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Abstract

Paragliding is an adventure and fascinating sport of flying paragliders. Paragliders can be launched by running
from a slope or by a winch force from towing vehicles, using gravity forces as the motor for the motion of
flying. This motion is governed by the gravity forces as well as time-varying aerodynamic ones which depend
on the states of the motion of paraglider at each instant of time. There are few published articles considering
mechanical problems of paragliders in their various flying situations. This article represents the mathematical
modeling and simulation of several common flying situations of a paraglider through establishing and solving
the governing differential equations in state-space. Those flying situations include the ones with constant head-
wind/tailwind with or without constant upwind; the ones with different scenario for the variations of headwind
and tailwind combined with the upwind; the ones with varying pilot mass; and the ones whose several parame-
ters are in the form of interval quantities. The simulations were conducted using a powerful Julia toolkit called
DifferentialEquations.jl. The obtained results in each situation are discussed, and some recommendations are
presented.

Keywords: paraglider; simulation; modeling; state-space; ordinary differential equations; Julia; DifferentialE-
quations.jl.
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1. Introduction

Recently, many adventurous sports, including paragliding, have been brought to Vietnam, attract-
ing a large number of participants. Paragliding is originally a non-motor flying sport, taking off by
foot launch from a slope or by winch force from a towing vehicle. The pilot sits on a chair which is
durably sewn with fabric and sturdy straps, under a wing (also called canopy) that is blown up by the
air to remain aerodynamic shape and lift the paraglider up [1, 2].

There are few studies on paragliding modeling published recently. In 2008, Zaitsev and Formalskii
[3] published an article on mathematical modeling and controlling a remotely controlled paraglider
through an attached engine. The total velocity of the center of gravity (representing point), the angle
of glide and the angle of twist of the payload were chosen to be the unknowns of the problem. Toglia
and Vendittelli [4] also reported on path following for an autonomous paraglider in a input-output
feedback linearizing control problem. Among the assumptions for the simplified model, the payload
drag is much smaller than the canopy drag thus can be neglected. Benedetti and Pinto [5] proposed
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a mechanical model for the forward motion of the paraglider where the payload drag is taken into
account but the center of gravity of the whole system is assigned approximately at the harness.

A recent article of Muller et al [6] focused on the paragliding modeling and based on the book of
Voight [7] on this issue. This book is written in German, dealing in detail the forces that affect to the
paraglider and pilot in free flight mode without towing. By time, the aerodynamic and mechanical
issues of flying objects have been more understood. In 2005, Oertel [8] clearly presented the basics
of fluid mechanics as well as physical processes involved. Although these researches presented the
physical phenomena and parameters affecting to a flying object, however, they did not provide a
complete model particularly for the paraglider problem. In other words, according to Muller et al [6],
there was no complete model for simulating the dynamic behavior and various flying situations of the
paraglider system yet. Even in [6], the simulations were just for simple situations such as gliding flight
where the pilot begin to fly at a certain height and a winch launch to gain altitude. This is absolutely
not enough because there are many more complicated situations that may happen in an actual flight.
This article develops the model of Muller et al to simulate several complex flights situations.

2. Modeling a paraglider

A rigid body diagram of forces is considered as shown in Fig. 1. The masses of the paraglider
and pilot are denoted as md and mp, respectively. The line connection between these two masses is as-
sumed to be rigid in its axis direction. Also, paragliding flights are considered just in two dimensional
plane. The right-hand-side coordinate system is used to establish the differential governing equations.
The center of gravity G, defined as the point at which the sum of all the moments due to gravity is
zero, is determined first. The two moments here are from the pilot weight, Wp = mpg, and the gravity
force of the canopy Wd = mdg, as shown in Eq. (1). We next determine the distances `p and `d, where
the total length of the paraglider line ` = `p + `d is provided by the manufacturer; and the total mass
of the pilot and the canopy is m = mp + md.(

mpg
)
`p = (mdg)

(
` − `p

)
or `p =

md`

mp + md
=

md`

m
(1)

from the true air velocity in the vertical direction and total true air velocity seen from 

the paraglider. Therefore, we have  
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From Eqs. (3) and (4), the drag coefficient can be obtained as shown in Eq. (5) 
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Figure 1. Relationship between the gravity force, lift force and total drag force  

 

When specifying the Eq. (4) for each component of the paragliding system, we 

can write the expressions of drag force acting on the canopy CdF  and on the pilot CpF  

separately as  
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where Cdc  and Cpc  are the drag coefficients for the canopy and for the pilot, 

correspondingly; dA  and pA are the areas of the canopy and the pilot, respectively.  

The lift force NF  follows the same rule 
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From Fig. 1, the lift force NF  can also be determined through the angle of glide 

  as shown in Eq. (8) below 

Figure 1. Relationship between the gravity force, lift force and total drag force

2.1. Velocities and aerodynamic forces

True air velocity vtq with respect to the paraglider system causes the aerodynamic forces. This
velocity is the relative velocity of air flow with respect to the canopy, as well as to the pilot. In a
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right-hand-side coordinate system fixed at the ground, the absolute displacements of the paraglider in
the direction x and y are denoted as ux (t) and uy (t), respectively. Thus, the absolute velocities of the
paraglider in the direction x and y are u̇x (t)và u̇y (t), where the dot notation over the symbol shows the
time derivative. In the fixed ground coordinate system, the wind speeds in the direction x and y are
denoted as vx and vy. The true air velocities relative to the canopy are determined as follows [9]:

vtq,x = u̇x − vx; vtq,y = u̇y − vy (2)

The vector sum of these air velocities is the total true air velocity and is denoted as vtq. When
this true air velocity is non-zero, the aerodynamic phenomena occur due to the forces caused by air
flowing around the object. Typical forces with their corresponding angles of action to a paraglider
under stationary conditions are shown in Fig. 1. The total gravity force W is balanced with the total
aerodynamic force which is the resultant of the lift force FN and the total drag force FC . The total
drag force is of the opposite direction of the paraglider movement. It is caused by the friction between
paraglider and air, and converts a part of energy into losses. The dynamic pressure of the air acting
on the paraglider is determined as p = ρv2

tq/2, where ρ is the air density and vtq is true air velocity.
The total drag force FC is equal to the dynamic pressure p multiplied by the wing area A projected
onto horizontal surface, and the drag coefficient cc of the paraglider (Anderson [10]), as shown in
Eq. (3). We have to note that the projected area A is just a reference area, we can also use frontal area
or surface area of the canopy for this purpose as well, together with the corresponding drag and lift
coefficients.

Fc = ccA
ρ

2
v2

tq (3)

Fig. 1 also shows that the total drag force FC determined using a static equilibrium condition,
with no inertia forces present. The total drag force can be also determined as shown in Eq. (4), where
β is the angle of glide (see Fig. 1). This angle can be obtained from the true air velocity in the vertical
direction and total true air velocity seen from the paraglider. Therefore, we have

FC = W sin (−β) = W
vtq,y

vtq
(4)

From Eqs. (3) and (4), the drag coefficient can be obtained as shown in Eq. (5)

ccA
ρ

2
v2

tq = W
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v3
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When specifying the Eq. (4) for each component of the paragliding system, we can write the
expressions of drag force acting on the canopy FCd and on the pilot FCp separately as

FCd = cCdAd
ρ

2
v2

tq; FCp = cCpAp
ρ

2
v2

tq (6)

where cCd and cCp are the drag coefficients for the canopy and for the pilot, correspondingly; Ad and
Ap are the areas of the canopy and the pilot, respectively.

The lift force FN follows the same rule

FN = cN A
ρ

2
v2

tq (7)

From Fig. 1, the lift force FN can also be determined through the angle of glide β as shown in
Eq. (8) below

FN = W cos β = W
vtq,x

vtq
(8)
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In case of the lift force, we can also implement the Eq. (7) for each component of the paragliding
system (the canopy and pilot). However, the area of the pilot is much smaller than that of the canopy,
thus we can ignore the lift force acting on the pilot and consider only the aerodynamic lift force acting
on the canopy.

Also, from Eqs. (7) and (8), the aerodynamic lift coefficient can be obtained as follows

CN A
ρ

2
v2

tq = W
vtq,x

vtq
or cN =

2W
Aρ

vtq,x

v3
tq

(9)

Based on the Eqs. (5) and (9), there have been many experiments to measure the aerodynamic
drag coefficient cc and aerodynamic lift coefficient cN corresponding to different types of paragliders
and angles of glide. In the simulations of flight situations shown in Section 3, these coefficients are
taken from [6].

2.2. Angles and distances
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Based on the Eqs. (5) and (9), there have been many experiments to measure the 

aerodynamic drag coefficient cc  and aerodynamic lift coefficient Nc  corresponding to 

different types of paragliders and angles of glide. In the simulations of flight situations 
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2.2. Angles and distances 

From the geometric relationship shown in Fig. 2, the angle of glide   is 
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The angle of attack   is the angle at which the air meets the canopy (Currer [9]). 

In Fig. 2, this angle is defined between the chord line and the flight direction. It affects 

the pendulum moment about the pitch axis and can be controlled by the pilot via the 

brake lines. 

 

Figure 2. The angles 
Figure 2. The angles

From the geometric relationship shown in
Fig. 2, the angle of glide β is determined by

β = atan
(

vtq,y

vtq,x

)
(10)

The angle of attack α is the angle at which the
air meets the canopy (Currer [9]). In Fig. 2, this
angle is defined between the chord line and the
flight direction. It affects the pendulum moment
about the pitch axis and can be controlled by the
pilot via the brake lines.

 

Fig. 3. Forces acting on the paraglider system 

 

Based on Eqs (16) to (18) above, four different flight situations are considered 

as follows. 

- Situation 1: the input to the model of paraglider includes the constant wind 

speeds in both horizontal and vertical directions ( xv  is positive for the headwind and 

negative for tailwind; yv  is positive for upwind and negative for downwind). 

- Situation 2: the input to the model of paraglider are time-varying wind speeds 

following some arbitrary functions ( )x xv v t=  and ( )y yv v t= . 

- Situation 3: the mass reduction of the payload (pilot and the harness) during a 

certain of time interval is considered. This is a practical situation where the pilot in a 

paragliding process can reduce the additional payload (contained in a water tank in the 

harness) to achieve a desired flying performance. In this case, the total mass of the pilot 

and the harness can be modeled as a decreasing function ( )p pm m t= . Other related 

quantities such as center of gravity G , or moment of rotational inertia J , will then be 

calculated correspondingly. 

- Situation 4 is also another common situation in practice where the mass of 

payload is not a certain known value. Instead, we just know that it is in a certain interval, 

Figure 3. Forces acting on the paraglider system

The angle of twist ϕ is the angle between the
horizontal line and the chord line. It is also the
angle between the vertical line and the suspension
line to the pilot. As in Fig. 2, we have

α = ϕ − β (11)

From Fig. 3 and previously shown relation-
ships, the distances `1 to `5 (lever arms – the dis-
tances from the center of gravity to the forces
Wp,Wd, FCp, FCd, FN , respectively) in Fig. 3 can
be obtained as follows

`1 = `p sin (−ϕ) ; `2 = `d sin (−ϕ) (12a)

`3 = `p cosα; `4 = `d cosα; `5 = `d sinα (12b)

2.3. Equations of motion

The absolute acceleration in the direction x and y are üx (t) and üy (t), respectively. The inertia
force in x direction is the product of total mass m and absolute acceleration in x direction üx (t). The
inertia force in y direction is determined similarly. For the free body diagram of forces acting on the
paraglider as shown in Fig. 3, by adapting the principle of D’Alembert, the sum of all forces acting on
the whole system, including inertia forces in x axis, should vanish
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müx (t) = −FCd cos (−β) − FCp cos (−β) + FN sin (−β) (13a)

Similarly, also by the principle of D’Alembert, we have below equation for forces along y axis,
with the same rule.

müy (t) = −Wp −Wd + FCd sin (−β) + FCp sin (−β) + FN cos (−β) (13b)

The sum of all moments about the center of gravity G is zero with the lever arms from `1 to `5 as
obtained in Section 2.2. The angular velocity and angular acceleration of the system are denoted as ϕ̇
and ϕ̈. The sum of all torques about the gravity point G equals to the moment of rotational inertia J
multiplied by the angular acceleration

Jϕ̈ = Wp`1 −Wd`2 − FCp`3 + FCd`4 − FN`5 − M (13c)

where the moment of rotational inertia J about the pivot axis going through the point G is

J = md`
2
d + mp`

2
p (14)

The damping torque M caused by the movement of the air is calculated by the product of the
viscous damping coefficient in the rotational motion c and the corresponding angular velocity

M = c ϕ̇ (15)

2.4. System modeling in state space

The state variables are defined as follows

Z =
[

ux u̇x uy u̇y ϕ ϕ̇
]T
=

[
z1 z2 z3 z4 z5 z6

]T
(16)

Then, Eqs. (13) can now be reformed in state space as

Ż = f (Z, t) (17)

where f =
[
f1 f2 f3 f4 f5 f6

]T
are defined as:

f1 = z2 (18a)

f2 =
1
m

(
−FCd cos (−β) − FCp cos (−β) + FN sin (−β)

)
(18b)

f3 = z4 (18c)

f4 =
1
m

(
−Wp −Wd + FCd sin (−β) + FCp sin (−β) + FN cos (−β)

)
(18d)

f5 = z6 (18e)

f6 =
1
J

(
Wp`1 −Wd`2 − FCp`3 + FCd`4 − FN`5 − cz6

)
(18f)

Based on Eqs. (16) to (18) above, four different flight situations are considered as follows.
- Situation 1: the input to the model of paraglider includes the constant wind speeds in both

horizontal and vertical directions (vx is positive for the headwind and negative for tailwind; vy is
positive for upwind and negative for downwind).
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- Situation 2: the input to the model of paraglider are time-varying wind speeds following some
arbitrary functions vx = vx (t) and vy = vy (t).

- Situation 3: the mass reduction of the payload (pilot and the harness) during a certain of time
interval is considered. This is a practical situation where the pilot in a paragliding process can reduce
the additional payload (contained in a water tank in the harness) to achieve a desired flying perfor-
mance. In this case, the total mass of the pilot and the harness can be modeled as a decreasing function
mp = mp (t). Other related quantities such as center of gravity G, or moment of rotational inertia J,
will then be calculated correspondingly.

- Situation 4 is also another common situation in practice where the mass of payload is not a
certain known value. Instead, we just know that it is in a certain interval, such as from 60 kg to 90 kg.

In this case, the mass of the payload is modeled as a interval quantity mp =

[
mp; mp

]
with the lower

bound and upper bound are mp and mp, respectively.

3. Simulating the flight situations

3.1. Simulation tool

In this article, the tool to simulate the flying situations of a paraglider is DifferentialEquations.jl
package, written in Julia language. Julia is a free and open source software, with fast processing
speed for many basic as well as advanced computing tasks [11]. The DifferentialEquations.jl tool is
a package of subroutines written in Julia, which help solve differential equations fast and efficiently.
The typical equations that this package can solve are very diverse, including: discrete equations, or-
dinary differential equations (ODE), split and partitioned ODEs, stochastic ODEs, differential alge-
braic equations (DAE), delay differential equations, mixed discrete and continuous equations. This
tool is optimized to solve differential equations in the fastest and most efficient way, using classical
and modern algorithms, featuring classic methods written in C/Fortran languages. All algorithms are
thoroughly tested to ensure the accuracy via convergent tests [12].

3.2. Simulation parameters

The important parameters used in simulations are from [6] or theoretically calculated. The vis-
cous damping coefficient c in rotational motion is taken at 104 Nms/rad to reflect the reality. The
aerodynamic drag coefficient for pilot is equal to 0.33 [6].

ρ = 1.27 kg/m3 Ap = 1.0 m2 md = 6 kg `p = 0.395 m
mp = 90 kg `d = 6.575 m ` = 6.97 m Ad = 24.26 m2

The drag coefficient cCd and aerodynamic lift coefficient cN are function of the angle of attack α.
From experimental data [13], this dependence can be approximated by following functions

cN (α) =
2α + 11

300
, cCd (α) =

65α + 70
1000

(19)

3.3. Simulation results

a. Situation 1

This simulation is served as a check of our coding for the simulation. The starting height is 500 m
and launching speed of pilot is 2 m/s, while speed of the headwind or tailwind in consideration is
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3 m/s, time of survey is 60 seconds. This situation is also expanded to include an additional upwind
at a velocity of 0.5 m/s. The results are shown in Figs. 4 and 5. The travelling distances, flying
vertical level (altitude) and twist angle obtained from the simulations are similar to those in [6]. We
say “similarity” since they share almost the same variation with time. The exact comparison could
not be done since there is no particular wind speed given explicitly in [6] when they conducted the
simulation.
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these two cases. We have the same comment for the velocities along the two axes and 

for the angular velocity. The addition of upwind, even with a low velocity, creates a 

significant difference in the relation of distances as well as the velocities of the 

paraglider in both directions as shown in Fig. 5. 

b. Situation 2 

The starting height is 500 m and launching speed of pilot is 2 m/s. Consider the 

flight in two cases that follow. In the first case, the constant headwind velocity is 3 m/s 

during 10 seconds without upwind, then during the next 20 seconds, the headwind 

velocity decreases linearly to minus 3 m/s to be tailwind. Also during this interval of 

time, there occurs upwind with the increasing velocity from 0 m/s at the instant of time 

10 seconds to 1.2 m/s at the instant of time 30 seconds. After that time interval, the wind 

velocities become constants again. In the second case, the scenario is similar but the 

tailwind of velocity 3 m/s is considered first, and it continually and linearly changes to 

be headwind, also of the velocity 3 m/s. The results from these two cases are shown in 

Fig. 6. 

These results show that the lost in altitude in both cases is approximately the 

same. However, the paraglider travels a bit longer distance in Case 1 than in Case 2. 

The variation of horizontal and vertical velocities of the paraglider clearly reflect the 

(b) u̇x (t) vs. u̇y (t)

Figure 5. Flying with headwind and tailwind, in addition with upwind
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It can be seen from Fig. 5 that the travelling horizontal distances with the headwind and the
tailwind are almost linear over time, but the difference between the two cases is large. Meanwhile,
the altitude and twist angle are just slightly different in these two cases. We have the same comment
for the velocities along the two axes and for the angular velocity. The addition of upwind, even with
a low velocity, creates a significant difference in the relation of distances as well as the velocities of
the paraglider in both directions as shown in Fig. 5.

b. Situation 2
The starting height is 500 m and launching speed of pilot is 2 m/s. Consider the flight in two

cases that follow. In the first case, the constant headwind velocity is 3 m/s during 10 seconds without
upwind, then during the next 20 seconds, the headwind velocity decreases linearly to minus 3 m/s to
be tailwind. Also during this interval of time, there occurs upwind with the increasing velocity from
0 m/s at the instant of time 10 seconds to 1.2 m/s at the instant of time 30 seconds. After that time
interval, the wind velocities become constants again. In the second case, the scenario is similar but the
tailwind of velocity 3 m/s is considered first, and it continually and linearly changes to be headwind,
also of the velocity 3 m/s. The results from these two cases are shown in Fig. 6.

These results show that the lost in altitude in both cases is approximately the same. However, the
paraglider travels a bit longer distance in Case 1 than in Case 2. The variation of horizontal and vertical
velocities of the paraglider clearly reflect the variation the wind velocities, with a certain delay. In
some first seconds, there are always large variations in velocities of paraglider in both directions.
Fig. 6(a), as well as Fig. 5(a) in Situation 1 show the minimum slope of the paraglider launching field
for taking off is about 1 : 4.
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always large variations in velocities of paraglider in both directions. Fig. 6(a), as well 

as Fig. 5(a) in Situation 1 show the minimum slope of the paraglider launching field for 

taking off is about 1:4. 

 

Figure 6. (a) relation between traveling distance and the altitude; (b) horizontal 

velocity as a function of time; (c) vertical velocity as a function of time 

(Tác giả chia thành các hình nhỏ riêng biệt, tên hình nhỏ (a), (b), (c)…., để phía dưới 

hình)  

c. Situation 3 

 The starting height is 500 m, pilot’s launching speed is 2 m/s, the headwind speed 

is 3 m/s, upwind speed is 1.5 m/s. The reduction in payload mass is given as below: 
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 The simulation results of this situation (shown in red line), compared to the normal 

flight with no mass reduction (shown in blue line) are shown in Fig. 7. Normally, the 

mass withdrawal of about 8 kg (of water) does not affect much the absolute velocities 

of the paraglider. However, the altitude loss decreases due to the loss of payload. The 

traveling distance also decreases, but of less amount. These results are in accordance 

with actual observations. 
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 The simulation results of this situation (shown in red line), compared to the normal 

flight with no mass reduction (shown in blue line) are shown in Fig. 7. Normally, the 

mass withdrawal of about 8 kg (of water) does not affect much the absolute velocities 

of the paraglider. However, the altitude loss decreases due to the loss of payload. The 

traveling distance also decreases, but of less amount. These results are in accordance 

with actual observations. 
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variation the wind velocities, with a certain delay. In some first seconds, there are 

always large variations in velocities of paraglider in both directions. Fig. 6(a), as well 
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 The simulation results of this situation (shown in red line), compared to the normal 

flight with no mass reduction (shown in blue line) are shown in Fig. 7. Normally, the 

mass withdrawal of about 8 kg (of water) does not affect much the absolute velocities 

of the paraglider. However, the altitude loss decreases due to the loss of payload. The 

traveling distance also decreases, but of less amount. These results are in accordance 

with actual observations. 

(c)

Figure 6. (a) relation between traveling distance and the altitude; (b) horizontal velocity as a function of time;
(c) vertical velocity as a function of time

c. Situation 3
The starting height is 500 m, pilot’s launching speed is 2 m/s, the headwind speed is 3 m/s, upwind

speed is 1.5 m/s. The reduction in payload mass is given as below:

mp (t) =


90, t ≤ 10
90 − 0.4 (t − 10) , 10 ≤ t ≤ 30
82, t ≥ 30

(20)

The simulation results of this situation (shown in red line), compared to the normal flight with no
mass reduction (shown in blue line) are shown in Fig. 7. Normally, the mass withdrawal of about 8 kg
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(of water) does not affect much the absolute velocities of the paraglider. However, the altitude loss
decreases due to the loss of payload. The traveling distance also decreases, but of less amount. These
results are in accordance with actual observations.

 

Figure 7. Comparison of flight in two cases: (a) distances in both directions with 

respect to time; (b) velocities in both directions with respect to time 

(Tác giả chia thành các hình nhỏ riêng biệt, tên hình nhỏ (a), (b), (c)…., để phía dưới 

hình)  

d. Situation 4 

 The mass of payload is an uncertain quantity. Assume that the mass is some value 

in the range of from 60 kg to 90 kg, and is modeled as an interval variable 75 15pm = 

. Similarly, the viscous damping coefficient c  is modeled as another interval quantity 
410 3000c =  . Other input parameters are given as: the starting height is 500 m, pilot’s 

launching speed is 2 m/s, the headwind speed is 3 m/s, and there is no upwind. Using 

the tool in Julia language tailored for manipulating interval quantities, the simulation 

results in the first 20 seconds are received as shown in Fig. 8 below.  

(a) Distances in both directions with respect to time
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d. Situation 4 

 The mass of payload is an uncertain quantity. Assume that the mass is some value 

in the range of from 60 kg to 90 kg, and is modeled as an interval variable 75 15pm = 

. Similarly, the viscous damping coefficient c  is modeled as another interval quantity 
410 3000c =  . Other input parameters are given as: the starting height is 500 m, pilot’s 

launching speed is 2 m/s, the headwind speed is 3 m/s, and there is no upwind. Using 

the tool in Julia language tailored for manipulating interval quantities, the simulation 

results in the first 20 seconds are received as shown in Fig. 8 below.  

(b) Velocities in both directions with respect to time

Figure 7. Comparison of flight in two cases

d. Situation 4

The mass of payload is an uncertain quantity. Assume that the mass is some value in the range
of from 60 kg to 90 kg, and is modeled as an interval variable mp = 75 ± 15. Similarly, the viscous
damping coefficient c is modeled as another interval quantity c = 104 ± 3000. Other input parameters
are given as: the starting height is 500 m, pilot’s launching speed is 2 m/s, the headwind speed is
3 m/s, and there is no upwind. Using the tool in Julia language tailored for manipulating interval
quantities, the simulation results in the first 20 seconds are received as shown in Fig. 8.

Each state variable was computed with the lower bound and upper bound. The the uncertainty
of the each state variable can be shown through the width of the obtained interval. For the traveling
distances along x- and y-axis, the interval’s width increase over time. This interval’s width for twist
angle is quite large at the beginning then getting smaller when the flight gets into steady state mode.
This is a rather strange result, possibly due to the limitations in mathematical operations on interval
quantities. This observation is also shown in the subfigures for velocities. From these results, the
landing area of the paraglider can be estimated, also in the interval values.

In case the parameters are not deterministic, we can also model with noise scaling factor σ and
then use Monte-Carlo simulations. For instance, in the above situation, with σ = 0.2 at each time step,
the obtained results can be illustrated in Fig. 9 (for clarity of the plots, the results are shown for only
30 samples in the first 20 seconds). We can see that the uncertainty in the output increases over time.
Through the results shown in Fig. 8 and Fig. 9, it can be seen that limitations in mathematical opera-
tions with interval quantities are removed when using Monte-Carlo simulations, no strange results as
shown in Fig. 8(c) to 8(f) anymore.
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Figure 8. Interval values for: (a) traveling distance along x-axis; (b) altitude; (c) twist 

angle; (d) horizontal velocity; (e) vertical velocity; and (f) angular velocity 

(Tác giả chia thành các hình nhỏ riêng biệt, tên hình nhỏ (a), (b), (c)…., để phía dưới 

hình)  

 Each state variable was computed with the lower bound and upper bound. The the 

uncertainty of the each state variable can be shown through the width of the obtained 

interval. For the traveling distances along x- and y-axis, the interval's width increase 

over time. This interval's width for twist angle is quite large at the beginning then getting 

smaller when the flight gets into steady state mode. This is a rather strange result, 

possibly due to the limitations in mathematical operations on interval quantities. This 

observation is also shown in the subfigures for velocities. From these results, the landing 

area of the paraglider can be estimated, also in the interval values. 

 In case the parameters are not deterministic, we can also model with noise scaling 

factor 𝜎 and then use Monte-Carlo simulations. For instance, in the above situation, 

with 𝜎 = 0.2 at each time step, the obtained results can be illustrated in Fig. 9 (for 

clarity of the plots, the results are shown for only 30 samples in the first 20 seconds). 

We can see that the uncertainty in the output increases over time. Through the results 

shown in Fig. 8 and Fig. 9, it can be seen that limitations in mathematical operations 

with interval quantities are removed when using Monte-Carlo simulations, no strange 

results as shown in Fig. 8(c) to 8(f) anymore. 

 

(a) Traveling distance along x-axis
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 Each state variable was computed with the lower bound and upper bound. The the 

uncertainty of the each state variable can be shown through the width of the obtained 

interval. For the traveling distances along x- and y-axis, the interval's width increase 

over time. This interval's width for twist angle is quite large at the beginning then getting 

smaller when the flight gets into steady state mode. This is a rather strange result, 

possibly due to the limitations in mathematical operations on interval quantities. This 

observation is also shown in the subfigures for velocities. From these results, the landing 

area of the paraglider can be estimated, also in the interval values. 

 In case the parameters are not deterministic, we can also model with noise scaling 

factor 𝜎 and then use Monte-Carlo simulations. For instance, in the above situation, 

with 𝜎 = 0.2 at each time step, the obtained results can be illustrated in Fig. 9 (for 

clarity of the plots, the results are shown for only 30 samples in the first 20 seconds). 

We can see that the uncertainty in the output increases over time. Through the results 

shown in Fig. 8 and Fig. 9, it can be seen that limitations in mathematical operations 

with interval quantities are removed when using Monte-Carlo simulations, no strange 

results as shown in Fig. 8(c) to 8(f) anymore. 
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Figure 8. Interval values for: (a) traveling distance along x-axis; (b) altitude; (c) twist 

angle; (d) horizontal velocity; (e) vertical velocity; and (f) angular velocity 
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 Each state variable was computed with the lower bound and upper bound. The the 

uncertainty of the each state variable can be shown through the width of the obtained 

interval. For the traveling distances along x- and y-axis, the interval's width increase 

over time. This interval's width for twist angle is quite large at the beginning then getting 

smaller when the flight gets into steady state mode. This is a rather strange result, 

possibly due to the limitations in mathematical operations on interval quantities. This 

observation is also shown in the subfigures for velocities. From these results, the landing 

area of the paraglider can be estimated, also in the interval values. 

 In case the parameters are not deterministic, we can also model with noise scaling 

factor 𝜎 and then use Monte-Carlo simulations. For instance, in the above situation, 

with 𝜎 = 0.2 at each time step, the obtained results can be illustrated in Fig. 9 (for 

clarity of the plots, the results are shown for only 30 samples in the first 20 seconds). 

We can see that the uncertainty in the output increases over time. Through the results 

shown in Fig. 8 and Fig. 9, it can be seen that limitations in mathematical operations 
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Figure 8. Interval values for: (a) traveling distance along x-axis; (b) altitude; (c) twist 
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possibly due to the limitations in mathematical operations on interval quantities. This 

observation is also shown in the subfigures for velocities. From these results, the landing 

area of the paraglider can be estimated, also in the interval values. 

 In case the parameters are not deterministic, we can also model with noise scaling 

factor 𝜎 and then use Monte-Carlo simulations. For instance, in the above situation, 

with 𝜎 = 0.2 at each time step, the obtained results can be illustrated in Fig. 9 (for 

clarity of the plots, the results are shown for only 30 samples in the first 20 seconds). 
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hình)  

 Each state variable was computed with the lower bound and upper bound. The the 

uncertainty of the each state variable can be shown through the width of the obtained 

interval. For the traveling distances along x- and y-axis, the interval's width increase 

over time. This interval's width for twist angle is quite large at the beginning then getting 

smaller when the flight gets into steady state mode. This is a rather strange result, 
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hình)  

 Each state variable was computed with the lower bound and upper bound. The the 

uncertainty of the each state variable can be shown through the width of the obtained 

interval. For the traveling distances along x- and y-axis, the interval's width increase 

over time. This interval's width for twist angle is quite large at the beginning then getting 

smaller when the flight gets into steady state mode. This is a rather strange result, 

possibly due to the limitations in mathematical operations on interval quantities. This 

observation is also shown in the subfigures for velocities. From these results, the landing 

area of the paraglider can be estimated, also in the interval values. 

 In case the parameters are not deterministic, we can also model with noise scaling 

factor 𝜎 and then use Monte-Carlo simulations. For instance, in the above situation, 

with 𝜎 = 0.2 at each time step, the obtained results can be illustrated in Fig. 9 (for 

clarity of the plots, the results are shown for only 30 samples in the first 20 seconds). 

We can see that the uncertainty in the output increases over time. Through the results 

shown in Fig. 8 and Fig. 9, it can be seen that limitations in mathematical operations 

with interval quantities are removed when using Monte-Carlo simulations, no strange 

results as shown in Fig. 8(c) to 8(f) anymore. 
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Figure 9. Some of Monte-Carlo simulations: (a) traveling distance; (b) altitude; (c) 

twist angle; (d) horizontal velocity; (e) vertical velocity; and (f) angular velocity 

(Tác giả chia thành các hình nhỏ riêng biệt, tên hình nhỏ (a), (b), (c)…., để phía dưới 

hình)  

4. Conclusion and suggestion  

Some actual flight situations of paraglider are modeled and simulated by 

establishing the motion equations in 2D state space with two variables of translational 

displacements (traveling distances in horizontal and vertical axes) and one rotational 

displacement (twist angle). The received system of differential equations is nonlinear 

each of which is uncoupled in terms of unknowns. The simulation was carried out by 

the effective tool, called DifferentialEquations.jl, for solving differential equations 

written in Julia open programing language. The simulation results are consistent with 

the observations that allow us to gain a deeper understanding of the dynamics of the 

paragliding system and allow us to predict the states of the system, helping pilots to 

control the paraglider more flexibly and accurately. To our best knowledge, these are 

new results that have never been published elsewhere before. The research can be 

developed for the problem in 3D space, or for the problem of paragliding under the 

control of pilots or towing vehicles. 
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hình)  

4. Conclusion and suggestion  

Some actual flight situations of paraglider are modeled and simulated by 

establishing the motion equations in 2D state space with two variables of translational 

displacements (traveling distances in horizontal and vertical axes) and one rotational 

displacement (twist angle). The received system of differential equations is nonlinear 

each of which is uncoupled in terms of unknowns. The simulation was carried out by 

the effective tool, called DifferentialEquations.jl, for solving differential equations 

written in Julia open programing language. The simulation results are consistent with 

the observations that allow us to gain a deeper understanding of the dynamics of the 

paragliding system and allow us to predict the states of the system, helping pilots to 

control the paraglider more flexibly and accurately. To our best knowledge, these are 

new results that have never been published elsewhere before. The research can be 

developed for the problem in 3D space, or for the problem of paragliding under the 

control of pilots or towing vehicles. 

 

References 
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4. Conclusion and suggestion

Some actual flight situations of paraglider are modeled and simulated by establishing the motion
equations in 2D state space with two variables of translational displacements (traveling distances in
horizontal and vertical axes) and one rotational displacement (twist angle). The received system of
differential equations is nonlinear each of which is uncoupled in terms of unknowns. The simulation
was carried out by the effective tool, called DifferentialEquations.jl, for solving differential equations
written in Julia open programing language. The simulation results are consistent with the observations
that allow us to gain a deeper understanding of the dynamics of the paragliding system and allow us to
predict the states of the system, helping pilots to control the paraglider more flexibly and accurately.
To our best knowledge, these are new results that have never been published elsewhere before. The
research can be developed for the problem in 3D space, or for the problem of paragliding under the
control of pilots or towing vehicles.
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