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Abstract

When taking into consideration nonlinear phenomena such as material plasticity, plastic hinge, and P-Delta
effect, the pushover analysis can provide more realistic structures’ nonlinear responses. However, this method
is not widely used in practice as it is more complex and requires more expertise than elastic approaches. On
the other hand, the data-driven method emerges as an increasingly appealing alternative since it requires only
input parameters, then directly yields results in conditions that enough training data are provided, as well as an
appropriate machine learning model is devised. Thus, this study develops a probabilistic data-driven approach
using the Multiple Layer Perceptron network coupled with the Dropout mechanism to perform the pushover
analysis of reinforced concrete (RC) frame structures, predicting base shear, lateral displacement, as well as
their relationship between the two formers. Moreover, corresponding confidence intervals of predicted values
are also available owing to the probabilistic nature of the method, thus helping engineers design conservative
solutions.
Keywords: pushover analysis; reinforced concrete; structure; probabilistic analysis; machine learning; dropout
mechanism; OpenSees.
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1. Introduction

In practice, assessment of lateral displacement of structures is of great importance to ensure its
safety as well as the comfortability of users. Pushover analysis, a nonlinear static technique, is one
of the most well-known methods to perform this task. However, though it can provide more accurate
results, the nonlinear structural analysis is still less favorable compared to the linear counterpart due
to its complexity, high computational cost and expertise required. In recent years, data-driven method
has been considered as a promising alternative by which users only feed inputs to a properly trained
model to obtain reliable results. A number of data-driven models have been developed in the field
of civil engineering [1, 2]. However, when structures become more complex or the nonlinearity is
more pronounced, a deterministic approach seems to be inappropriate because the uncertainty or the
confidence of calculated results needs to be estimated. That is why probabilistic data-driven models
gain increasing attention among the engineering community.
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For the probabilistic collapse analysis of structures due to vehicle impact, an artificial neural
network, which is a surrogate model efficient in computational time, was validated by comparison
with experience as presented in [3]. It is also noticed that the surrogate model facilitates various types
of sensitivity analysis, providing more insights into the effects of input parameters on the structure’s
behavior. To assess the damage severity of building after an earthquake, i.e., from minor damage to
collapsed structures, Mangalathu proposed a deep learning-based approach trained on a dataset of
3423 buildings recorded after the 2014 South Napa earthquake [4]. The method achieved a highly
accurate result of 86% and could be integrated into a mobile application, thus enabling a broad range
of users to estimate the vulnerability of the structure immediately following seismic events. Besides,
Feng et al. proposed a probabilistic framework dealing with the progressive collapse of reinforced
concrete (RC) structures due to column removal based on the probability density evolution method
[5]. Such a method allows for quantifying uncertainty in the quantities of interest, i.e., resisting forces,
displacement, etc. with statistic features such as mean variation, standard deviation and probability
density function. Brunesi et al. [6] carried out both deterministic analysis and probabilistic analysis of
progressive collapse in low-rise RC buildings, through which the authors emphasized the contribution
of secondary structural elements such as framing beam in progressive collapse resistance by providing
additional alternative load path. Guo et al. [7] conducted a series of Monte Carlo simulation with the
Latin hypercube sampling method on a 1-h rated steel beam and proved that the beam is able to
resist natural fire event with a probability of failure under 10%. Although Monte Carlo-based method
is able to perform probabilistic analysis but due to its computational expensiveness, another more
practical probabilistic framework for industry application was suggested to be explored. Worrell et
al. [8] investigated a machine learning-based (ML) model for probabilistic assessment of the safety
of nuclear power plants against fire hazard, specifically various ML models are implemented and
compared together, such as K-nearest neighbor, support vector machine, Decision Tree regressor, and
algebraic fire models. It is noticed that these ML models require a large number of training data to
reach a satisfying prediction accuracy. Recently, Fengfu investigated the progressive collapse of steel
frame under fire by leveraging both ML approaches and Monte Carlo simulations [9]. The obtained
results are promising, though it requires sufficient large dataset for the training process which hinder
its applicability in real-word applications.

In an effort to extend the probabilistic data-driven method to estimate the lateral displacement
of building structures, this study develops a probabilistic data-driven approach using the Multiple
Layer Perceptron network coupled with the Dropout mechanism to perform the pushover analysis of
RC frame structures. Once trained, the method can provide quantities of interest such as base shear,
lateral displacement, as well as their relationship between the two formers without requiring building
a numerical model such as Finite Element Method (FEM) with much reduced computational time.
Moreover, the corresponding confidence intervals of predicted values are also available owing to the
probabilistic nature of the method, thus helping engineers design conservative solutions.

2. Dropout Neural Networks

In this section, the architecture of Dropout Neural Networks inspired from the work of Gal and
Ghahramani [10] is investigated and adapted for the progressive collapse problem. The idea behind
the use of Dropout mechanism in this work is that such type of neural network (NN) allows effectively
handling the scarcity of collapsed data by providing probabilistic distribution and its statistic moments
rather than point estimates. Dropout Network consists of three key aspects: (i) Multiple layers of
perceptron includes input layers, one or more hidden layers and output layer as in the conventional
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Deep Neural Networks (DNN); (ii) Dropout mechanism is applied to the hidden layers and the input
layer with various ratios, whose optimal values are obtained from fine-tuning processes; and (iii) The
weight of whole neural network is shared among thinned neural networks resulting from Dropout.
The architecture of the NN with Dropout mechanism is schematically illustrated in Fig. 1.
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Figure 1. Architecture of Neural Network with Dropout mechanism  
(a) The conventional plain neural network where every perceptron in a layer are connected to 

all perceptrons of the next layer. (b) The NN with Dropout where a fraction of number of 
perceptron (circled cross) is randomly neglected during calculation. 

2.1. Deep Neural Networks (DNN) 

(a) Conventional neural network
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Figure 1. Architecture of Neural Network with Dropout mechanism
(a) The conventional plain neural network where every perceptron in a layer are connected to all perceptrons

of the next layer; (b) The NN with Dropout where a fraction of number of perceptron (circled cross) is
randomly neglected during calculation

2.1. Deep Neural Networks (DNN)

Conceptually, DNN mimic the information analysis process of the brain, in which meaningful
sets of information are extracted from received data through a complex system of neurons connected
together. Hence, a typical DNN architecture consists of multiple layers, each layer comprised various
number of perceptrons, together they form a nonlinear mapping from input data to output results.
Fig. 1(a) depicts an example of the DNN architecture. Mathematically, one can formulate this nonlin-
ear mapping as follows [11]:

Y = F(X|W) = fL(...( f2( f1(X|W1)|W2)...WL) (1)

where L is the total number of layers in the network including the input and output layers, W is the
matrix of the network’s parameters; X and Y denote the input and output vectors, respectively.

The connection between two consecutive layers is performed by combining a linear matrix oper-
ation and a nonlinear activation function as follows:

fl(Xl|Wl) = h(Wl × Xl + bl) with l = 1, 2, . . . , L (2)

where Xl is the input of the l layer; bl is bias vector; and h denotes the nonlinear activation function.
In this study, one adopts the Rectified Linear Unit (ReLU) function for hidden layers and the softmax
function for the output layers.

Herein, the network parameters are computed in a supervised fashion, which means the structural
state is labeled in advance, then the database is divided into three groups, namely training, validation,
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and testing datasets. The values of network parameters are randomly initialized, then they are itera-
tively updated via the backpropagation algorithm to minimize the deviation denoted by a loss function
L between prediction values and annotated structural states. At a step t of the training process, the pa-
rameter values are updated by:

wi j
l (t) = wi j

l (t − 1) + ηδi
lx

j
l−1(t) (3)

where l denotes the layer number; δi
lis the error at node i of layer l, which is calculated backward from

the derivation at output layer δL; and η stands for the learning rate. The training process terminates
when a tolerable error level is met or the number of iterations reaches to a limit.

2.2. Dropout mechanism

In general, deep neural networks contain a large number of parameters, i.e. weight matrix W,
thus training such models requires a significant amount of available and well-curated data. If data is
limited, these are many possible configurations which can provide accurate results on training data,
but most of these formers eventually perform poorly on unseen testing data, namely the overfitting
phenomenon. To tackle these difficulties, one can adopt a combination approach averaging prediction
results of different configurations. Because a combined model is always more generalized than a sin-
gle one, it will improve the prediction performance. However, it also required significantly increasing
resources both in time and in efforts. More recently, Srivastava et al. [12] proposed the dropout mech-
anism which efficiently deals with limited data by providing a probability distribution rather than a
deterministic estimate. Then, the statistical properties such as the mean value and the standard devi-
ation of quantities of interest can be derived. In this way, one is able not only to obtain a predicted
result but also to assess how much the result confidence is. The mechanism of the dropout technique
is described in detail as follows.

Considering a node j in layer l, its state is independently sampled from a Bernoulli distribution
with a predefined probability p, as follows:

r(l)
j ∼ Bernoulli(p) (4)

where r(l)
j is a binary variable indicating the state of the considered node with 0 corresponding to be

dropped out, while 1 to be active. Then the input vector for layer l of the network is updated by:

X̃l = Xl ⊗ rl (5)

where ⊗ denotes the element-wise product, Xl are input values for layer l of the original plain network,
X̃l for updated dropout network. Then, Eq. (2) is rewritten as below,

fl (Xl|Wl) = h(Wl × X̃l + bl) (6)

The above process is repeated for every layer in the network architecture except the output layer.
After that, the network is trained by performing a number of iteration of forward-pass for calculating
output results and backward-pass to update the weight values W. Note that, at each iteration, differ-
ent nodes are eliminated with a probability p, forming a thinner architecture than the original plain
architecture.

Intuitively, the Dropout Network architecture can potentially improve the prediction ability thanks
to two-folds: i) it works as a regularization technique reducing the overfitting problem by not being
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over-relied on any node in the network structure, as it can be eliminated. ii) It is well-known that
for a specific database, there is a particular best-fitted architecture providing the highest prediction
accuracy, but it is not generalizable for other data. In contrast, the Dropout mechanism provides a
more generalized architecture but not necessarily larger as the effect of eliminating nodes, which can
provide non-optimal but satisfied prediction accuracy with different data.

3. Pushover analysis database

Pushover analysis (PA) is a widely used static procedure to approximate non-linear building lat-
eral deformations beyond the elastic range, up to the failure occurrence. Compared to elastic analysis,
PA can encompass more realistic behaviors including plastic hinges, non-linear constitutive law of
material, P-Delta effect, and staged construction depending user-defined tasks. In this study, to per-
form PA of structures, one adopts the open-source program OpenSees [13] credited by the Pacific
Earthquake Engineering Research Center thanks to its accurateness, openness, and high computation
speed, appreciated by the earthquake research community.
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Figure 2. Typical RC frame under a concentrated horizontal force at the top floor for pushover analysis

In this section, an example using OpenSees to carry out a PA is briefly demonstrated. Let’s take an
example of a 2-D asymmetric 3-story and 2-bay RC frame with a constant story height H, and its bay
widths B as shown in Fig. 2. The frame is subjected to uniformly distributed vertical load acting on
all its beams in addition to the self-weight. A concentrated horizontal force is applied at the leftmost
top floor.

The nonlinear constitutive law of steel is constructed using the model of Filippou et al. [14]. At
first, the behavior of the steel is approximated by a bilinear curve composed of a branch for an initial
linear elastic state with slope E0, and another branch for hardening state characterized by a ratio b
resulting in a slope E1 = bE0. Next, the transition between the two states is controlled by a curvature
parameter R0, as shown in Fig. 3(a). The values of b and R0 are initially adopted as 0.02 and 20 as
recommendations in general cases by [13].

The constitutive law of concrete is simulated using the Kent-Scott-Park model [15] composed of
three parts, as shown in Fig. 3(b) where negative and positive values denote compression and tension,
respectively. The elastic state of compression starts with an initial slope E0, reaching the maximum
strength of fpc, i.e., 28-day compressive strength, and the corresponding strain ε0. Mathematically, E0
can be calculated by the following equation:

E0 =
2 fpc

ε0
(7)
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After reaching '78, the strength decrease, while the compressive strain 
continuously increases up to 9:, so-called crushing strain, and respective crushing 
strength '78; = 0.2'78. On the other hand, the tensile behavior of concrete is modeled 
by a bilinear curve of which the initial branch has the same slope 34, after reaching the 
maximum tensile strength '?, the tensile strength decreases with a softening slope 3?@.   
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(a) Bilinear constitutive law of steel
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(b) Kent-Scott-Park model of concrete

Figure 3. Material’s elasto-plastic constitutive law

After reaching fpc, the strength decrease, while the compressive strain continuously increases up
to εu, so-called crushing strain, and respective crushing strength fpcU = 0.2 fpc. On the other hand,
the tensile behavior of concrete is modeled by a bilinear curve of which the initial branch has the
same slope E0, after reaching the maximum tensile strength ft, the tensile strength decreases with a
softening slope Ets.

In terms of section modelling, the section of RC element is simulated using the fiber approach
which is able to account for moment-curvature, axial force-deformation, and their interaction at the
same time [16] thus being superior than the uniaxial section approach calculating independently the
bending and normal stress. Specifically, each concrete section is decomposed into a predefined num-
ber of fibers, horizontally and vertically as shown in Fig. 4. For the rebar, the section is defined with ei-
ther steel evenly distributed around the perimeter as in columns or per-layer (top/intermediate/bottom)
as in beams.
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Figure 4. Fiber section modelling

The output of interest of the simulation is the pair (Dtop, Fbase), which are the drift ratio of the top
floor and the corresponding base shear. Fig. 5 depicts a typical relationship between Dtop and Fbase

during PA. It can be seen that with a small drift ratio (< 0.01), the base shear linearly increases with
increasing drift, after passing an yield point, a likely plateau region occurs before a softening trend
drives the structure’s behavior.
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In summary, the input for each simulation includes 15 variables, and the output is the correspond-
ing base shear. By varying randomly the values of 15 variables: the number of stories Ns in [1, 10], the
number of bays Nbay in [1, 6], the story height Hs in [2, 6] m, the column size Hcol in [300, 600] mm,
the beam height Hbeam in [300, 600] mm, the beam width Bbeam in [300, 600] mm, Young’s modulus
of steel Es in [180, 220] MPa, yield strength of steel fy [300, 400] MPa, tensile strength of concrete
ft in [2-5] MPa, compressive strength of concrete fc in [20-40] MPa, compressive strain of concrete
ε0 in [0.002, 0.004], crushing strain of concrete εu in [0.08, 0.12] and tensile strain of concrete εt

in [0.0002, 0.0003]. These ranges of values are taken from the literature and engineering practices
[17, 18]. In total, 1000 simulations with OpenSees are carried out, then the base shear is recorded for
10 values ratio drift from 0 to 5% with an increment of 0.5%, resulting in a database of 10000 lines
as shown in Table 1. This database is further divided into training/validation/test data with a widely
used ratio 8/1/1 for training the Dropout network.

Table 1. Pushover database for training the Dropout network obtained from FEM

No Ns Nbay
Hs

(m)
Lbay

(m)
Hcol

(m)
Hbeam

(m)
Bbeam

(m)

Steel Concrete

∆%
Fbase

kNE
GPa

fy

MPa
fc

MPa
ε0

%
ft

MPa
εt

%
εu

%

1 3 3 2 3 0.3 0.3 0.4 180 300 20 0.2 2 0.02 8 0.5 300
2 3 3 2 3 0.3 0.3 0.4 180 300 20 0.2 2 0.02 8 1 340
3 3 3 2 3 0.3 0.3 0.4 180 300 20 0.2 2 0.02 8 1.5 380

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Min 1 1 2 2 0.3 0.3 0.3 180 300 20 0.2 2 0.02 8 0.5 4
Max 10 6 6 6 0.6 0.6 0.6 220 400 40 0.4 5 0.03 12 5 717

4. Computational results

In this section, the training process and test results of the Dropout network are presented. For the
architecture of the network, a preliminary study conducted by the authors pointed out that an architec-
ture of 15/256/128/64/32/1, meaning 5 layers: input layer with 15 perceptrons for 15 variables and 4
hidden layers with the numbers of perceptrons are 256, 128, 64 and 32, respectively and output layer
is 1 corresponding to the base shear value. More detail of the grid search for selecting an appropriate
architecture of MLP can be found in [1]. For the value of Dropout probability, one adopts the value

36



Hung, D. V., et al. / Journal of Science and Technology in Civil Engineering

0.5 recommended by [12]. In terms of training process hyper-parameters, one used the Adam opti-
mizer with an initial learning rate l = 0.001, which was reduced by a factor of 0.01 when there was
no validation loss improvement for five consecutive iterations, and the total number of iterations is
300. The performance criteria, a.k.a, the loss function is defined using the mean square error (MSE)
measuring the average of the squared difference between the predicted base shears and actual values
as follows:

MS E =
1
N

N∑
i=1

(
Factual

base,i − F predict
base,i

)2
(8)

The evolution of the mean square error (MSE) between base shears predicted by the Dropout
network and those from the FEM model during the training process is depicted in Fig. 6. As expected,
the MSE decreases with increasing numbers of iterations; in addition, the histogram of base shears
predicted are also plotted at the bottom, visually show the improvement of the model’s performance.
At the end of the training process, an excellent agreement between results is apparently observed.
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training process, an excellent agreement between results is apparently observed. 

After the training process, the Dropout network is validated using experimental 
PA results reported in [19]. The experiment consists of a 2-story and 2-bay RC frame, 
as shown in Figure 7 with detailed dimensions, whose columns’ cross-sections is 
400´400 mm2 with 10-D19 rebar and beams’ cross-section is 300´400 mm2 with 8-D19 
rebar, respectively.  

The comparison results are illustrated in Figure 8, showing a very good agreement 
between the experimental curve and the prediction curve from the present method. In 
addition, corresponding 90% confidence interval (CI), represented by shaded area is also 
derived by repeating the inference 100 times, each time the architecture of the network 

Figure 6. Evolution of mean square error (MSE) between the Dropout network’s results and those of FEM
model during training process

After the training process, the Dropout network is validated using experimental PA results re-
ported in [19]. The experiment consists of a 2-story and 2-bay RC frame, as shown in Fig. 7 with
detailed dimensions, whose columns’ cross-sections is 400 × 400 mm2 with 10-D19 rebar and beams’
cross-section is 300 × 400 mm2 with 8-D19 rebar, respectively.

The comparison results are illustrated in Fig. 8, showing a very good agreement between the
experimental curve and the prediction curve from the present method. In addition, corresponding 90%
confidence interval (CI), represented by shaded area is also derived by repeating the inference 100
times, each time the architecture of the network is stochastically altered by the Dropout mechanism.
As is known, 90% CI means there is a 90% probability that the actual value of concerned quantity
lies within the CI.

Note that the elastic period has relatively small CI than the plastic zone, i.e., less uncertainty, and
the CI is widened as the structure is more damaged. In short, this comparison result reliably confirms
the accuracy of the present Dropout network.
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parameter is modified each time, while the other inputs remain the same as the 
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Figure 7. Experimental RC frame [19]

Next, the Dropout network is used to perform parametric studies, providing more insights about
the influences of main input parameters on structures’ non-linear behavior. Starting from the above
two-bay RC frame, one varies the story height, the number of stories, the column size, and the bay
width, then calculates the base shear corresponding to 5% drift ratio, and plots evolution curves.
For clarity, only one parameter is modified each time, while the other inputs remain the same as the
experimental model.
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Meanwhile, the bay width interestingly shows two regimes: an upward trend from 2 to 
4 m, then a gradual downward trend. Similar parametric studies for other parameters or 
even multiple parameters can be carried out with the help of the Dropout network 
depending on users’ interests. 
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well-known nonlinear mapping capacity of the neural network, providing a novelty 
alternative to the conventional model-based methods. Knowing that training data is of 
paramount importance for any data-driven approach, a rigorous numerical simulation 
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engineering community accounting for the nonlinearity of both concrete and steel 
materials, as well as the forming of plastic hinges. The simulation suite results in a 
10000-sample database sufficiently large for training a data-driven model. 

Figure 8. Base shear at 5% drift ratio in the functions of input parameters

Fig. 8 demonstrates the evolution of base shear at a 5% drift ratio in the functions of these inves-
tigated parameters. It can be seen that the base shear decreases with increasing story height, though
a greater story height meaning a larger lateral displacement. This implied that the columns lost their
strength with such large displacement. A decreasing trend of base shear is also observed as the num-
ber of stories increases, but with a significantly slow rate owing to the story beams contributing
to the frame’s lateral rigidity and reduce columns’ slenderness. In contrast, increasing column size
strengthen the frame rigidity; thus, the base shear manifests an upward tendency. Meanwhile, the bay
width interestingly shows two regimes: an upward trend from 2 to 4 m, then a gradual downward
trend. Similar parametric studies for other parameters or even multiple parameters can be carried out
with the help of the Dropout network depending on users’ interests.
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5. Conclusions

In this study, a data-driven approach for pushover analysis of RC frames is investigated by leverag-
ing the probabilistic nature of the Dropout mechanism and the well-known nonlinear mapping capac-
ity of the neural network, providing a novelty alternative to the conventional model-based methods.
Knowing that training data is of paramount importance for any data-driven approach, a rigorous nu-
merical simulation suite has been carried out using the reliable OpenSees software accredited by the
engineering community accounting for the nonlinearity of both concrete and steel materials, as well
as the forming of plastic hinges. The simulation suite results in a 10000-sample database sufficiently
large for training a data-driven model.

After being trained, the Dropout network is validated through a comparison with experimental
measurement published in the literature, which confirms its accuracy and also displays the respective
confidence interval, which offers a margin of safety for design solutions. Next, parametric studies are
conducted with the help of the present method whose results reveal more insight into the structures’
behavior, such as the relationship between the number of stories and the base shear, the effect of
column size, and material properties in reducing the base shear. For the type of structure considered
in this study, one posits that there are a positive correlation between the lateral rigidity of the structure
with column sizes, a negative correlation with the story height, and a bimodal positive-then-negative
correlation with the bay width.

In the future, it is interesting to extend the method to structures’ behavior under cyclic loads
or even under extreme loading as ground motions, shock loading, but a more sophisticated neural
network architecture will be resorted. Another promising direction is to account for multiple criteria
rather than a single pair (Dtop, Fbase) as done in the real design process of structures for which an
ensemble of dropout models will be developed; each model specifically solves a single criterion.
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Appendix A.

As a second validation case, one compares the Dropout network with a FEM unseen on training
data in performing pushover analysis. The structure of interest has 9 stories with input parameters are
listed in Table A.1. The figure show that the predicted results encompasses those from FEM, thus
confirming the credibility of the proposed approach.

Table A.1. Input parameters for validation case with FEM

No Ns Nbay
Hs

(m)
Lbay

(m)
Hcol

(m)
Hbeam

(m)
Bbeam

(m)

Steel Concrete

E
GPa

fy
MPa

fc
MPa

ε0
%

ft
MPa

εt

%
εu

%

1 9 3 2 3.2 0.35 0.3 0.25 200 460 27.5 0.2 2 0.02 8
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Figure 9. Validation results of Dropout network using FEM model. 

References 

[1] Hung, D. V., Hung, H. M., Anh, P. H., & Thang, N. T. (2020). Structural damage detection 
using hybrid deep learning algorithm. Journal of Science and Technology in Civil 

Engineering (STCE)-NUCE, 14(2), 53-64. 

[2] Hung, T. V., Viet, V. Q., & Thuat, D. V. (2019). A deep learning-based procedure for 
estimation of ultimate load carrying of steel trusses using advanced analysis. Journal of 

Science and Technology in Civil Engineering (STCE) - NUCE, 13(3), 113-123.  

[3] Javidan, M. M., Kang, H., Isobe, D., & Kim, J. (2018). Computationally efficient framework 
for probabilistic collapse analysis of structures under extreme actions. Engineering 

Structures, 172, 440-452. 

[4] Mangalathu, S., & Burton, H. V. (2019). Deep learning-based classification of earthquake-
impacted buildings using textual damage descriptions. International Journal of Disaster 

Risk Reduction, 36, 101111. 

[5] Feng, D. C., Xie, S. C., Deng, W. N., & Ding, Z. D. (2019). Probabilistic failure analysis of 
reinforced concrete beam-column sub-assemblage under column removal 
scenario. Engineering Failure Analysis, 100, 381-392. 

[6] Brunesi, E., Nascimbene, R., Parisi, F., & Augenti, N. (2015). Progressive collapse fragility 
of reinforced concrete framed structures through incremental dynamic analysis. Engineering 

Structures, 104, 65-79. 

[7] Guo, Z., Gao, R., Zhang, X., & Jia, X. (2018). Fire Resistances of Restrained Steel Beams 
Subjected to Fire Loads. KSCE Journal of Civil Engineering, 22(8), 3028-3038. 

[8] Worrell, C., Luangkesorn, L., Haight, J., & Congedo, T. (2019). Machine learning of fire 
hazard model simulations for use in probabilistic safety assessments at nuclear power 
plants. Reliability Engineering & System Safety, 183, 128-142. 

[9] Fu, F. (2020). Fire induced progressive collapse potential assessment of steel framed 
buildings using machine learning. Journal of Constructional Steel Research, 166, 105918. 

Figure A.1. Validation results of Dropout network using FEM model

40

http://proceedings.mlr.press/v48/gal16.pdf
http://proceedings.mlr.press/v48/gal16.pdf
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
http://opensees.berkeley.edu
https://www.engineeringtoolbox.com/concrete-properties-d_1223.html
https://doi.org/10.1007/s40069-016-0149-4
https://doi.org/10.1007/s40069-016-0149-4
https://doi.org/10.1007/s11803-013-0179-8
https://doi.org/10.1007/s11803-013-0179-8

	Introduction
	Dropout Neural Networks
	Deep Neural Networks (DNN)
	Dropout mechanism

	Pushover analysis database
	Computational results
	Conclusions
	

