 IGA-FSDT [26] 146.6479 299.2113 299.2113 440.8304 536.9202
IGA-TSDT [26] 146.7089 299.4452 299.4452 441.2281 537.6605

IGA-SFSDT [38] 146.4868 298.5884 298.5884 439.9988 534.9293
IGA-CPT-neu [39] 146.6016 298.9753 298.9753 440.7781 536.0119
Present (Case 4) 146.6152 299.0114 299.0114 441.1233 537.1687

4.2. FGP-GPLs plates

A FGP-GPLs plate is considered with matrix material made of copper. Table 2 shows the ma-
terial properties of copper and graphene platelets. GPLs have wGPL = 1.5 µm, lGPL = 2.5 µm

61



Nguyen, L. B., et al. / Journal of Science and Technology in Civil Engineering

and tGPL = 1.5 nm which are defined in Eq. (13). The fundamental frequency is described as

ω∗ = ωa

√
ρm(1 − ν2

m)
Em

. Table 6 indicates the frequency parameters of a square FGP plate affected by

the length-to-thickness ratio (a/h), weight fraction ΛGPL = 1 wt.% and porosity coefficient e0 = 0.5.
Values in parentheses are % errors. Through our observation, the present results show a great like-
ness with small erroneousness when compared to the obtained results in Ref. [25] examined by Yang
et al. based on Chebyshev-Ritz method. Clearly, at a specific of weight fraction the plate’s stiffness
decreases notably as the higher length-to-thickness ratio and leads to a reduction of the fundamental
frequency for both porosity distribution 1 and uniform porosity with SSSS and CCCC BCs.

Table 6. Influence of the ratio a/h on dimensionless fundamental natural frequencies
of a square FGP-GPLs plate (case 4, ΛGPL = 1 wt.%, e0 = 0.5)

a/h
Porosity distribution 1 Uniform porosity

GPL A GPL B GPL C GPL A GPL B GPL C

SSSS 20 Ref. [25] 0.3958 - 0.3574 0.3627 - 0.3252
Present 0.3958 0.3497 0.3570 0.3620 0.3188 0.3238

(0.00) - (−0.10) (−0.21) - (−0.44)

30 Ref. [25] 0.2657 - 0.2397 0.2433 - 0.2179
Present 0.2663 0.2346 0.2396 0.2430 0.2136 0.2169

(0.24) - (−0.06) (−0.14) - (−0.47)

40 Ref. [25] 0.1997 - 0.1801 0.1828 - 0.1637
Present 0.2004 0.1764 0.1801 0.1827 0.1605 0.1629

(0.35) - (−0.02) (−0.07) - (−0.47)

50 Ref. [25] 0.1600 - 0.1442 0.1464 - 0.1311
Present 0.1606 0.1413 0.1442 0.1463 0.1285 0.1304

(0.36) - (0.00) (−0.07) - (−0.50)

CCCC 20 Ref. [25] 0.7022 - 0.6366 0.6456 - 0.5814
Present 0.6940 0.6191 0.6318 0.6394 0.5681 0.5767

(−1.17) - (−0.76) (−0.96) - (−0.80)

30 Ref. [25] 0.4783 - 0.4324 0.4387 - 0.3938
Present 0.4767 0.4220 0.4307 0.4365 0.3854 0.3912

(−0.33) - (−0.38) (−0.50) - (−0.65)

40 Ref. [25] 0.3616 - 0.3265 0.3313 - 0.2971
Present 0.3615 0.3191 0.3257 0.3302 0.2908 0.2953

(−0.02) - (−0.24) (−0.32) - (−0.62)

50 Ref. [25] 0.2904 - 0.2620 0.2659 - 0.2383
Present 0.2907 0.2562 0.2616 0.2653 0.2333 0.2369

(0.12) - (−0.16) (−0.23) - (−0.59)

Values in parentheses are % errors

The impact of the coefficient of porosity e0, weight fraction ΛGPL and the GPLs dispersion pat-
terns on the dimensionless frequencies of FGP-GPLs with several porosity distribution types are also
displayed in the Table 7. It can be realized that the influence of porosity coefficient on the dimen-
sionless frequencies is remarkable. When a larger size of internal pores, the fundamental frequency
decreases due to a lessening in the stiffness of FGP plate. Clearly, with non-uniform porosity distri-
bution 1, the obtained results marginally decrease. However, there is a strong decrease for the non-
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uniform porosity distribution 2 and uniform porosity distribution. Of course, the obtained results also
increase significantly when there is an increasing in weight fraction ΛGPL from 0.5 wt.% to 1 wt.%.
The careful observation shows that, frequency corresponding to pattern A distributed GPLs symmet-
rically through the midplane of plate offers the highest values, next is pattern C while the asymmetric
dispersion pattern B has the smallest frequency. It means that for the same type of porosity distribu-
tion, the rigidity of the porous plates with pattern GPL A is maximum and the minimum is pattern
GPL B. As a result, the dispersion pattern A yields the best reinforcing performance for the vibration
analysis of GPLs plate. Besides, with arbitrary the GPLs dispersion patterns, weight fractions and
porosity coefficients, the type of the porosity distribution 1 constantly supplies the best stiffness as
verified by achieving the biggest frequency. It is possible to realize that the grouping between the
porosity distribution 1 and GPL dispersion pattern A creates the excellent behaviors for FG porous
structures compared with all studied combinations. The first six mode shapes of FGP-GPLs plate are
also drawn in Fig. 3.

Table 7. Influence of porosity coefficient, type of porosity distribution, weight fraction ΛGPL and GPLs
dispersion patterns on dimensionless fundamental natural frequencies of a square FGP-GPLs plate

e0

Porosity distribution 1 Porosity distribution 2 Uniform porosity

GPL A GPL B GPL C GPL A GPL B GPL C GPL A GPL B GPL C

0.1 0.6131 0.5735 0.5737 0.6062 0.5658 0.5670 0.5990 0.5585 0.5588
0.3 0.6076 0.5689 0.5695 0.5832 0.5420 0.5458 0.5871 0.5505 0.5503
0.5 0.6037 0.5662 0.5674 0.5532 0.5116 0.5185 0.5711 0.5394 0.5390
0.1 0.7062 0.6286 0.6386 0.6986 0.6199 0.6312 0.6973 0.6205 0.6299
0.3 0.6995 0.6229 0.6340 0.6721 0.5924 0.6077 0.6701 0.5959 0.6049
0.5 0.6940 0.6191 0.6318 0.6372 0.5578 0.5777 0.6394 0.5861 0.5767
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Figure 3. The first six mode shapes of FGP-GPLs plate with a/b=1, CCCC boundary 

condition. 
5. Conclusions 

A valuable numerical model within the framework of IGA based on the THSDT has been 
proposed for the frequency responses of FGP-GPLs plates. The three-variable high order shear 
deformation theory (THSDT) which satisfies CPT, FSDT and HSDT shows the strong 
efficiency for vibration problems. A combination of three porosity distribution types and 
dispersion pattern of GPLs in plate is studied. The influences of different parameters including 
porosity distribution types, porosity coefficients, dispersion patterns and weight fractions of 
GPL on the behaviors of FGP-GPLs plates are exhaustively investigated. Interestingly, the 
obtained results agree well with existing studies or available solutions in the literature. Some 
several main remarks can be made: 

1. Only adding a little the GPLs, the stiffness of the FG porous plate can be significantly 
increased. Therefore, for any specifically adopted porosity coefficient, by increasing the weight 
fraction of the GPLs, the natural frequency would be increased. 

2. An increasing of the porosity coefficient leads to the ability of weakening the stiffness of 
the FG porous plate. Thus, for a particular weight fraction, by increasing the porosity 
coefficient, the obtained results of frequency would be compressed. 

3. The dispersion pattern of the GPLs also has effects on the behaviors of the FG porous 
plate. Among all considered cases, dispersion pattern A of the non-uniform porosity distribution 
1 has the largest solutions. That is, it can become a best reinforcement candidate for the 
vibration analysis problem of the FG porous plate. 
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Figure 3. The first six mode shapes of of a square FGP-GPLs plate, CCCC BCs

The impact of the coefficient of porosity e0, weight fraction ΛGPL and the GPLs dispersion pat-
terns on the dimensionless fundamental frequency of FGP plates with different porosity distribution
types are also shown in Table 7. It can be seen that the effect of porosity coefficient on the dimen-
sionless fundamental frequency is remarkable. When a larger size of internal pores, the fundamental
frequency decreases due to a lessening in the stiffness of FGP plate. Clearly, with non-uniform poros-
ity distribution 1, the results of the dimensionless fundamental frequency slightly decrease. However,
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there is a more pronounced decrease in two cases of the non-uniform porosity distribution 2 and uni-
form porosity distribution. Of course, the obtained results also increase significantly when there is
an increasing in weight fraction ΛGPL from 0.5 wt.% to 1 wt.%. The careful observation shows that,
frequency corresponding to pattern A distributed GPLs symmetrically through the midplane of plate
provides the highest values, next is pattern C while the asymmetric dispersion pattern B has the lowest
frequency. It means that for the same type of porosity distribution, the rigidity of the porous plates
with pattern GPL A is maximum and the minimum is pattern GPL B. As a result, the dispersion pat-
tern A yields the best reinforcing performance for the vibration analysis of GPLs plate. Besides, for
any specific weight fractions, the GPLs dispersion patterns, and porosity coefficients, the porosity dis-
tribution 1 always provides the best stiffness as evidenced by obtaining the largest frequency. Possibly
to see that the combination between the porosity distribution 1 and GPL dispersion pattern A makes
the best structural behaivors for FG porous square plate compared with all considered combinations.
The first six mode shapes of FGP-GPLs plate are also plotted in Fig. 3.

5. Conclusions

A valuable numerical approach within the outline of IGA based on the THSDT has been proposed
for the frequency responses of FGP-GPLs plates. The three-variable high order shear deformation
theory (THSDT) which satisfies CPT, FSDT and HSDT shows the strong efficiency for vibration
problems. An investigation of three porosity distribution types and dispersion pattern of GPLs in
plate in terms of free vibration is studied. The influence of different parameters on the behaviors
of FGP-GPLs plates are exhaustively examined. Remarkably, the obtained results match well with
current studies or available answers in the literature. Some several main remarks can be made:

1. Only adding a little the GPLs, the FGP plate’s stiffness can be extensively increased. Therefore,
for any defined porosity coefficient, by rising the weight fraction of the GPLs, the natural frequency
would be enlarged.

2. An expanding of the porosity coefficient causes to the ability of reducing the stiffness of struc-
tures. Thus, for a given weight fraction, by growing the porosity coefficient, the obtained results of
frequency would be compressed.

3. The dispersion pattern of the GPLs also has remarkble impact on the behaviors of the FG
porous plate. Among all studied cases, the combination of the non-uniform porosity distribution 1 and
dispersion pattern A gives the largest solutions. That is, it can become a best reinforcement candidate
for the vibration analysis problem of the FGP plate.
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