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Abstract

In this paper, a computational approach using a combination of the upper bound theorem and the bubble-
enhanced quadrilateral finite element (FEM-Qi6) is proposed to evaluate bearing capacity factors of strip foot-
ing in cohesive-frictional soil. The new element is built based on the quadrilateral element (Q4) by adding
a pair of internal nodes to solve the volumetric locking phenomenon. In the upper bound finite element limit
analysis, the soil behaviour is described as a perfectly plastic material and obeys associated plastic flow rule fol-
lowing the Mohr-Coulomb failure criterion. The discrete limit analysis problem can be formulated in the form
of the well-known second-order cone programming to utilize the interior-point method efficiently. The bearing
capacity factors of strip footing and failure mechanisms in both rough and smooth interfaces are obtained di-
rectly from solving the optimization problems and presented in design tables and charts for engineers to use. To
demonstrate the accuracy of the proposed method, the results of bearing capacity factors using FEM-Qi6 were
compared with those available in the literature.
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1. Introduction

The bearing capacity of a shallow strip footing is generally determined by using the following
Terzaghi [1] equation:

qu = cNc + qNq +
1
2
γBNγ (1)

where Nc,Nq,Nγ are three bearing capacity factors related to the cohesion c, the surcharge load q and
the unit weight of the soil γ, respectively.

Analytical expressions Nc,Nq are given by Prandtl [2] and Reissner [3] for a strip footing on
weightless soil while the exact values Nγ remain unknown. In 1943, Terzaghi [1] proposed a bearing
capacity equation to calculate Nγ the factor for strip footing with a rough base using a limit equilibrium
method. Meyerhof [4] used the Prandtl failure mechanism to evaluate the bearing capacity factor Nγ

for strip footing with a rough base.
In a few past decades, Sokolovskii [5] estimated the bearing capacity factor Nγ using the slip-

line method. Hansen [6] used quasi-empirical modifications of a slip-line solution for the bearing
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capacity of shallow foundation and proposed an expression for Nγ. Vesic [7] evaluated the bearing
capacity factor Nγ based on Prandtl’s mechanism and numerical studies suggested by Caquot and
Kreisel [8]. Bolton and Lau [9] used a method of characteristic with the Mohr-Coulomb criterion to
evaluate the bearing capacity of circular and strip footings with rough and smooth bases.

Some decades ago, the finite element method (FEM) had been rapidly developing to solve compli-
cated geotechnical problems. In the study of Griffiths [10], the soil was presented by an elastoplastic
model with a Mohr-Coulomb yield condition, in conjunction with a non-associated flow rule (zero
plastic volume change). Due to numerical convergence problems, Griffiths investigated cases where
friction angles φ ≤ 35◦. Frydman and Burd [11] carried out numerical studies to evaluate bearing
capacity factor Nγ for linear elastic perfectly plastic soil material using finite element and finite dif-
ference methods. Ukrichon et al. [12] performed an upper bound and lower bound limit analysis using
linear programming and finite element method to calculate the bearing capacity factor Nγ. Hjiaj et
al. [13] applied nonlinear programming using the finite element to evaluate the self-weight bearing
capacity factor Nγ for smooth and rough footing. Martin [14] used stress characteristics to calculate
high-precision Nγ factors for both smooth and rough footings. Recently, Makrodimopoulous and Mar-
tin [15] using 6 node-triangular element and second-order cone programming to calculate the bearing
capacity factor Nγ for both smooth and rough footings. By employing the upper limit analysis, T. Vo-
Minh [16] estimated bearing capacity factors of strip footing using the node-based smoothed finite
element method and second-order cone programming.

The standard finite element method using the 3-node triangular element (T3) or 4-node quadri-
lateral element (Q4) is popular due to its simplicity. One of the significant drawbacks of low-order
elements (T3 and Q4) is the volumetric locking phenomenon, which often occurs in nearly incom-
pressible materials. To overcome disadvantages, many methods were suggested to reduce integration
methods [17], enhanced assumed strain [18–20], an average nodal technique [21], a mesh-free method
based on the radial basis function [22] and so on. In recent years, H. Nguyen-Xuan et al. [23, 24] re-
searched the enrich-bubble 3-node triangular element (T3) combined with an edge-based smoothing
technique to solve the limit analysis of structures. More recently, T. Vu-Hoang et al. [25] used the
FEM-Qi6 to evaluate the elastoplastic nonlinear analysis of strip footings and slope stability.

In this paper, a bubble-enhanced quadrilateral element (FEM-Qi6) is proposed to evaluate strip
footing bearing capacity factors using upper bound limit analysis. The new element is built based
on the quadrilateral element (Q4) by adding a pair of internal nodes to solve the locking mode. This
method’s concept uses a bubble function to enhance the compatible strain, and an extra field of vari-
ables related to the space derivatives of the displacement field is added. Internal plastic dissipation
is minimized in the upper bound limit analysis to determine the soil’s ultimate load-bearing capacity.
The Mohr-Coulomb yield criterion can be formed in a second-order cone programming (SOCP). To
solve the resulting conic problems, the MATLAB (version 7.8.0) and the Mosek (version 6.0) [26]
are used to give all solutions in this paper.

2. Brief on the bubble-enhanced quadrilateral element (FEM-Qi6)

Lower order elements (T3 and Q4) have been proved to suffer volumetric locking. This phe-
nomenon has been encountered in the analysis of undrained (incompressible) problems, where the
elements do not provide enough degrees of freedom to satisfy the constant-volume condition (Nagte-
gaal, et al. [27]).

In this study, the new element is built based on the formulation of the four-node quadrilateral
element (Q4) by adding two extra compatible modes of deformation in the definition of the displace-
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ment field. In the literature, the implementation of bubble function stems from overly stiff properties
of Q4 elements where four edges remain straight when deformation occurs. In compensation for the
overly stiff behaviour, bubble functions accounted for the internal deformation are introduced. This
method belongs to the branch of the mixed formulation [28–30]. The mixed formulation leads to the
violation of compatible conditions of FEM [31]. The F-bar method [32] has been extensively applied
for both small and large strain plasticity analysis. In the present approach, the same framework of a
mixed formulation is applied, but compatible conditions are preserved. If the displacement field is
only defined from the standard expansion in terms of bilinear shape functions, the divergence of the
displacement field is never equal to zero at the Gauss points, as shown in Fig. 1.
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An extra compatible displacement field uh
α is introduced into the finite element method displace-

ment field as shown in Fig. 2.
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In the locking test of Fig. 1, if we implement the following values to the new variables, ∇uh = 0
at the Gauss points, as illustrated in Fig. 3.

αe
51 = 0, αe

52 = −
3
4
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where J is the Jacobian matrix.
The above feature means that the additional strains do not affect patch test conditions to conver-

gence numerical solutions. The extra variables are eliminated in the assembling process by a sub-
structuring technique, as in the enhanced assumed strain method [19].
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3. A FEM-Qi6 formulation for a plane strain with Mohr-Coulomb yield criterion

We consider a two-dimensional problem domain Ω bounded by a continuous boundary Γu̇ ∪ Γt =

Γ,Γu̇ ∩ Γt = ∅. The rigid-perfectly plastic body is subjected to body forces f and external tractions g
on Γt and the boundary Γu̇ prescribed by the displacement velocity vector u̇. The strain rates ε̇ can be
expressed by relations

ε̇ =
[
ε̇xx ε̇yy γ̇xy

]T
= ∇u̇ (11)

The upper bound theorem states that there exists a kinematically admissible displacement field
u̇ ∈ U, such that

Wint(ε̇) = D(ε̇) < α+Wext(u̇) + W0
ext(u̇) (12)

where α+ is the limit load multiplier of the load g, f and W0
ext(u̇) is the work of additional load g0, t0

not subjected to the multiplier.
Defining C = {u̇ ∈ U |Wext(u̇) = 1}, the limit analysis problem is based on the kinematical theorem

to determine the collapse multiplier α+ yielding the following optimization problem.

α+ = min
∫
Ω

D(ε̇)dΩ −W0
ext(u̇) (13)

st
{

u̇ = 0 on Γu

Wext(u̇) = 1
(14)

Makrodimopoulos and Martin [15] using the Mohr-Coulomb failure criterion and associated flow
rule determine the power of plastic dissipation as follows

D(ε̇) = cAiti cos φ (15)

The strains field ε using FEM-Qi6 can be calculated from Eq. (7), the upper-bound limit analysis
problem for the plane strain can be determined by minimizing the objective function

α+ = min

 Nn∑
i=1

cAiti cos φ −W0
ext(u̇)

 (16)

st


u̇ = 0 on Γu

Wext(u̇) = 1
ε̇xx + ε̇yy = ti sin φ
‖ρ‖i ≤ ti, i = 1, 2, . . . ,Nn

(17)

where Nn is the total number of nodes in the computational domain. The fourth constraint in Eq. (17)
is a quadratic cone. In this paper, the computations were performed on a Dell Optiplex 990 (Intel
CoreTM i5, 1.6 GHz CPU, 8GB RAM) in a Window XP environment using the conic interior-point
optimizer of the Mosek package [25].
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4. Numerical examples

4.1. Nc and Nγ bearing capacity factors of strip footing

For a weightless soil (c ≥ 0, φ ≥ 0, γ = 0) in the absence of surcharge, the bearing capacity of
strip footing is given by qu = cNc where Nc is a dimensionless bearing capacity factor that depends
on φ. An analytical expression of Nγ can be determined by

Nc = cot φ
[
eπ tan φtan2(

π

4
+
φ

2
) − 1

]
(18)

The bearing capacity factor Nγ represents the effect of the soil weight (c = 0, φ ≥ 0, γ > 0) with
no surcharge can be determined by

Nγ =
qu

0.5B2γ
(19)

There is no analytical solution for Nγ, but it can be evaluated using various numerical methods.
Due to symmetry, only half of the problem is considered. The soil behaviour is described as a uniform
Mohr-Coulomb material with a value of cohesion c, friction angle φ and unit weight γ = 0. The
typical finite element meshes of 4608 quadrilateral elements are employed in the numerical analysis,
as shown in Fig. 4. To describe smooth or rough interface conditions between the footing and the soil,
the lateral displacement of nodes in contact with the footing is freeing or fixing, respectively. The
problem’s size is chosen sufficiently large enough to ensure that the failure mechanism only takes
place inside the considered domain.
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To obtain the bearing capacity factor Nc for a weightless soil in the absence of surcharge q =

0, c = 1, γ = 0,W0
ext(u̇) and the bearing capacity factor Nγ represent the effect of the soil weight

(c = 0, q = 0, γ = 1) with no surcharge, the optimization problem for plane strain using FEM-Qi6 can
be determined by

Nc = α+ = min

 Nn∑
i=1

cAiti cos φ −W0
ext(u̇)

 (20)

Nγ = α+ = min
(
−W0

ext(u̇)
)

(21)
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When the soil friction angle φ < 30◦,the rectangular region is L = 6B and H = 3B, where B is the
width of footing. When the soil friction angle increases φ ≥ 30◦, the failure mechanism expands larger
in both vertical and horizontal directions, the domain size should be L = 12B and H = 5B. Figs. 5–8
show the power dissipation of strip footing in the case of friction angle φ = 0◦, 10◦, 30◦, 45◦.
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Figure 8. Power dissipation of strip footing φ = 45◦

To consider the accuracy of this approach, a comparison of the bearing capacity factors of strip
footing Nc,Nγ using FEM-Qi6 with those of Makrodimopoulous and Martin [15] are shown in Ta-
ble 1. It is evident that the Nc factor for the case when φ = 35◦ solutions obtained using 4608
quadrilateral elements (FEM-Qi6 model) agree well with the 6-node triangular element presented
by Makrodimopoulous & Martin [15] using a mesh of 18719 elements, 46.38 compared with 46.37.
Thus, we quickly recognize that the numerical procedure using FEM-Qi6 and SOCP reduces a signif-
icant number of elements in the optimization problem and reduces the time for solving optimization
problems.

Table 1. Comparison of the bearing capacity factors of strip footingNc,Nγ (for smooth interface)

NE
Present method

(FEM-Qi6), φ = 350 NE
Makrodimopoulous and

Martin [15] (FEM-T6), φ = 350

Nc Nγ Nc Nγ

648 (Q4) 47.82 19.15 774 (T6) 49.25 19.95
1800 47.27 18.55 6308 46.99 18.14
4608 46.38 17.78 18719 46.37 17.78

NE - number of elements.

The values of the bearing capacity factor of Nc using FEM-Qi6 are summarized in Table 2 and
illustrated in Fig. 9. The obtained results from the present method are very close to the analytical
values of the Prandtl solution.
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Table 2. Results for bearing capacity factor Nc

φ(◦) Terzaghi [1]
FEM-T3
(Error %)

FEM-Q4
(Error %)

FEM-Qi6
(Error %)

Exact values
Prandtl [2]

5 7.34 6.621 6.614 6.614 6.4888
(2.03) (1.93) (1.93)

10 9.60 8.532 8.489 8.483 8.3449
(2.24) (1.72) (1.66)

15 12.86 11.246 11.132 11.123 10.9765
(2.45) (1.41) (1.44)

20 17.69 15.253 15.005 14.984 14.8347
(2.82) (1.14) (1.00)

25 25.13 21.571 20.904 20.952 20.7205
(4.10) (0.88) (1.12)

30 37.16 31.422 30.322 30.387 30.1396
(4.25) (0.60) (0.82)

35 57.75 47.942 46.542 46.380 46.1236
(3.94) (0.90) (0.55)

40 95.69 80.577 75.860 75.810 75.3131
(6.99) (0.72) (0.66)

45 172.29 151.841 138.610 135.277 133.874
(13.42) (3.54) (1.05)
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Figure 9. Comparison of Nc factors with other solutions. 216 
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Figure 9. Comparison of Nc factors with other solutions
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The computed values of bearing capacity of strip footing Nγ for friction angles φ = 5◦ to 45◦

using FEM-Qi6 are summarized in Table 3. Figs. 10, 11 illustrate the comparison between Nγ using
FEM-Qi6 and other solutions on a semi-log plot. It can be seen that the values of all bearing capacity
factors for a rough footing are higher than those for a smooth footing base. The values of those factors
obtained from the present method FEM-Qi6 are compared with the exact solution of Martin [14]
by the method of stress characteristics. It demonstrates that the present method agrees well with the
precise plasticity solutions.

Table 3. Results for bearing capacity factor Nγ

φ(◦)
Nγ (FEM-Q4) Nγ (FEM-Qi6) Exact values Nγ [14]

Smooth
(Error %)

Rough
(Error %)

Smooth
Error (%)

Rough
Error (%)

Smooth Rough

5 0.098 0.169 0.096 0.141 0.08446 0.1134
(16.03) (49.02) (13.66) (24.33)

10 0.317 0.596 0.306 0.489 0.2809 0.4332
(12.85) (37.58) (8.93) (12.88)

15 0.772 1.480 0.746 1.306 0.6991 1.181
(10.43) (25.31) (6.70) (10.58)

20 1.713 3.333 1.658 2.986 1.579 2.839
(8.48) (16.80) (5.00) (5.17)

25 3.699 7.310 3.584 6.597 3.461 6.491
(6.87) (12.62) (3.55) (1.63)

30 8.068 16.152 7.828 14.625 7.653 14.75
(5.42) (9.50) (2.28) (−0.85)

35 18.282 36.978 17.783 33.571 17.58 34.48
(3.99) (7.24) (1.15) (−2.63)

40 44.339 90.514 43.051 85.232 43.19 85.57
(2.66) (5.77) (−0.32) (−0.39)

45 118.780 250.356 115.446 242.453 117.6 234.2
(1.00) (6.89) (−1.83) (3.52)

4.2. Nq bearing capacity factor of strip footing

Reissner [3] extended Prandtl’s work for the case of a purely frictional weightless material with
the surface of the half-space loaded by a uniform surcharge and obtained a close form solution of Nq

factor as follow:
Nq = eπ tan φtan2

(
π

4
+
φ

2

)
(22)

To obtain an upper bound solution for a weightless soil with the effect of surcharge, it is convenient
to consider c = 0, q = 1, γ = 0. The typical mesh is illustrated in Fig. 6. The upper bound limit analysis
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problem for plane strain using FEM-Qi6 can be determined by minimizing the collapse loads.

Nq = α+ = min
(
−W0

ext(u̇)
)
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Figure 12. Comparison of Nq factors with other solutions.

The computational results of bearing capacity of strip footing Nq for friction angles φ = 5◦ to
45◦ using the FEM-Qi6 approach are listed in Table 4 and shown in Fig. 12. According to the Mohr-
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Coulomb yield criterion, the FEM-Qi6 results are close to the analytical solution by Reissner [3], the
errors are less than 1.2%. The values of Nq using the analytical expression of Terzaghi are higher
than those from the Reissner solution and other results because Terzaghi assumed an incorrect failure
mechanism θ = φ.

Table 4. Results for bearing capacity factor Nq

φ (◦) Terzaghi [1]
FEM-T3
(Error %)

FEM-Q4
(Error %)

FEM-Qi6
(Error %)

Exact values
Reissner [3]

5 1.64 1.579 1.579 1.5787 1.568
(0.70) (0.70) (0.68)

10 2.69 2.504 2.497 2.4968 2.471
(1.33) (1.05) (1.04)

15 4.45 4.013 3.983 3.9828 3.941
(1.82) (1.06) (1.06)

20 7.44 6.522 6.461 6.4613 6.399
(1.92) (0.97) (0.97)

25 12.72 11.059 10.748 10.7478 10.622
(4.11) (1.19) (1.18)

30 22.46 19.142 18.506 18.5062 18.401
(3.93) (0.57) (0.57)

35 41.44 34.569 33.589 33.4094 33.296
(3.82 (0.88) (0.34)

40 81.27 68.612 64.654 64.5118 64.195
(6.88) (0.71) (0.49)

45 173.28 152.841 139.61 136.0700 134.874
(13.32) (3.51) (0.88)

Figs. 13–16 show the power dissipation of strip footing using NS-FEM-T3 in friction angle cases
φ = 10◦, 20◦, 30◦ and 40◦. It is noticeable that the failure mechanism expands larger in both vertical
and horizontal directions when the friction angle φ increase; it means that the values of Nq factors
increase. Figs. 13–16 show that the NS-FEM method’s failure mechanisms agree well with those from
Prandtl’s [2] solution.
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Figure 13. Power dissipation of strip footing φ = 10◦
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Figure 14. Power dissipation of strip footing φ = 20◦
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it is convenient to consider 0, 1, 0.c q    The typical mesh is illustrated in Fig. 6. 224 

The upper bound limit analysis problem for plane strain using FEM-Qi6 can be 225 

determined by minimizing the collapse loads. 226 
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 The computational results of bearing capacity of strip footing qN for friction angles 228 

 5o to 45o using the FEM-Qi6 approach are listed in Table 4 and shown in Fig. 16. 229 

According to the Mohr-Coulomb yield criterion, the FEM-Qi6 results are close to the 230 

analytical solution by Reissner [3], the errors are less than 1.2%. The values of Nq using 231 

the analytical expression of Terzaghi are higher than those from the Reissner solution 232 

and other results because Terzaghi assumed an incorrect failure mechanism .   233 

Figs. 12-15 show the power dissipation of strip footing using NS-FEM-T3 in friction 234 

angle cases  100, 200, 30o and 40o. It is noticeable that the failure mechanism expands 235 

larger in both vertical and horizontal directions when the friction angle  increase; it 236 

means that the values of qN factors increase. Figs. 12-15 show that the NS-FEM 237 

method's failure mechanisms agree well with those from Prandtl’s [2] solution. 238 
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Figure 13. Power dissipation of strip 

footing 020   

 

Figure 14. Power dissipation of strip 
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Figure 15. Power dissipation of strip 

footing 040   

Table 4. Results for bearing capacity factor qN  239 

Figure 15. Power dissipation of strip footing φ = 30◦
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Figure 16. Power dissipation of strip footing φ = 40◦

5. Conclusions

This paper has presented a numerical method for upper bound limit analysis to investigate the
bearing capacity factors of strip footing using the enhanced-bubble function quadrilateral finite ele-
ment (FEM-Qi6) and second-order cone programming (SOCP). By using the Mohr-Coulomb failure
criterion and associated flow rule, the obtained results of Nc,Nq and Nγ are in perfect agreement
with those results available in the literature. Therefore, FEM-Qi6 is an effective tool to evaluate the
collapse load for other large problems in geomechanics.
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