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Abstract

The paper presents a series of modified direct shear tests to investigate the interface shear strength between
clay and nonwoven geotextile under different normal stresses and degrees of saturation. The modified direct
shear apparatus consists of a 60 mm × 60 mm square shear box assembly with a 60 mm × 60 mm acrylic block
inserted in the bottom shear box. A woven geotextile layer was glued to the top of the acrylic block, while the
top shear box was filled by the compacted clayey soil. The results revealed that the interface shear strength of
clay and nonwoven geotextile reduced by 13.4-27.7% when changing from optimum moisture content (OMC)
of the soil to saturation condition. The high permeability of nonwoven geotextile induced the dissipation of
excess pore water pressure at the interface when shearing. As a result, the adhesion factor of the clay-geotextile
interface increased from about 0.6 for the specimens at OMC to over 0.8 for consolidated saturated specimens.
In contrast, for the impermeable reinforcement, the interface shear strength analysis of previous studies shows
that the adhesion factor of the reinforcement and clayey soil would be reduced when increasing the water
content of the clay specimens.

Keywords: adhesion factor; clay; nonwoven geotextile, interface shear strength; saturation.
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1. Introduction

Recently, geosynthetics reinforced soil (GRS) structure was widely used in the interest of several
distinct advantages over the conventional retaining structures. Most of the current design guidelines
for GRS structures specify using the high permeable materials (such as sandy soil) as backfill mate-
rials within reinforced soil and preclude the use of clayey soil [1–4]. In Mekong Delta, most of the
sandy soil was excavated from riverbeds, of which the resource has been reduced over the years. As a
result, the sand is expensive and induced the high cost of GRS structures.

To reduce the construction cost and minimize the transportation cost and environmentally im-
pacted associated with the riverbed sandy soil excavation, locally available clayey soil has been used
as the alternative backfills. The main concern with using clay as backfill is the rise of pore water
pressure in the low permeable soil and weaken the soil strength after rainfalls. Especially, for the mud
generated from dredging work using hydraulic pumping method, the low permeability characteristic
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of the soil induces a long period to solidify, which might cause severe environmental and ecological
issues in its surrounding area [5]. However, several previous studies illustrated that those problems
could be appropriately alleviated by adopting suitable construction techniques and drainage systems
[6, 7].

The permeable geosynthetics exhibited the potential of improving the shear strength of clayey
soils. Under consolidated undrained triaxial compression, the permeable geosynthetics layer induced
the increment in both shear strength and excess pore water pressure in the reinforced clay due to the
lateral restraint of reinforcement layers [8, 9].

Besides, several studies focused on investigating the interface shear strength of soil and geosyn-
thetics under both unsaturated [10–13] and saturated conditions [11, 14]. The interface friction angle
between compacted clay liner and smooth geomembrane was about 6.5-10.50 for both dry and wet
conditions [15]. For bentonite, the increment in the water content of the bentonite specimens induced
reducing in the interface friction angle but increasing in adhesion of the two materials [16]. Similarly,
the interface shear strength of clay with different plasticity index and some types of geotextile and
geogrid also significantly reduced when increasing the water content of the soil [17].

The interface shear behaviors of saturated clay specimens under the undrained condition have
been investigated previously. The undrained shearing condition was suggested when the shearing rate
reached 0.9-2mm/min [10, 12, 16]. The adhesion factor is defined as the ratio of the interface shear
strength and the shear strength of the soil under the same soil density, water content, and normal stress
condition. Due to the higher permeability and transmissivity, the adhesion factor of clay-nonwoven
fabric could be higher than that of clay-woven fabric under the undrained direct shear test [10]. The
investigation of clay-geosynthetics interface behavior revealed that the reinforcement efficiency (i.e.,
adhesion factor) of cohesive soils was markedly affected by the molding moisture contents. The in-
crease in molding moisture content can significantly reduce the reinforcement efficiency due to the
reduction of the soils’ suction with the increase in moisture content and the possible development
of excess pore water pressure in relatively saturated clays, which reduces the effective stresses and
the shear resistance [17]. The same interface shear behavior was observed in Polyethylene geosyn-
thetics–clay interface under near-undrained shearing condition [16]. Nevertheless, the variation of the
adhesion factor of nonwoven geotextile and clay when changing from OMC to the undrained satura-
tion condition has been rarely reported in the previous studies.

Based on the above discussions, the paper proposed the investigation of interface shear strength
behavior of clay and nonwoven geotextile under both OMC and saturated conditions. The specimens
were compacted, saturated, and consolidated before shearing using a modified 60 × 60 mm square
shear box. The shearing rate was set at 1 mm/min, in which the undrained condition could be relatively
achieved. The experimental results would illustrate the influence of the saturation process on the
interface shear strength behavior of clay and nonwoven geotextile. The study also analyzed the role
of permeable geosynthetics on improving the adhesion factor of clay and reinforcements under the
undrained condition.

2. Experimental program

2.1. Clay

Clayey soil was excavated from Cai Lon river, Kien Giang province. It is classified as high plas-
ticity inorganic clay (MH) by the Unified Soil Classification System with a specific gravity (Gs) of
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2.75. The liquid limit (LL), plastic limit (PL), and plasticity index (PI) are 91.5, 44.9, and 46.6, re-
spectively. The standard proctor compaction test [17] shows that the optimum moisture content and
maximum dry unit weight are 24.5% and 15.02 kN/m3, respectively (Fig. 1).
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Figure 1. Proctor compaction test of the clay using standard compaction energy

2.2. Geotextile

A commercially available polyethylene terephthalate nonwoven geotextile was used. The tensile
test results indicate that the geotextile is an anisotropic tensile material, in which the tensile strength
in the longitudinal direction (i.e., stronger direction) was higher than that in the transverse direction
(Table 1). The geotextile is high permeability material with cross-plane permeability, k = 3.6 ×
10−3 m/sec.

Table 1. Properties of the nonwoven geotextile

Properties Value

Mass (g/m2) 200
Thickness, (mm) 1.45
Longitudinal ultimate tensile strength (kN/m) 9.28
Transverse ultimate tensile strength (kN/m) 7.08
Longitudinal tensile strain at failure, (%) 84.1
Transverse tensile strain at failure, (%) 117.8
Cross-plane permeability, k (m/sec) 3.6 × 10−3

2.3. Specimen preparation

The soft clay was dried was placed in an oven at 600 °C for a minimum of 24h and then crushed
and grounded into dry powder in a mortar. The dry soil was then mixed with an amount of water
corresponding to the optimum moisture content, OMC = 24.5%. It was placed in a resealable plastic
bag within a temperature-controlled chamber, and sealed for a minimum of 2 days to ensure a uniform
distribution of moisture within the soil mass. The soil preparation for the test was similar to that for
the standard compaction test suggested by ASTM D698 [18].

A series of direct shear tests and interface direct shear tests were performed on unreinforced clay
under OMC (i.e., dry condition) and saturation (i.e., wet condition) using 60 mm × 60 mm × 20 mm
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(i.e., width, length, and thickness, respectively) shear box (Fig. 2(a)). In order to prepare unreinforced
specimens, the clay was compacted in the shear box using a tamper to reach the target dry unit weight
γd−max = 15.02 kN/m3.

The interface shear behavior was determined using the modified shear box, of which an acrylic
block filled the lower shear box with a geotextile layer glue on the top (Fig. 2(b)). The layer was also
fixed to the lower shear box by screws, of which the longitudinal direction was placed along the shear
direction. Its length was longer than the length of the upper shear box by 1 cm to avoid the changes
in the interface shear area when shearing (Fig. 2(c)). The soil conditions were prepared similarly to
that of unreinforced clay, in which the dry unit weight was 15.02 kN/m3 at either OMC or saturation
condition. The presented testing method was similar to that proposed in previous studies [11, 12, 14].
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Figure 2. Photos of the shear box

It should be noted that the dimension of the proposed shear box (i.e., 60 mm × 60 mm) was
smaller than that recommended determining the interface shear strength by direct shear, in which the
sides of the square or rectangular shear device should be at least 300 mm [19]. The smaller size of
the shear box can result in a higher shear strength than from a 300 mm shear box in peak condition
while giving nearly the same residual strength [20–23]. Nevertheless, the smaller shear boxes (i.e.,
60 mm × 60 mm) have been used to obtain valuable information on interface behavior [14, 24, 25].
Therefore, it was assumed in the current study that any increases in soil strength due to the smaller
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shear area were the same for all specimens under the same normal stress and water content condition.
The adhesion ratio herein thus would be a little higher than that obtained using a bigger shear box.

2.4. Test procedure

A total of 8 direct shear tests and eight interface direct shear tests were performed for both unsat-
urated and saturated specimens under four normal stresses, 50 kPa, 100 kPa, 200 kPa and 400 kPa.
For unsaturated specimens, the shear test was performed after preparing the compacted specimens.
For saturated specimens, they were soaked in de-air water for 24h, applied normal stress for another
24h to complete the consolidation process. Both saturation and consolidation process of specimens
were adopted to ASTM D5321 [19]. For both direct shear tests and interface shear tests, the shear
rate was set at 1 mm/min to ensure the close-undrained condition, which was also adopted in previous
studies [10, 12]. The test was ended when the shear displacement reached 13 mm, which was the
limitation of the testing apparatus. The repeatability and consistency of the test results were examined
by conducting a few tests on the specimens under the same conditions.

3. Results

3.1. Shear strength behavior of clay

Fig. 3 presents the shear strength behaviors of clay under different normal stress and water con-
tent. For the clay at its optimum moisture content, its peak shear strength reached when the shearJournal of Science and Technology in Civil Engineering, NUCE 2018    
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Figure 3. Shear strength behavior of compacted clay under different normal stresses
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displacement was about 2-3 mm (Fig. 3(a)). The higher the normal stress, the higher the shear stress
was obtained. On the other hand, after fully consolidated in the saturated condition, the shear strength
of the clay was reduced, and the shear displacement at failure was much higher (i.e., over 6 mm) than
that of clay at its OMC. The similar shear behaviors of clay were also observed when changing water
content of the soil [26].

The failure envelopes of the compacted clay under OMC and consolidation in the saturated con-
dition were shown in Fig. 4. Compared to the shear strength of clay at OMC, both friction angle
and cohesion of the compacted clay after consolidated were reduced significantly. In particular, the
friction angle and cohesion were reduced from 27.80 to 4.70 and 96.0 kPa to 62.6 kPa, respectively
(Table 2). After saturation, the clay specimens exhibited the near-undrained shear strength (i.e., very
low friction angle) under 1 mm/min of shearing rate. The shear strength reduction of the compacted
clay was caused by the loss of suction of the soils with the increase in moisture content and the possi-
ble development of excess pore water pressure in saturated clays, which reduces the effective stresses
and the shear resistance [16].
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Table 2. Shear strength and interface shear strength results of the compacted clay
and the clay-geotextile interface

Water content Materials Cohesion (kPa) Friction angle (degree)

OMC Clay 96.0 27.8
Clay-geotextile interface 41.9 23.1

Consolidation in the saturated condition Clay 62.6 4.7
Clay-geotextile interface 24.0 21.5

3.2. Interface shear strength behavior of clay and nonwoven geotextile

Fig. 5 presents the interface shear strength behavior of clay and nonwoven geotextile. At opti-
mum moisture content, the hardening stress-deformation behavior was observed in the interface shear
strength behavior of the clay and geotextile, in which no definite peak was noticed on the stress-
deformation curve (Fig. 5(a)). Therefore, 12.7 mm of shear displacement was considered the defor-
mation at failure [19].

On the other hand, when the clay and geotextile specimens were consolidated in the saturated
condition, the shear stress-deformation behavior was more brittle. The peak interface shear strength
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was observed when the shear displacement was about 3-6 mm (Fig. 5(b)). The brittle interface shear
failure of saturated clay and geotextile was also reported in previous studies, which might be due to
the penetration of clay particles into the nonwoven geotextile layer during the consolidation process
[11–13].
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Figure 5. Interface shear strength behavior under different normal stresses

Fig. 6 shows the failure envelopes of interface shear strength of compacted clay and geotextile, in
which the interface shear strength was chosen as the shear stress at 12.7 mm of shear displacement and
the peak value for the clay specimens at optimum moisture content and consolidation in the saturated
condition, respectively. Similar to the shear strength of compacted clay, the interface shear strength
reduced significantly due to the consolidated process in saturation condition. However, unlike the
shear strength behavior of compacted clay, while the interface cohesion was reduced remarkably from
41.9 kPa to 24.0 kPa, the interface friction angle was only slightly decreased after the consolidation
process (Table 2).

Besides, the shear strength of the compacted clay was higher than the interface shear strength of
the clay-geotextile at both optimum moisture content and consolidation in the saturated condition.
This behavior was in agreement with the results reported in the previous studies [14, 16].
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3.3. Interface shear strength reduction due to saturation

As mentioned previously, the consolidation process in the saturated condition significantly re-
duced the shear strength of the clay and the clay-geotextile interface. In order to quantify the loss of
shear strength and interface shear strength after saturation, the reduction in shear strength and inter-
face shear strength were evaluated for the clay and the clay-geotextile interface, respectively. For the
unreinforced clay specimens, the shear strength reduction was evaluated as:

∆τ f _s = τOMC
f _s − τ

sat
f _s (1)

in which τOMC
f _s and τsat

f _s are the shear strength of the clay specimens at OMC and consolidation in the
saturated condition, respectively.

Similarly, the interface shear strength reduction ∆τ f _gs was the difference of the clay-geotextile
interface shear strength at OMC, τOMC

f _gs and that after consolidation in the saturated condition τsat
f _gs.

∆τ f _gs = τOMC
f _gs − τ

sat
f _gs (2)

In addition, the shear strength reductions of the clay and the clay-geotextile interface were also
calculated in percentage. The percent shear strength reduction of the clay %∆τ f _s was evaluated as:

%∆τ f _s =

1 − τsat
f _s

τOMC
f _s

 × 100% (3)

The percent interface shear strength reduction %∆τ f _gs would be estimated for the clay-geotextile
interface, accordingly:

%∆τ f _gs =

1 − τsat
f _gs

τOMC
f _gs

 × 100% (4)

Fig. 7 illustrates the variation of the shear strength reduction ∆τ f _s and the interface shear strength
reduction ∆τ f _gs with normal stress. The results show that the ∆τ f _s of the compacted clay due to
saturation was about 50-108 kPa. The higher the normal stress, the higher the shear strength reduction
would be. However, the value of ∆τ f _gs was only about 12-30 kPa, which was less than one fourth to
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one third of the value of ∆τ f _s under the same normal stress (Table 3). It was apparently due to the
high permeability and transmitivity of the nonwoven geotextile. After saturation, the interface shear
would induce the development of excess porewater pressure, which would be dissipated to the high
permeable nonwoven geotextile layer. This phenomenon would improve the interface clay-geotextile
shear strength. In other words, the nonwoven geotextile was minimized the interface shear strength
reduction due to the saturation process of clay specimens.
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Table 3. Shear strength difference and percent shear strength reduction of the clay
and clay-geotextile interface due to saturation

Normal stress, σn (kPa) ∆τ f _s (kPa) %∆τ f _s (%) ∆τ f _gs (kPa) %∆τ f _gs (%)

50 50 44.5 12 25.7
100 64 44.6 25 27.7
200 99 46.9 30 22.2
400 108 37.5 26 13.4

The influence of normal stress in the shear strength behaviors of clay and the interface shear
strength of the clay-geotextile interface was different. As shown in Fig. 4, the shear strength of clay at
OMC increased significantly with normal stress increment. Meanwhile, the shear strength of saturated
clay increased marginally when the normal stress raised from 50 kPa to 400 kPa. As a result, the shear
strength reduction of clay after saturation ∆τ f _s was increased consistently with the normal stress
increment (Fig. 7). It was suggested that the more shear strength loss of clay due to saturation would
be observed, especially under high normal stress.

On the other hand, the reduction in the interface shear strength of the clay-geotextile interface was
increased for the lower normal stress (i.e., σn = 50-100 kPa) and changed marginally for the higher
normal stress (i.e., σn = 100-400 kPa). For lower normal stress σn = 50 kPa, the geotextile-saturated
clay interaction was practically drained (friction-like [10]), which induced the high interface shear
strength and low interface shear strength reduction after saturated. Under the higher normal stress,
the excess porewater pressure would develop in the saturated clay, which decreased the interface
shear strength and increased the interface shear strength reduction. As explained previously, the ex-
cess porewater pressure would be able to dissipate through the high permeability and transmitivity
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geotextile layer, which induced the partly drained behavior of geotextile – saturated clay interaction
[10]. That explained the observation of slight changes in the interface friction angle of geotextile-clay
when changing from OMC to saturated condition. As shown in Fig. 6, the failure envelopes of in-
terface shear strength of clay-geotextile at OMC and at saturation were approximately parallel for a
range of normal stress from 100 kPa to 400 kPa. Thus, changes of σn did not induce any significant
changes in the interface shear strength reduction ∆τ f _gs (Table 3).

The percent reduction of the shear strength and the interface shear strength of specimens under
different normal stress were given in Table 3. The results revealed that the interface shear strength
of clay-geotextile decreased by 13.4-27.7% after completed consolidation in the saturated condition,
whereas the shear strength reduction of the compacted clay due to saturation was much higher, about
37.5- 46.9%. The high percent shear strength reduction due to saturation of clay was also reported in
previous studies. The wetting effect would reduce the friction and the cohesion among soil particles
resulting in the shear strength reduction [27, 28].

3.4. Adhesion factor of the interface of clay and nonwoven geotextile

The adhesion factor, also known as contact efficiency, is the factor that exhibited the soil-
reinforcement interaction [10]. It is a fundamental factor to design the geosynthetics reinforced soil
structures [29–31]. The adhesion factor was the ratio of the interface shear strength over the soil’s
shear strength under the same normal stress and soil condition.

R f =
τ f _gs

τ f _s
(5)

Fig. 8 illustrates the adhesion factor results of the clay-geotextile interface at OMC and after
consolidated in the saturated condition. In general, the clay-geotextile adhesion factor increased with
the increment of normal stress. For the clay specimens at OMC under σn = 50 kPa, the value of R f

was relatively small, R f = 0.42. Under the higher normal stress σn = 100-400 kPa, the adhesion factor
was as high as 0.63-0.68. The obtained results agreed with the range value of the adhesion factor of
clay and nonwoven geotextile R f = 0.64-0.78 reported previously [17]. The slight difference in R f

might be due to the difference in materials (i.e., soil and geosynthetics) and the size of the shearing
box. After consolidating in the saturated condition, the clay-geotextile adhesion factor was higher, R f

= 0.83-0.94 under 100-400 kPa of normal stress (Fig. 8). Those results were contrasted to the shear
strength reduction of the clay-geotextile interface due to saturation discussed previously. In the clay
after compaction at OMC with the degree of saturation S r = 84.6%, the negative porewater pressure
appeared and created the suction in the unsaturated clay. The higher suction, the higher shear strength
was obtained. When applying the normal stress, the excess porewater pressure would not occur in the
soil with S r < 90% [32, 33], the suction would maintain in the unsaturated clay, which induced the
high shear strength of clay at OMC. Compared to the unsaturated clay-geotextile interface, the suction
caused by the negative porewater pressure might diminish at the interface due to the high permeability
of nonwoven geotextile, which decreased the interface shear strength. Thus, the adhesion factor (i.e.,
the ratio of τ f _gs and τ f _s) was small.

In contrast, under normal stress, the excess pore water pressure developing in the saturated clay
specimens and reduced the shear strength. During the shearing process between the saturated clay
and geotextile interface, the excess porewater pressure would be dissipated to the high permeability
geotextile layer, which maintained the high interface shear strength. As a result, the adhesion factor of
clay-geotextile specimens at the saturated condition could be higher than that at the OMC condition.
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Figure 8. The adhesion factor of clay-geotextile under different normal stresses

The observation was in agreement with the obtained results after reanalyzing the previous exper-
imental results of the clay-geotextile interface. The clay specimens with the plasticity index, PI = 25
was compacted at different water content and examinated to evaluate the interface shear strength with
geotextile and polypropylene geogrid [17]. As shown in Fig. 9(a), when increasing the water content
of the clay from 11% to 20%, the adhesion factor of the clay-geotextile was also increased from less
than 0.67 to over 0.73 for the ranger of normal stress from 25 kPa to 75 kPa. However, the contra-
dicted behavior of the adhesion factor was found in that clay and polypropylene geogrid interface.
The increment of water content induced a decrease in the value of R f , which was independent on
the value of normal stress (Fig. 9(b)). The porewater pressure measurement at the unsaturated clay -
HDPE geomembrane interface showed that the negative porewater pressure and suction were found
and maintained at the interface due to the impermeable HDPE geomembrane [11]. When increasing
the water content, the clay was about to saturate. Like the HDPE geomembrane, polypropylene ge-
ogrid was a low-permeable material, unable to dissipate the excess porewater pressure developing in
the clay - polypropylene geogrid interface during shearing. The higher excess in porewater pressure
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bentonite mixture and geomembrane interface, in which the adhesion factor was smaller 335 
for the higher water content specimens [11]. The adhesion factor analysis illustrates the 336 
advantages of permeable geosynthetics on improving the saturated clay-reinforcement 337 
interaction.   338 

 339 
Figure 9. The variation of adhesion factor, fR  with water content under 25kPa, 50kPa, 340 
and 75kPa of normal stress (reanalyzed from experimental results [17]) 341 

4. Conclusion 342 

In this study, a series of modified interface direct shear test was performed to 343 
investigate the interface shear strength behavior of clay-nonwoven geotextile under 344 
different normal stresses and degrees of saturation. The shearing rate was set at 345 
1mm/min to develop the near-undrained condition during tests. The obtained results 346 
illustrated the advantages of high permeable nonwoven geotextile on maintaining the 347 
high adhesion factor at OMC and after saturation. The following conclusions were 348 
drawn from this study.  349 
� When changing from OMC to consolidation in a saturated condition, both friction 350 

angle and cohesion of the compacted clay were significantly reduced. The percent 351 
reduction in shear strength of the compacted clay due to saturation was 37.5-352 
46.9%. The failure pattern of the clay specimens was transferred from brittle 353 
failure at OMC to more ductile failure at saturation.  354 

� The interface shear strength reduction due to saturation was about 13.4-27.7%. In 355 
particular, there was a slight decrement in interface friction angle (about 1.60) 356 
while the interface cohesion remarkably reduced from 41.9kPa to 24.0kPa.  357 

� Under 100-400 kPa of normal stress, the adhesion factor of clay-geotextile at OMC 358 
was about 0.64-0.68. This factor increased to 0.83-0.94 after consolidation in a 359 

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 12 14 16 18 20

A
dh

es
io

n 
fa

ct
or

, R
f

Water content (%)
(a) Clay-nonwoven geotextile

25

50

75

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 12 14 16 18 20

A
dh

es
io

n 
fa

ct
or

, R
f

Water content (%)
(b) Clay- polypropylene geogrid

25

50

75

(a) Clay-nonwoven geotextile

Journal of Science and Technology in Civil Engineering, NUCE 2018    

p-ISSN 1859-2996 ; e-ISSN 2734 9268 

15 

 

bentonite mixture and geomembrane interface, in which the adhesion factor was smaller 335 
for the higher water content specimens [11]. The adhesion factor analysis illustrates the 336 
advantages of permeable geosynthetics on improving the saturated clay-reinforcement 337 
interaction.   338 

 339 
Figure 9. The variation of adhesion factor, fR  with water content under 25kPa, 50kPa, 340 
and 75kPa of normal stress (reanalyzed from experimental results [17]) 341 

4. Conclusion 342 

In this study, a series of modified interface direct shear test was performed to 343 
investigate the interface shear strength behavior of clay-nonwoven geotextile under 344 
different normal stresses and degrees of saturation. The shearing rate was set at 345 
1mm/min to develop the near-undrained condition during tests. The obtained results 346 
illustrated the advantages of high permeable nonwoven geotextile on maintaining the 347 
high adhesion factor at OMC and after saturation. The following conclusions were 348 
drawn from this study.  349 
� When changing from OMC to consolidation in a saturated condition, both friction 350 

angle and cohesion of the compacted clay were significantly reduced. The percent 351 
reduction in shear strength of the compacted clay due to saturation was 37.5-352 
46.9%. The failure pattern of the clay specimens was transferred from brittle 353 
failure at OMC to more ductile failure at saturation.  354 

� The interface shear strength reduction due to saturation was about 13.4-27.7%. In 355 
particular, there was a slight decrement in interface friction angle (about 1.60) 356 
while the interface cohesion remarkably reduced from 41.9kPa to 24.0kPa.  357 

� Under 100-400 kPa of normal stress, the adhesion factor of clay-geotextile at OMC 358 
was about 0.64-0.68. This factor increased to 0.83-0.94 after consolidation in a 359 

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 12 14 16 18 20

A
dh

es
io

n 
fa

ct
or

, R
f

Water content (%)
(a) Clay-nonwoven geotextile

25

50

75

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 12 14 16 18 20

A
dh

es
io

n 
fa

ct
or

, R
f

Water content (%)
(b) Clay- polypropylene geogrid

25

50

75

(b) Clay-polypropylene geogrid

Figure 9. The variation of adhesion factor, R f with water content under 25 kPa, 50 kPa, and 75 kPa
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caused the lower interface shear strength. Thus, the adhesion factor of the clay and low permeability
geosynthetics would be decreased when increasing the water content of the clay specimens. A simi-
lar observation was reported in the sand-bentonite mixture and geomembrane interface, in which the
adhesion factor was smaller for the higher water content specimens [11]. The adhesion factor analysis
illustrates the advantages of permeable geosynthetics on improving the saturated clay-reinforcement
interaction.

4. Conclusions

In this study, a series of modified interface direct shear test was performed to investigate the
interface shear strength behavior of clay-nonwoven geotextile under different normal stresses and
degrees of saturation. The shearing rate was set at 1 mm/min to develop the near-undrained condition
during tests. The obtained results illustrated the advantages of high permeable nonwoven geotextile
on maintaining the high adhesion factor at OMC and after saturation. The following conclusions were
drawn from this study.

- When changing from OMC to consolidation in a saturated condition, both friction angle and
cohesion of the compacted clay were significantly reduced. The percent reduction in shear strength of
the compacted clay due to saturation was 37.5-46.9%. The failure pattern of the clay specimens was
transferred from brittle failure at OMC to more ductile failure at saturation.

- The interface shear strength reduction due to saturation was about 13.4-27.7%. In particular,
there was a slight decrement in interface friction angle (about 1.60) while the interface cohesion
remarkably reduced from 41.9 kPa to 24.0 kPa.

- Under 100-400 kPa of normal stress, the adhesion factor of clay-geotextile at OMC was about
0.64-0.68. This factor increased to 0.83-0.94 after consolidation in a saturated condition. This incre-
ment would be due to the high permeability of geotextile, which dissipated the excessive porewater
pressure in the clay-geotextile interface when shearing. For the impermeable geosynthetics-clay in-
terface behavior, the increment of the water content of the clay caused the decrement in the adhesion
factor.

This study promoted high permeability nonwoven geotextile advantages on maintaining high clay-
reinforcement interface shear strength after saturation.
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