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Abstract

The modulus reduction and damping curves represent the nonlinear behavior of soil under cyclic load. In the lit-
erature, those curves were produced from lab tests of soil at particular confining stresses. This study developed
a set of parameters that can be used to normalize the modulus reduction and damping curves to be stress-
independent. The proposed formulations for the stress-independent parameters were implemented in the finite
element code SRAP and validated through producing shear modulus reduction and damping curves that match
the existed ones. Nonlinear 1D seismic site response analyses were conducted for centrifuge experiments to
verify the developed computer code. Comparisons of the analysis results between SRAP and another computer
code were presented in terms of maximum and minimum displacement, peak ground acceleration, maximum
shear strain profiles, and response spectra.

Keywords: backbone curve; hysteretic damping; dynamic soil model; stress-independent parameters; finite el-
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1. Introduction

During the propagation of the seismic wave in soil deposits, the characteristics of strong ground
motion, amplitude, frequency content, and duration, are altered because of the influence of local
geologic and soil conditions commonly referred to as local site effects [1]. The local site effects
were mainly dependent on the geometry and material properties of the subsurface, site topography,
and characteristics of the input motion. They can be illustrated by theoretical site response analysis
and field measurements. In the theoretical analysis methods, one-dimensional site response analysis
methods were widely used and suitable to solve the problem of vertical propagation of a horizontal
shear wave through a horizontally layered soil deposit in both frequency and time domains. However,
when the bedrock of subsurface deposits forms a basin, two-dimensional (2D) or three-dimensional
(3D) analysis is preferred.

Nonlinear site response is the time domain analysis generally used in evaluating the response of
soil deposits under vertical propagation of a horizontal shear wave (SH-wave). The finite element
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method is robust in the nonlinear analysis of a dynamic problem in the time domain. In the 1D finite
element analysis, a soil column is discretized into a series of the spring elements approximated by
Kelvin-Voight solid, whereby represented by modulus and viscous damping. The nonlinear seismic
site response analysis required a cyclic nonlinear constitutive soil model described the relationship
between stress and strain in the soil deposit. Several cyclic nonlinear models have been developed, and
all are characterized by 1) a backbone curve; 2) unloading-reloading behavior, stiffness degradation
and other effects; and 3) generation of the excess pore water pressure during cyclic excitation [2].

A backbone curve can describe the performance of the cyclic nonlinear model. From test data,
a satisfactory agreement was found that a simple hyperbolic law can adequately describe the back-
bone curve for small strains. The hyperbolic model proposed by Kondner [3] is probably the most
frequently used model in soil static and dynamics. The analogy to the hyperbolic law for larger strains
was proposed by Duncan and Chang [4] and Hardin and Drnevich [5] and the modified hyperbolic
model proposed by Phillips and Hashash [2]. Cyclic behavior of soils is governed by four rules [1]: 1)
for initial loading, the stress-strain curve follows the backbone curve; 2) the Masing rule is used for
unloading and reloading curves with a factor of 2 is applied to the backbone curve; 3) if unloading or
reloading curve crossed the backbone curve, the stress-strain curve would follow the backbone curve
until the next reversal; 4) if an unloading or reloading curve passed an unloading or reloading curve
from the previous cycle, it would follow that of unloading or reloading curve until the next reversal.
When applying the Masing rule, hysteretic damping at large strains is overestimated [2]. To overcome
this shortcoming, Darendeli [6] proposed a factor to reduce the size of hysteretic loops to match damp-
ing curves obtained from laboratory tests. Phillips and Hashash [2] formulated a reduction factor and
non-Masing unloading-reloading rules for the modified Kondner-Zelasko model (MKZ) [7] in the 1D
site response analysis. They named it as the Modulus Reduction Damping Factor (MRDF) model.
Groholsky et al. [8] developed a simplified model for small-strain nonlinearity and strength, the gen-
eral quadratic/hyperbolic (GQ/H) model in the 1D seismic site response analysis. In this soil model,
new non-Masing unloading-reloading rules were also applied based on the MRDF approach. Because
the application of MRDF behavior to other 1D backbone formulations is difficult, Numanoglu et al.
[9] presented a generalized MRDF-type non-Masing hysteresis model that can apply widely to any
backbone formulation for use in cyclic analysis in 1D, 2D, or 3D stress spaces.

In this study, the proposed model overcomes the following shortcomings of the current models
1) softening behavior of the backbone curve; 2) stress-dependent parameters for stress-strain relation-
ship and damping.

2. Review of 1-D finite element analysis for site response

2.1. 1-D finite element model

A multi-degree-of-freedom 1D finite element model was adopted to model the geologic column,
as shown in Fig. 1. The dynamic soil properties include maximum shear modulus, damping factor,
and density. The 1D element, a thin Kevin-Voigt solid, is represented by a lumped mass, nonlinear
spring, and dashpot for viscous damping that can be determined from the dynamic soil properties
(Fig. 2). In the finite element model, a fixed base is applied if using within motion while the elastic
half-space should be selected if using outcrop motion [10, 11]. The viscous damping coefficient is
assumed to be proportional to the product of the mass density and shear wave velocity for the elastic
half-space as in the following equation:

CE = ρEVS E (1)
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where ρE is the density; and VS E is the shear wave velocity of the elastic half-space.
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2.2. Stress-strain relationship and hysteretic damping

Eqs. (2) and (3) define the initial loading and unloading-reloading, respectively in the nonlinear
stress-strain relationship of soil as follows [2]:

τ =
G0γ

1 + β(γ/γr)r (2)

τ = τrev +
2G0

[
(γ − γrev)/2

]
1 + β

[
(γ − γrev)/2γr

]r (3)
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where J  and W  are given shear strain and shear stress, respectively; r  is dimensionless exponent; rJ
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where γ and τ are given shear strain and shear
stress, respectively; r is dimensionless exponent;
γr is shear strain parameter; G0 is maximum shear
modulus; β is a dimensionless factor; and γrev and
τrev are reversal shear strain and shear stress, re-
spectively.

The hysteretic damping is related to the energy
lost and the peak energy stored in a cycle of vibra-
tion for an equivalent linear material (Fig. 3):

ξh =
∆W
4πW

(4)

where W is peak energy and ∆W is dissipated energy in one cycle.
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Currently, most of the available stress-strain relationships are using the Masing rule for unloading-
reloading curves. The hysteretic damping using the Masing rule applied to the stress-strain relation-
ship for unloading-reloading from medium to large strains is higher than that obtained in a dynamic
test [2, 6]. This difference leads to an underestimation of shear strain because of higher energy dissi-
pation in the analysis model. The parameters of the soil model need to be calibrated using both shear
modulus reduction and damping curves to overcome this mismatch. Darendeli [6] proposed a reduc-
tion factor that effectively alters the Masing rules to provide a better match for both shear modulus
reduction and damping curves simultaneously. The following hysteretic damping using a reduction
factor was proposed [6]:

ξnm = DF (γm) ξm (5)

where ξm is hysteretic damping calculated from a looping curve using the Masing rule based on the
modulus reduction curve; DF (γm) is Darendeli’ reduction factor dependent on stress level as follows:

DF (γm) = b1

 σ′

σ′re f

c1

(6)

where σ′ is effective stress; σ′re f is reference effective stress; b1 is variable which depends on the soil
and input motion properties and c1 = 0.1.

Phillips and Hashash [2] also developed a new expression for a damping reduction factor which
modified the Masing rule and provided a better match with the damping curves for larger strains. A
trial and error procedure obtained this proposed function. Eq. (7) presents the unloading and reloading
stress-strain relationship when applying the damping reduction factor:

τ = F (γm)
{

2
G0

[
(γ − γrev)/2

]
1 + β

[
(γ − γrev)/2γr

]r −
G0 (γ − γrev)
1 + β(γm/γr)r

}
+

G0 (γ − γrev)
1 + β(γm/γr)r + τrev (7)

where γm is maximum shear strain; F (γm) is Phillips and Hashash’ damping reduction factor deter-
mined as follows:

F (γm) = p1 − p2

(
1 −

Gγm

G0

)p3

(8)

where p1, p2, and p3 are non-dimension parameters selected to obtain the best fit with a damping
curve; Gγm is secant shear modulus at the maximum shear strain, γm. Other equations for the unloading
and reloading stress-strain relationship with the damping reduction factor can be found in Groholski
et al. [8] and Hashash et al. [12].

3. The proposed independent-stress parameters

3.1. Stress-strain relationship

a. Backbone curve

A new hyperbolic equation for the backbone curve is developed based on the hyperbolic model
proposed by Kondner and Zelasko [7]. A parameter r, added to adjust the shape of the backbone
curve, produces an equation similar to the model developed by Matasovic [13] given in the following
form:

τ =
G0γ

1 + (γ/γ̃r)r (9)
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where γ̃r is shear strain parameter. Eq. (9) can be rearranged as:

log
(
G0

Gs
− 1

)
= r log (γ) − r log (γ̃r) (10)

Eq. (10) presents a straight line based on the dynamic soil data of Gs/G0 versus shear strain. The
value of r is the slope of the best fit straight line, and the value −r log (γ̃r) can be determined from
the intercept between the best fit straight line and the vertical axis. The ordinary least-squares method
can in finding the best fit straight line.

Rearranging Eq. (9) in the following form:

τ =
γ

1
G0

+ γr
/
G0

(
γ̃r

/
β

1
r
)r (11)

The term γ̃r/β
1
r is constant so that it can be assigned as γr = γ̃r/β

1/r.
The backbone curve in Eq. (11) can be written in a new form as follows:

τ =
γ

1
G0

+
γt

τu

(12a)

where t is a dimensionless exponent; τu is ultimate shear stress, τu = γ̄rG0.
If r ≤ 1 then

t = r and γ̄r = γr
r (12b)

If r > 1 then
t = 1 and γ̄r = γr(r − 1)1− 1

r (12c)

Eq. (12c) is developed to avoid softening behavior beyond the peak shear stress when, r > 1 as
shown in Fig. 4.

b. Unloading-Reloading Formulation
The general equation for unloading-reloading is given as follows:

τ = τrev + fγm

γ − γrev

1
G0

+
(|γ − γrev|)t

2tτu

+
(
1 − fγm

)
(γ − γrev) Gs (13)

where fγm is damping reduction factor, and the reloading and unloading equations are similar to the
backbone curve if the turning point (τrev, γrev) is considered as their original coordinates.

c. Stress-independent parameters for backbone curves
The maximum shear modulus is dependent on confining stress, as shown in the following equa-

tion:

G0 = G0,re f

σ′c + σ′c,0

σ′c,re f

ηg

(14)

where σ′c,re f is reference effective confining stress, usually taken as atmospheric pressure; G0,re f

is maximum shear modulus at the reference confining stress; σ′c is effective confining stress; ηg is
modulus exponent; and σ′c,0 is reference effective confining stress at z = 0, which is added to the
original equation to avoid zero value of G0 at z = 0.
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The following expression is adopted to represent the dependence of the reference shear strain on
the confining stress:

γr = γre f

σ′c + σ′c,0

σ′c,re f

ηγ (15)

where γre f is reference shear strain at the reference confining stress; and ηγ is reference shear strain
exponent.

3.2. Hysteretic damping

In this study, a new equation for the reduction factor for the unloading-reloading rule is proposed.
The hysteretic damping of a cyclic loop is expressed as:

ξh =
∆W
W

(16)

where ∆W is the dissipated energy per motion cycle and W is the strain energy.
Consider a loop shown in Fig. 3, based on the backbone curve, the shear stress at the first reversal

point is given by:

τ(+)
m =

G0γ
(+)
m

1 +
(
γ(+)

m

/
γr

)t (17)
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where γm is a maximum reversal shear strain corresponding to the hysteretic damping, ξh.
The ratio of the secant and maximum shear moduli can be obtained from Eq. (21) as:

Gs

G0
=

1

1 +
(
γ(+)

m

/
γr

)t (18)

where Gs is secant shear modulus.
With γrev = γ(+)

m and τrev = τ(+)
m , Eq. (13) becomes:

τ = τ(+)
m − fγm

γ(+)
m − γ

1
G0

+

∣∣∣∣γ(+)
m − γ

∣∣∣∣t
2tτu

−
(
1 − fγm

) (
γ(+)

m − γ
)
Gs (19)

The dissipated energy per motion cycle and the strain energy are computed by:

∆W = 2

γ(+)
m∫

γ(−)
m

[
τ(+)

m − τ −Gs
(
γ(+)

m − γ
)]

dγ (20)

W =
γ̄2

mGs

2
(21)

where γ̄m =
γ(+)

m − γ
(−)
m

2
.

Substituting Eqs. (20) and (21) into Eq. (16) leads to:

ξh =
∆W
4πW

= 2tγ̄
G0

Gs

fγm

πγ̄2
m

γ(+)
m∫

γ(−)
m

γ(+)
m − γ

2tγ̄ +
∣∣∣∣γ(+)

m − γ
∣∣∣∣t dγ − fγm

2
π

(22)

The following equation can approximate a small strain damping from a damping curve:

ξs = ξγmin − ξh,γmin (23)

where ξγmin is hysteretic damping from a damping curve at γmin (minimum shear strain in a damping
curve); ξh,γmin is hysteretic damping at γmin.

The damping reduction factor fγm is applied to obtain the best fit between the modified hysteretic
damping and the damping curve as follows:

ξmh = 2tγ̄
G0

Gs

fγm

πγ̄2
m

γ(+)
m∫

γ(−)
m

γ(+)
m − γ

2tγ̄ +
∣∣∣∣γ(+)

m − γ
∣∣∣∣t dγ − fγm

2
π

(24)

The relationship between the modified hysteretic damping, small strain damping, and hysteretic
damping from damping curve is given by:

ξmh = ξc − ξs (25)
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where ξc is the hysteretic damping determined from a damping curve.
By rearranging Eq. (24), the damping reduction factor is obtained as:

fγm =
ξc − ξs

2tγ̄
G0

Gs

fγm

πγ̄2
m

γ(+)
m∫

γ(−)
m

γ(+)
m − γ

2tγ̄ +
∣∣∣∣γ(+)

m − γ
∣∣∣∣t dγ −

2
π

(26)

a. Stress-independent parameters
The soil model parameters for hysteretic damping are also stress-independent and determined

from the damping curves. The stress-independent parameters are denoted by subscription “ref” deter-
mined at the reference confining stress , which is usually taken as 101.3 kPa.
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Stress-independent parameters 
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The damping curve, small strain damping, and the Masing hysteretic damping are stress-dependent
parameters that can be written in terms of reference parameters. For example, the following equation
presents an approximation of the damping curve (Fig. 5):

ξc = ξc,re f

σ′c + σ′c,0

σ′c,re f

ηξc
1 −

1

1 + λre f

σ′c + σ′c,0

σ′c,re f

ηλ(γ/γr)u

 + ξs (27)

where u, ηξc , and ηλ are best-fitting parameters; λre f is a reference best-fitting parameter; and ξc,re f is
a reference hysteretic damping from the damping curve calculated as:

ξc,re f = ξc,max,re f − ξc,min,re f (28)

where ξc,max,re f and ξc,min,re f maximum and minimum hysteretic damping values determined from the
damping curve.

The small strain damping is also dependent on the confining stress as the following expression:

ξs = ξs,re f

σ′c + σ′c,0

σ′c,re f

ηξs

(29)

where ξs,re f is a reference small strain damping; ηξs is a best-fitting exponent. The Masing hysteretic
damping formulation is given in the same form as the hysteretic damping from the damping curve
(Fig. 5):

ξm = ξm,re f

σ′c + σ′c,0

σ′c,re f

ηξm
1 −

1

1 + αre f

σ′c + σ′c0

σ′c,re f

ηα(γ/γr)s

 (30)
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where ηξm , sand ηα are best-fitting parameters; ξm,re f is reference Masing hysteretic damping; and
αre f is a reference best-fitting parameter.

Based on the variation of the damping reduction factor with the maximum reversal shear strain,
γm in Eq. (26), the damping reduction factor can be approximated as follows:

fγm =
ξc − ξs

ξm
=
ξ̄c,re f

ξ̄m,re f

λ

α

1 + α(γ/γr)s

1 + λ(γ/γr)u (γ/γr)u−s (31)

4. Implementation of new equations

The proposed equations of stress-independent parameters are implemented in the computer pro-
gram SRAP (Soil Response Analysis Program). The soil parameters can be determined automatically
from the shear modulus reduction and damping curves. The procedure used to determine the model
parameters consists of the following steps: 1) Determine the pressure-dependent parameters to fit
the shear modulus reduction curves; 2) determine the small strain damping parameters; 3) calculate
damping factors using backbone parameters and the unloading-reloading rules; 4) predict the damp-
ing reduction factor based on damping curves and damping factors calculated in step 3; 5) estimate
the stress-dependent parameters of the reduction factor in Eq. (31).

The viscous damping in the finite element analysis is frequency-independent viscous damping
developed by Nghiem and Chang [14], which can be determined from the small strain damping ratios
of the soils.

5. Model verification

5.1. Shear modulus reduction and damping curves

Table 1 presents the model parameters determined by using the above procedure for selected shear
modulus reduction and damping curves studied by Vucetic and Dobry [15] and Darendeli [6]. A curve
set from Vucetic and Dobry [15] is stress-independent then all scalar parameters are zero. Darendeli
[6] a set of 20 curves for soils with different plastic indexes and confining stresses. Dependences of

Table 1. Soil parameters

Parameters
Vucetic and Dobry [15] Darendeli [6]

PI = 0 PI = 15 PI = 30 PI = 50 PI = 100 PI = 200 PI = 0 PI = 15 PI = 30 PI = 50 PI = 100

γr,re f (%) 0.030 0.078 0.150 0.262 0.572 0.862 0.033 0.046 0.062 0.081 0.129
ηγ 0.000 0.000 0.000 0.000 0.000 0.000 0.377 0.290 0.383 0.379 0.388
r 1.064 0.903 0.916 0.917 1.098 1.060 0.908 0.915 0.910 0.912 0.909

ξs,re f (%) 1.081 1.049 1.005 0.949 0.892 0.828 0.834 1.041 1.247 1.521 2.204
ηξs 0.000 0.000 0.000 0.000 0.000 0.000 −0.312 −0.312 −0.312 −0.312 −0.312
ηξc 0.000 0.000 0.000 0.000 0.000 0.000 −0.028 −0.042 −0.053 −0.066 −0.093

ξc,re f (%) 26.659 24.611 23.245 20.401 15.968 14.292 19.815 19.375 18.909 18.302 16.937
λre f 0.420 0.608 0.701 0.777 1.060 1.060 0.759 0.741 0.775 0.802 0.869

u 0.793 0.764 0.747 0.717 0.715 0.679 0.982 0.975 0.977 0.978 0.983
ηλ 0.000 0.000 0.000 0.000 0.000 0.000 0.013 −0.049 0.058 0.068 0.129
ηξm 0.000 0.000 0.000 0.000 0.000 0.000 −0.059 −0.047 −0.097 −0.102 −0.138

ξm,re f (%) 61.769 48.949 48.301 45.943 50.265 46.064 43.355 41.747 39.670 37.433 33.258
αre f 0.331 0.382 0.408 0.452 0.545 0.595 0.488 0.523 0.566 0.614 0.720

s 0.944 0.896 0.918 0.929 1.011 1.019 0.928 0.937 0.937 0.942 0.943
ηα 0.000 0.000 0.000 0.000 0.000 0.000 0.095 0.075 0.130 0.134 0.167
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the reference shear strain, small strain damping, and damping reduction factor on the confining stress
represented by non-zero scalar parameters.

Fig. 6 shows comparisons of modulus reduction and damping curves between the proposed model
and Darendeli [6]. Only the curves of sandy soil with plastic index PI = 0 are plotted. It can be seen
that the agreement is excellent for all curves.
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Figure 6. Comparison of shear modulus reduction and damping curves 
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5.2. 1D site response analysis using stress-independent parameters

1D site response analysis using stress-independent parameters is performed for comparisons with
centrifuge experiments conducted at the University of Colorado, Boulder centrifuge facility [16]. The
soil used in the test was Nevada Sand (No. 120) with a unit weight of 15.4 kN/m3 and a friction angle
of 330. The shear wave velocity profile predicted as the average of the empirical procedures [16]
was presented in Fig. 7 with the corresponding maximum shear modulus profile. The shear modulus
reduction and damping curve was obtained from Darendeli’s curves for PI = 0 and reconstructed at
different confining pressures corresponding to 0 m, 6.5 m, 13.5 m, 18 m, and 25 m [16]. In the analysis
model, only one set of stress-independent parameters obtained from the above curves describes the
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dynamic properties of the soil, as presented in Table 2. The values of the small strain damping vary
from 1.76% to 0.54% that close to the values used by Hashash et al. [16] (Fig. 8). The shear modulus
reduction and damping curves at different depths matched very well to those used in Deepsoil analyses
[16] (Fig. 9). The stress-independent parameters provide implied friction angles at large strain (10%)
in good agreement with the target friction angle [16] at 0 m, 6.5 m, 13.5 m, and 19 m. However, the
discrepancy between the implied friction angle and the target friction angle is about 16% at 25 m, as
shown in Fig. 10.
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Figure 8. Small strain damping profile 
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Table 2. Soil parameters used in the site response analyses

Parameters Values Parameters Values Parameters Values

G0,re f (kPa) 75000 ηξs −3.119E−1 ηξm −2.656E−2
ηg 0.5 ηξc 8.036E−3 ξm,re f (%) 37.511

γr,re f (%) 3.340E−2 ξc,re f (%) 20.416 αre f 0.565
ηγ 3.996E−1 λre f 0.893 s 0.872
r 0.818 u 0.896 ηα −2.810E−3

ξs,re f (%) 0.820 ηλ 0.054

Two representative ground motions were selected in the analyses because of their lowest and
highest peak ground acceleration (PGA) [16]. The selected ground motions named LomaSCZ with
PGA of 0.33 g and KobeTAK with PGA of 0.76 g are shown in Fig. 11. In the 1D finite element
model, the soil column is discrete into 26 elements with a uniform element size of 1 m. The results of
the site response analyses using Srap program include the maximum displacement, PGA, maximum
shear strain profiles, and 5%-damped surface acceleration response spectra. The comparisons of the
results between Srap, Deepsoil nonlinear analyses [16], and the centrifuge measurements [16] were
shown Figs. 12 and 13.

24



Hien, N. M. / Journal of Science and Technology in Civil Engineering

15 

 

 
Figure 8. Small strain damping profile 

  

  

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 0.5 1 1.5 2

D
ep

th
 (m

)

Small Strain Damping (%)

0
0.2
0.4
0.6
0.8

1

0.0001 0.001 0.01 0.1 1 10

G
/G

0

ϒ (%)

σ=7.7 kPa
0
5

10
15
20
25

0.0001 0.001 0.01 0.1 1 10

ξ 
(%

)

ϒ (%)

σ=7.7 kPa

0
0.2
0.4
0.6
0.8

1

0.0001 0.001 0.01 0.1 1 10

G
/G

0

ϒ (%)

σ=101 kPa
0
5

10
15
20
25

0.0001 0.001 0.01 0.1 1 10

ξ 
(%

)

ϒ (%)

σ=101 kPa

16 

 

  

  

   
Figure 9. Comparison of shear modulus reduction and damping curves 
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Figure 10: Stress-strain curves used in the analyses 
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Fig. 12 shows the comparisons of the site response between centrifuge experiment, Deepsoil [16],
and Srap during the LomaSCZ motion. The calculated maximum displacement profiles from both
Deepsoil and Srap agreed very well with those from the centrifuge measurements. Deepsoil and Srap
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also produced a good match with each other for the minimum displacement profiles below the depth
of 4 m, but those values are much smaller than the centrifuge measurements (Fig. 12(a)). The pre-
dicted PGA values from Srap fell in between the measurements from the central and box accelerom-
eter arrays (Fig. 12(b)). However, above 3 m and below 22 m, perfect matches were obtained for all
prediction results in comparison to the measurements from the central accelerometer array. For the
maximum shear strain comparison, the best predictions were observed at a depth below 6 m for both
Deepsoil and Srap results. Above that depth, the predictions were overestimated (Fig. 12(c)). The sur-
face acceleration response spectra created from Deepsoil and Srap compared well with that measured
in the centrifuge experiment except that they produced underestimated predictions in period ranged
from 0.03 s to 0.1 s and overestimated predictions in period ranged from 0.3 s to 0.8 s.
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Figure 13. Comparison between predictions and centrifuge measurements during the KobeTAK 

motion 
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During the KobeTAK motion, both maximum and minimum displacement profiles predicted by
Deepsoil and Srap agreed well with the centrifuge measurements (Fig. 13(a)). In terms of PGA com-
parison, although the predictions were very close to each other, they overestimated the centrifuge
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measurements. The best matches were only observed near the surface and below 22 m (Fig. 13(b)).
The maximum shear strain profiles were compared in Fig. 13(c) with a fair agreement for all results
below 10 m. Both predictions provided the same shape of the maximum shear strain distribution above
10 m, but they were overestimation in comparison to the measurements. The predictions of the surface
acceleration response spectra agreed quite well to each other for all ranges of periods, as shown in
Fig. 12(d). A good agreement between predictions and measurements found beyond a period of 0.7 s.
Below that period, the predictions were underestimated.

6. Conclusions

New formulations for stress-strain relationship and hysteretic damping were developed to model
the nonlinear behavior of 1D seismic site response analysis. The proposed backbone and unloading-
reloading equations can simultaneously be matched shear modulus reduction and damping curves
proposed by Vucetic and Dobry [15] and Darendeli [6]. In the proposed soil model, the backbone
curve was represented by the modified hyperbolic model, and a damping reduction factor was intro-
duced to adjust the unloading-reloading curve such that hysteretic damping matched more closely to
the measured damping.

The proposed formulations for stress-strain relationship and hysteretic damping are implemented
in the finite element code SRAP. The formulations were validated through numerical site response
analyses with reference to the measurements of the free field seismic response at the ground surface
and different depths of the centrifuge experiments. The results of the numerical analysis were com-
pared with another computer program, and the measurements in terms of maximum and minimum
displacement, peak acceleration, maximum shear strain profiles, and response spectra. The conclu-
sion can be made that using the proposed model for 1D finite element analysis in the time domain
using proposed stress-independent parameters can produce reliable results in comparison to the model
tests.
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