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Abstract

The scaled boundary finite element method (SBFEM) is a semi-analytical method, whose versatility, accuracy,
and efficiency are not only equal to, but potentially better than the finite element method and the boundary
element method for certain problems. This paper investigates the possibility of using an efficient high-order
polynomial element in the SBFEM to form the approximation in the circumferential direction. The govern-
ing equations are formulated from the classical linear elasticity theory via the SBFEM technique. The scaled
boundary finite element equations are formulated within a general framework integrating the influence of the
distributed body source, mixed boundary conditions, contributions the side face with either prescribed surface
load or prescribed displacement. The position of scaling center is considered for modeling problem. The pro-
posed method is evaluated by solving two-dimensional linear problem. A selected set of results is reported to
demonstrate the accuracy and convergence of the proposed method for solving problems in general boundary
conditions.
Keywords: SBFEM; high-order element; scaling center; linear problem.

https://doi.org/10.31814/stce.nuce2021-15(3)-09 © 2021 National University of Civil Engineering

1. Introduction

The scaled boundary finite element method (SBFEM) has been found an attractive alternative
analysis tool in the solving complicated engineering problems, unbounded domains, variation of
material properties and loading [1–6]. Recently, several engineering problems have been efficiently
solved and accurately investigated by exploring the SBFEM including piezoelectric materials [7],
electrostatic problem [8], concentrated load on elastic medium [9], circular defining curve for geo-
mechanics applications [10] and many engineering problems (e.g., [11–20]. Basing on published
studies that have demonstrated the significant progress of the SBFEM in the analysis of numerous
engineering problems.

The smooth solutions within the body of the scaled boundary finite element method are obtained
analytically in the radial direction, while numerical solutions are obtained in the circumferential direc-
tion by the finite element standard with boundary discretization and shape functions. When the finite
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element method is applied for continuum problems, use of element higher than quadratic is seldom
economical. However, this argument does not apply to the scaled boundary finite element method.
Firstly, the elements are reduced one dimension for comparison with the finite elements to solve the
same problem. Secondly, the domain stiffness matrix is always populated in the scaled boundary finite
element method. Most previous work using the scaled boundary finite element method has employed
in a problem-dependent style. Vu and Deeks [3] were developed the hierarchical approach and used
higher-order shape functions to analysis plain strain problem under single boundary conditions. Re-
cently, Chung [10] have investigated to use the exact description of circular defining cure to analyze
geo-mechanics in unbounded domain. The published research showed that the solution procedure can
be reduced the solution error and the good accuracy. The main factors such as accurate results of the
method will be affected such as types of boundary value problems, kind of shape functions for ap-
proximation, domain geometry, solving eigenvalue problems will be affected to the accurate solutions
of the method. This paper investigates the possibility of using higher-order polynomial functions to
describe shape functions in the scaled boundary finite element method for solving two-dimensional
linear problem in general boundary conditions.

The paper is outlined as follows. The governing equations for two-dimensional linear problem
are given in governing equations part. The scaled boundary finite element equations are summarized
in scaled doundary formulation part. High-order shape functions illustrates the different types of
polynomial shape functions in the scaled boundary finite element method. Some concluding remarks
are depicted in performance application.

2. Governing Equations

Base on the classical theory of linear elasticity, equilibrium equations, stress-strain relationship,
and strain-displacement for a two dimensional-linear problem can be expressed by

LTσ + b = 0 (1)

σ = Dε̄ (2)

ε̄ = Lu (3)

where u(x), ε̄(x),σ(x),b,D and L denoting, respectively, a vector containing displacement compo-
nents, a vector containing strain components, a vector containing stress components, a vector contain-
ing body components, a modulus matrix involving material constants, and a two-dimensional, linear
differential operator defined, by

L = L1
∂

∂x1
+ L2

∂

∂x2
; L1 =

1 0
0 0
0 1

 ; L2 =

0 0
0 1
1 0

 (4)

The traction t(x) can be related to the body force σ(x) and the outward unit normal vector n(x) by

t =
[

n1I n2I
]
σ (5)

where n1 and n2 are components of n(x).
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By applying the standard weighted residual technique to the law of conservation (1), then inte-
grating certain integral by parts via Gauss-divergence theorem, and finally employing the relations
(2) and (3), the weak-form equation in terms of the state variable is given by∫

Ω

(Lw)T D(Lu)dA =

∫
∂Ω

wT tdl +

∫
Ω

wT bdA (6)

where w is a component vector of test functions satisfying the integrability condition.∫
Ω

[
(Lw)T (Lw) + wT w

]
dA < ∞ (7)

3. Scaled Boundary Formulation

3.1. Formulation

Let introduce the scaled boundary finite element approximation of the displacement field u and
the weight function w can be approximated by

uh = uh(ξ, s) = NS Uh; wh = wh(ξ, s) = NS Wh (8)

where NS is a matrix containing all basis functions used for approximating the solution, Uh is a vector
containing all unknown nodal functions, and Wh is a vector containing all arbitrary nodal functions.

Figure 1. Schematic of a generic body Ω and its approximation Ωh

By applying the above approximations to the weak-form equation (6) for a generic two-dimensional
in the ξ − s plane and the approximate body is denoted Ωh as shown in Fig. 1. In particular, the ap-
proximate outer boundary ∂Ωh

1, the approximate inner boundary ∂Ωh
2, the side-face-1 ∂Ωs

1 and the
side-face-2 ∂Ωs

2 are full described by ξ1 ≤ ξ ≤ ξ2, s1 ≤ s ≤ s2. Then performing the integration by
parts of certain integral via Gauss-divergence theorem, and finally exploiting arbitrariness of Wh, it
leads to the scaled boundary finite element equations:

ξ2E0Uh
,ξξ + ξ(E0 + ET

1 − E1)Uh
,ξ − E2Uh + ξFt + ξ2Fb = 0, ∀ξ ∈ (ξ1, ξ2) (9)

Qh(ξ1) = −P1 (10)
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Qh(ξ2) = P2 (11)

where Qh(ξ) = ξE0Uh
,ξ + ET

1 Uh and all involved matrices are given by

E0 =

s2∫
s1

BT
1 DB1Jds; E1 =

s2∫
s1

BT
2 DB1Jds; E2 =

s2∫
s1

BT
2 DB2Jds (12)

P1 =

so∫
si

(NS )
T t1ξ1Jsds; P2 =

so∫
si

(NS )
T t2ξ2Js(s)ds; Js =

√
(dx̂1/ds)2 + (dx̂2/ds)2 (13)

Fb =

s2∫
s1

(NS )
T bJds; Ft = Ft

1 + Ft
2; Ft

1 = (NS
1 )T ts

1Jξ1; Ft
2 = (NS

2 )T ts
2Jξ2 (14)

with B1 = bh
1NS , B2 = bh

2BS , BS = dNS /ds, t1, t2, ts
1, ts

2 denoting the surface fluxes on the boundaries

∂Ω1, ∂Ω2, ∂Ωs
1, ∂Ωs

2 shown in Fig. 1, Jξ1 = Jξ(s1), Jξ2 = Jξ(s2), and Jξ(s) =

√
x̂2

1 + x̂2
2. The vector

Uh is first partitioned and rearranged into known and unknown parts as Uh = {Uhu Uhc}
T

where Uhu

contains only unknown functions and Uhc contains the remaining known functions associated with the
prescribed state variable on the side face. Consistent with the partition of the vector Uh, the vectors
Ft, Fb, P1, P2 and Qh can also be partitioned into Ft = {Ftu Ftc

}
T ,Ft = {Ftu Ftc

}
T , P1 = {Pu

1 Pc
1}

T ,

P2 = {Pu
2 Pc

2}
T and Qh = {Qhu Qhc}

T
. From this partition, the original system (9) can be reduced

to [10]

ξ2Euu
0 Uhu

,ξξ + ξ
[
Euu

0 + (Euu
1 )T
− Euu

1

]
Uhu
,ξ − Euu

2 Uhu = −ξFtu − ξ2Fbu − Fsuu∀ξ ∈ (ξ1, ξ2) (15)

Qhu(ξ1) = −Pu
1 (16)

Qhu(ξ2) = Pu
2 (17)

where Uhu
,ξ , Uhu

,ξξ the first, the second derivative of unknown function; Fsuu is the known vector obtained
from the prescribed state variable on the side face and Euu

0 , Euu
1 and Euu

2 result directly from the
partition.

3.2. Solution methodology

The general solution can be separated in two parts, a homogenous solution, and a particular solu-
tion. The homogenous solution of a system of linear, second order, differential equations is determined
by solving the eigenvalue problem resulting adopting the standard theory of differential equations with
constant coefficients. In contract, the particular solution is determined by adopting the technique of
undetermined coefficients which depends on the form of applied traction on free surface. Firstly, a
homogeneous solution of the system of linear, second-order, Euler-Cauchy differential equations (15),
denoted by Uhu

0 , can readily be obtained in a form

Uhu
0 (ξ) =

2mΛ∑
i=1

ciξ
λiψu

i (18)
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where m is the number of unknown functions contained in Uhu
0 , λi is termed the modal scaling factor,

ψu
i is a vector representing the ith mode of the state variable, and ci are arbitrary constants denoting

the contribution of each mode to the solution. The nodal scaling factor λi and the corresponding ψu
i

can be obtained by solving a system of linear algebraic equations

AXi = λiXi (19)

where Xi =
{
ψu

i qu
i

}T
,qu

i =

{
λiEuu

0 +
(
Euu

1

)T
}
ψu

i , and the matrix A is given by

A =

[
−(Euu

0 )−1(Euu
1 )T (Euu

0 )−1

Euu
2 − Euu

1 (Euu
0 )−1(Euu

1 )T Euu
1 (Euu

0 )−1

]
(20)

All eigen-pairs {λi,Xi} can be obtained by a selected efficient numerical technique. Let λ+ and
λ− be diagonal matrices containing eigenvalues with the positive and negative real parts, respectively.
Also, let Φψ+ and Φq+ be matrices whose columns containing, respectively, all vectors ψu

i and qu
i

obtained from the eigenvectors Xi =
{
ψu

i qu
i

}T
associated with all eigenvalues contained in λ+ and

let Φψ− and Φq− be matrices whose columns containing, respectively, all vectors ψu
i and qu

i obtained

from the eigenvectors Xi =
{
ψu

i qu
i

}T
associated with all eigenvalues contained in λ−. Now, the ho-

mogeneous solutions Uhu
0 and Qhu

0 are given by

Uhu
0 (ξ) = Φψ+Π+(ξ)C+ +Φψ−Π−(ξ)C−; Qhu

0 (ξ) = Φq+Π+(ξ)C+ +Φq−Π−(ξ)C− (21)

where Π+ and Π−are diagonal matrices obtained by replacing the diagonal entries λi of the matrices
λ+ and λ− by the a function ξλi , respectively; and C+ and C− are vectors containing arbitrary constants
representing the contribution of each mode.

A particular solution of (15), denoted by Uhu
1 , associated with the distributed body source, the

surface flux on the side face and the prescribed state variable on the side face can also be obtained
from a standard procedure in the theory of differential equations such as the method of undetermined
coefficient. Once the particular solution Uhu

1 is obtained [10], the corresponding particular nodal
internal flux Qhu

1 can be calculated. Finally, the general solution of (18) and the corresponding nodal
internal flux are then given by

Uhu(ξ) = Uhu
0 (ξ) + Uhu

1 (ξ) = Φψ+Π+(ξ)C+ +Φψ−Π−(ξ)C− + Uhu
1 (ξ) (22)

Qhu(ξ) = Qhu
0 (ξ) + Qhu

1 (ξ) = Φq+Π+(ξ)C+ +Φq−Π−(ξ)C− + Qhu
1 (ξ) (23)

To determine the constants contained in C+ and C−, the boundary conditions on both inner and
outer boundaries are enforced. By enforcing the conditions (16)–(17), it gives rise to{

C+

C−
}

=

[
Φq+Π+(ξ1) Φq−Π−(ξ1)
Φq+Π+(ξ2) Φq−Π−(ξ2)

]−1 { −Pu
1

Pu
2

}
−

 Qhu
1 (ξ1)

Qhu
1 (ξ2)


 (24)

From (24), it can readily be obtained and substituting (22) into its yields

K
{

Uhu(ξ1)
Uhu(ξ2)

}
=

{
−Pu

1
Pu

2

}
+ K

{
Uhu

1 (ξ1)
Uhu

1 (ξ2)

}
−

{
Qhu

1 (ξ1)
Qhu

1 (ξ2)

}
(25)
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where the coefficient matrix K, commonly termed the stiffness matrix, is given by

K =

[
Φq+Π+(ξ1) Φq−Π−(ξ1)
Φq+Π+(ξ2) Φq−Π−(ξ2)

] [
Φψ+Π+(ξ1) Φψ−Π−(ξ1)
Φψ+Π+(ξ2) Φψ−Π−(ξ2)

]−1

(26)

By applying the prescribed surface flux and the state variable on both inner and outer boundaries, a
system of linear algebraic equations (15) is sufficient for determining all involved unknowns. Once
the unknowns on both the inner and outer boundaries are solved, the approximate field quantities such
as the state variable and the surface flux within the body can readily be post-processed.

3.3. Higher-Order Shape Functions

(a) 2-noded element (b) 3-noded element (c) 3-noded element

Figure 2. Shape functions

The scaled boundary finite element method has employed Lagrange shape functions with nodes
equally spaced in the local element coordinate system. Shape functions are used to describe the do-
main geometry and to describe the solution in the boundary direction within each element. A shape
function has unit value at the node and 0 at all other nodes in an element and shown in Fig. 2. Each
element has ranging from −1 to +1 at local coordinates. For the 2-noded linear element, the shape
functions are given explicitly as

N1(s) =
1
2

(1 − s)

N2(s) =
1
2

(1 + s)
(27)
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For the 3-noded quadratics element, the shape functions can be expressed simply as

N1(s) = −
1
2

s(1 − s)

N2(s) = (1 + s)(1 − s)

N3(s) =
1
2

s(1 + s)

(28)

In the general case, a one-dimensional Lagrange element of order will have p + 1 nodes and p + 1
shape function can be formulated as

Ni(s) =

p∏
j=0
j,i

s − si

si − si
, i = 0, ..., p (29)

4. Performance Application

Some numerical examples to verify the proposed technique. and demonstrate its performance and
capabilities. The linear elasticity is considered to demonstrate its capability to treat general boundary
conditions. The flexibility of the scaling center also investigates. A high order element is considered
with linear element and quadratic elements to discretize both defining curve and the trial and test
functions. The accuracy and convergence of numerical solutions are confirmed by benchmarking
with available solutions and carrying out via a series of meshes.

4.1. Linear Elastic Plate Under Uniform Load and Prescribed Displacement

The proposed technique is first tested with linear elastic plate. Consider a linear elastic plate
ABCD under uniform load and prescribed displacement as shown Fig. 3. The medium is made of a

Figure 3. Schematic of a linear elasticity plate under uniform load and prescribed displacement
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homogeneous, linearly elastic, isotropic material with Young’s modulus E and Poisson’s ratio ν, and
the modulus matrix D with non-zero entries D11 = (1 − ν)E/(1 + ν)(1 − 2ν), D44 = (1 − ν)E/(1 +

ν)(1 − 2ν), D14 = D41 = νE/(1 + ν)(1 − 2ν), D23 = E/2(1 + ν), D22 = E/2(1 + ν), D32 = E/2(1 + ν),
D33 = E/2(1 + ν). The uniform traction q0 is prescribed on side AD and the uniform displacement u0
is also described on side BC. To explore the flexibility of scaling center, in the geometry modelling,
two different locations of the scaling center, one at center the plate ABCD and the other at the corner
D plate are considered and shown in Figs. 4, 5. With the scaling center, the defining curve ABCD is
fully prescribed and the other case, defining curve ABC is also described. In the analysis, the Poisson’s

Figure 4. Defining curve corresponding to scaling center at the center of the plate (4 ELM)

Figure 5. Defining curve corresponding to scaling center at the corner point D (2 ELM)
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ratio ν = 0.3 and meshes with N identical linear elements are employed. The results of displacement
field and stress field at point M, are reported in Tables 1, 2 for different numbers of meshes. It is seen
that the level of accuracy resulting from the two choices of the scaling center is similar. In addition,
the numerical solutions converge to the exact solution with only few numbers of element. The present
method is also yields highly accurate displacement and stress components.

Table 1. Normalized non-displacement components u1/u0, u2/u0 at point M versus of elements (N)
and two locations of scaling center

AN
Scaling center at the center of plate

with meshes N
Scaling center at corner point D

with meshes N

4 8 16 2 4 8
u1

u0
0.500000 0.4999995 0.4999995 0.4999996 0.4999995 0.4999995 0.4999996

u2

u0
1.000000 0.9999948 0.9999962 0.9999975 0.9999962 0.9999962 0.9999975

Table 2. Normalized stress components σ11/q0, σ22/q0 at point M versus of elements (N)
and two locations of scaling center

AN
Scaling center at the center of plate

with meshes N
Scaling center at corner point D

with meshes N

4 8 16 2 4 8
σ11

q0
1.00000 0.9999986 0.9999994 0.9999997 0.9999986 0.9999994 0.9999997

σ22

q0
1.00000 0.9999998 0.9999999 0.9999999 0.9999998 0.9999999 0.9999999

4.2. Linear Elastic Plate Under Mixed Boundary Conditions

As the last example, the linear elastic plate under mixed boundary conditions is chosen to demon-
strate the capability of the solving problems with distributed body force and prescribed displacement
and traction on the boundary. In addition, the perspective linear and quadratic elements are performed
to explore the accuracy of the proposed method. Consider a plane-strain, plate ABCD made of a ho-
mogeneous, linearly elastic, isotropic material with Young’s modulus E and Poisson’s ratio v as shown
in Fig. 6. The matrix D for this particular problem is the same as the previous example. The constant
body force is subjected to the plate b1 = (2v − 2) b0, b2 = (2v − 2) b0 with b0 denoting a constant. The
boundary conditions are prescribed on the plate’s four sides as follows:

Side AB: t1 = b0 [(1 − v)2L1 + 2vx2] ; t2 = 0.
Side BC: t1 = 0; t2 = b0 [2vx1 + 2(1 − v)L2].
Side CD: u1 = 0; t2 = 0.
Side DA: t1 = 0; u2 = 0.
From a classical theory of linear elasticity, basing on the plane strain condition, the exact solutions

are given by:
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- Displacement field:

u1 =
(1 + v)(1 − 2v)

E
b0x1

1; u2 =
(1 + v)(1 − 2v)

E
b0x2

2

- Stress field:

σ11 = b0 [(1 − v) 2x1 + 2vx2] ; σ22 = b0 [2vx1 + (1 − v)2x2] ; σ12 = 0

Figure 6. Schematic of a linear elasticity plate under mixed boundary conditions

Figure 7. Scaling center and defining cure use in the scaled boundary finite element analysis
(4 linear elements case)
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Figure 8. Scaling center and defining cure use in the scaled boundary finite element analysis
(2 quadratic elements case)

In the geometry modelling, the scaling center is chosen at the corner of the plate (see Figs. 7, 8).
As the result, the boundaries DC and DA become the side faces. In the numerical method, the Pois-
son’s ratio ν = 0.3 and meshes with N identical linear elements and quadratic elements are em-
ployed. The normalized non-displacement components and normalized normal stress components at
point B are reported in Tables 3, 4. They are seen that use of quadratic elements in the discretiza-
tion yield higher rate convergence in comparison the linear elements. The normalized displacements
Eu1/b0L1; Eu2/b0L1 along the line DB are plotted in Fig. 9. It can be seen that the numerical tech-
nique convergences to the exact solution as the number of elements N increases and only few elements
is sufficient to obtain accurate displacement. The normalized normal stress σ11/b0L1, σ22/b0L1 along
the diagonal line DB are also reported in Figs. 10. Similar to the displacements, the stress components
are also obtained in the good behavior. It can be seen that the quadratic elements have clearly yield
higher rate convergence. This implies that converged resulting for specified tolerance can be obtained
with few quadratic elements.

Table 3. Normalized non-displacement components u1/uAN
1 , u2/uAN

1 at point B versus number of elements (N)
for both linear and quadratic elements

AN
SBFEM versus number of linear

elements (N)
SBFEM versus number of quadratic

elements (N)

4 8 16 2 4 8
u1

uAN
1

1.000000 0.985042 0.996970 0.999464 1.000000 1.000000 1.000000

u2

uAN
1

1.000000 0.985042 0.996970 0.999464 1.000000 1.000000 1.000000
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Table 4. Normalized normal stress components σ11/σ
AN
11
, σ22/σ

AN
22

at point B versus of elements (N)
for both linear and quadratic Elements

AN
SBFEM versus number of linear

elements (N)
SBFEM versus number of quadratic

elements (N)

4 8 16 2 4 8
σ11

σAN
11

1.000000 0.932285 0.967448 0.983845 1.000000 1.000000 1.000000

σ22

σAN
11

1.000000 0.832080 0.917423 0.959023 1.000000 1.000000 1.000000

(a) u1E/b0L1 (b) u2E/b0L1

Figure 9. Normalized non-displacement components along the diagonal line DB of the elasticity plate under
mixed boundary conditions

(a) σ11/b0L1 (b) σ22/b0L1

Figure 10. Normalized normal stress components along the diagonal line DB of the elasticity plate under
mixed boundary conditions

120



Chung, N. V., et al. / Journal of Science and Technology in Civil Engineering

5. Conclusions

The scaled boundary finite element equations have been successfully developed for analysis two-
dimensional linear problem. The formulation has been established to use high-order polynomial el-
ement to form the approximation in the circumferential direction. It is also established in a general
framework for treating mixed boundary conditions, the prescribed body force and contribution of the
side face. In addition, the position of the scaling center is explored the accuracy of prosed method.
Results from some numerical study have indicated that the resulting is similar for both the positions
of the scaling center. The quadratic elements show higher rate of convergence in comparison with the
linear elements.
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