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Abstract

Free vibration of bidirectional functionally graded sandwich (BFGSW) beams is studied by using a first-order
shear deformation finite element formulation. The beams consist of three layers, a homogeneous core and two
functionally graded skin layers with material properties varying in both the longitudinal and thickness direc-
tions by power gradation laws. The finite element formulation with the stiffness and mass matrices evaluated
explicitly is efficient, and it is capable of giving accurate frequencies by using a small number of elements.
Vibration characteristics are evaluated for the beams with various boundary conditions. The effects of the
power-law indexes, the layer thickness ratio, and the aspect ratio on the frequencies are investigated in detail
and highlighted. The influence of the aspect ratio on the frequencies is also examined and discussed.
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1. Introduction

With the development in the manufacturing methods [1, 2], functionally graded materials (FGMs)
can be incorporated in the sandwich construction to improve the performance of the structural com-
ponents. The functionally graded sandwich (FGSW) structures can be designed to have a smooth
variation of material properties among layer interfaces, which helps to eliminate the interface separa-
tion of the conventional sandwich structures. Many investigations on mechanical vibration of FGSW
structures have been reported in the literature, contributions that are most relevant to the present work
are discussed below.

Amirani et al. [3] studied free vibration of FGSW beam with a functionally graded core with
the aid of the element free Galerkin method. Based on Reddy-Birkford shear deformation theory,
Vo et al. [4] presented a finite element model for free vibration and buckling analyses of FGSW
beams. In [5], the thickness stretching effect was included in the shear deformation theory in the
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analysis of FGSW beams. A hyperbolic shear deformation beam theory was used by Bennai et al.
[6] to study free vibration and buckling of FGSW beams. Trinh et al. [7] evaluated the fundamental
frequency of FGSW beams by using the state space approach. The modified Fourier series method
was adopted by Su et al. [8] to study free vibration of FGSW beams resting on a Pasternak foundation.
The authors used both the Voigt and Mori-Tanaka models to estimate the effective material properties
of the beams. A finite element formulation based on hierarchical displacement field was derived by
Mashat et al. [9] for evaluating natural frequencies of laminated and sandwich beams. The accuracy
and efficiency of the formulation were shown through the numerical investigation. Şimşek and Al-
shujairi [10] investigated bending and vibration of FGSW beams using a semi-analytical method.
Based on various shear deformation theories, Dang and Huong [11] studied free vibration of FGSW
beams with a FGM porous core and FGM faces resting on Winkler foundation. Navier’s solution has
been used by the authors for obtaining frequencies of the beams.

The FGM beams discussed in the above references, however, have material properties varying in
the thickness direction only. These unidirectional FGM beams are not efficient to withstand the multi-
directional loadings. The bidirectional FGM beam models with the volume fraction of constituents
varying in both the thickness and longitudinal directions have been proposed and their mechanical be-
haviour was investigated recently. Şimşek [12] studied vibration of Timoshenko beam under moving
forces by considering the material properties varying in both the length and thickness directions by an
exponential function. Free vibration analysis of bidirectional FGM beams was investigated by Kara-
manli [13] using a third-order shear deformation. Hao and Wei [14] assumed an exponential variation
for the material properties in both the thickness and length directions in vibration analysis of FGM
beams. Nguyen et al. [15] studied forced vibration of Timoshenko beams under a moving load, in
which the beam model is assumed to be formed from four different materials with material properties
varying in both the thickness and longitudinal directions by power-law functions. A finite element
formulation was derived by the authors to compute the dynamic response of the beams. Nguyen and
Tran [16, 17] studied free vibration of bidirectional FGM beams using the shear deformable finite
element formulations. The effects of longitudinal variation of cross-section and temperature rise have
been taken into consideration in [16, 17], respectively.

In this paper, free vibration of bidirectional functionally graded sandwich (BFGSW) beams is
studied by using a finite element formulation. The beams made from three distinct materials are
composed of three layers, a homogeneous core and two bidirectional FGM face layers with material
properties varying in both the thickness and longitudinal directions by power gradation laws. Based
on the first-order shear deformation theory, a finite element formulation is derived and employed to
compute the vibration characteristics of the beams with various boundary conditions. The accuracy
of the derived formulation is validated by comparing obtained results with those in the references.
A parametric study is carried out to show the effects of the material indexes, the layer thickness and
aspect ratios on the vibration behaviour of the beams.

2. Mathematical formulation

A BFGSW beam with length L, rectangular cross-section (b × h) as illustrated in Fig. 1 is con-
sidered. The beam is assumed to be made from three materials, material 1 (M1), material 2 (M2),
and material 3 (M3). The beam consists of three layers, a homogenous core of M1 and two BFGM
skin layers of M1, M2, and M3. Denote z0, z1, z2, z3, in which z0 = −h/2, z3 = h/2, as the vertical
coordinates of the bottom surface, interfaces, and top face, respectively.
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for z ∈ [z0, z1]



V (1)
1 =

(
z − z0

z1 − z0

)nz

V (1)
2 =

[
1 −

(
z − z0

z1 − z0

)nz
] [

1 −
( x

L

)nx
]

V (1)
3 =

[
1 −

(
z − z0

z1 − z0

)nz
] ( x

L

)nx

for z ∈ [z1, z2] V (2)
1 = 1,V (2)

2 = V (2)
3 = 0

for z ∈ [z2, z3]



V (3)
1 =

(
z − z3

z2 − z3

)nz

V (3)
2 =

[
1 −

(
z − z3

z2 − z3

)nz
] [

1 −
( x

L

)nx
]

V (3)
3 =

[
1 −

(
z − z3

z2 − z3

)nz
] ( x

L

)nx

(1)

where V1, V2, and V3 are, respectively, the volume fraction of the M1, M2, and M3; nx and nz are
the material grading indexes, defining the variation of the constituents in the x and z directions,
respectively. The model defines a softcore sandwich beam if M1 is a metal and a hardcore one if
M1 is a ceramic. The variations of the volume fractions V1,V2, and V3 in the thickness and length
directions are illustrated in Fig. 2 for nx = nz = 0.5, and z1 = −h/6, z2 = h/6.
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Figure 2. Variation of the volume fractions V1,V2, and V3 of BFGSW beam for
nx = nz = 0.5, z1 = −h/6, z = h/6
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The effective properties P(k)
f of the kth layer (k = 1 : 3) evaluated by Voigt’s model are of the form

P(k)
f = P1V (k)

1 + P2V (k)
2 + P3V (k)

3 (2)

where P1, P2, and P3 are the properties such as elastic moduli and mass density of M1, M2, and M3,
respectively 
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)nz
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where
P23(x) = P2 − (P2 − P3)

( x
L

)nx

(4)

Based on the first-order shear deformation theory, the displacements in the x and z directions,
u(x, z, t) and w(x, z, t) are given by

u(x, z, t) = u0(x, t) − zθ; w(x, z, t) = w0(x, t) (5)

where u0 (x, t) ,w0(x, t) are, respectively, the axial and transverse displacements of a point on the x-
axis; t is the time variable, and θ is the cross-sectional rotation.

The axial strain and shear strain resulted from Eq. (5) are

εxx = u0,x − zθ,x
γxz = w0,x − θ

(6)

Based on the Hooke’s law, the axial and shear stresses, σxx and τxz, are of the form{
σxx

τxz

}
=

 E(k)
f (x, z) 0

0 ψG(k)
f (x, z)

 { εxx

γxz

}
(7)

where σxx and τxz are, respectively, the axial and shear stresses, E(k)
f , G(k)

f are the effective Young and
shear moduli, given by Eq. (3); ψ is the shear correction factor, chosen by 5/6 for the beam with the
rectangular cross-section.

The strain energy (U) of the FGSW beam is then given by

U =
1
2

L∫
0

∫
A

(σxxεxx + γzxτxz)dAdx

=
1
2

L∫
0

[
A11u2

0,x − 2A12u0,xθ,x + A22θ
2
,x + ψA33

(
w0,x − θ

)2
]
dx

(8)
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where A = bh is the cross-sectional area; A11, A12, A22, and A33 are, respectively, the extensional,
extensional-bending coupling, bending, and shear rigidities, defined as

(A11, A12, A22) = b
3∑

k=1

zk∫
zk−1

E(k)
f (x, z)

(
1, z, z2

)
dz

A33 = b
3∑

k=1

zk∫
zk−1

G(k)
f (x, z)dz

(9)

Substituting E(k)
f and G(k)

f from Eq. (3) into (9), one can write the rigidities in the form

Ai j = AM1
i j + AM2

i j + AM1M2
i j + AM2M3

i j

( x
L

)nx

, (i, j = 1, ..., 3) (10)

where AM1
i j , A

M2
i j , A

M1M2
i j , and AM2M3

i j are, respectively, the rigidities contributed from M1, M2, and
M3, and their couplings of the FGM beam with the material properties varying in the thickness
direction only. These terms can be explicitly evaluated, and their expressions are given by Eqs. (A.1)
to (A.4) in Appendix A.

The kinetic energy resulted from Eq. (5) is of the form

T =
1
2

L∫
0

∫
V

ρ(k)
f (x, z)

(
u̇2 + ẇ2

)
dAdx =

1
2

L∫
0

[
I11

(
u̇2

0 + ẇ2
0

)
− 2I12u̇0 θ̇ + I22θ̇

2
]

dx (11)

where an over is used to denote the derivative with respect to time variable t and ρ(k)
f is the mass

density. I11, I12, I22 are the mass moments, defined as

(I11, I12, I22) = b
3∑

k=1

zk∫
zk−1

ρ(k)
f (x, z)

(
1, z, z2

)
dz (12)

As the rigidities, the above mass moments can also be written in the form

Ii j = IM1
i j + IM2

i j + IM1M2
i j + IM2M3

i j

( x
L

)nx

, (i, j = 1, ..., 3) (13)

where IM1
i j , IM2

i j , IM1M2
i j , IM2M3

i j are given by Eqs. (A.5)–(A.7) in Appendix A.

3. Finite element formulation

Assume that the beam is being divided into nELE elements with length of l. The vector of nodal
displacements for a two-node generic beam element, (i, j), contains six components as

d =
{

ui wi θi u j w j θ j
}T

(14)

where ui,wi, and θi are the values of u0,w0, and θ at the node i; u j,w j, and θ j are the corresponding
values of these quantities at the node j. The superscript “T” in Eq. (14) and hereafter is used to
indicate the transpose of a vector or a matrix.
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The displacements u0(x, t),w0(x, t) and the rotation θ(x, t) are interpolated as

u0 = NT
u d; w0 = NT

wd; θ = NT
θ d (15)

where Nu = {Nu1,Nu2}, Nw = {Nw1,Nw2,Nw3,Nw4}, and Nθ = {Nθ1,Nθ2,Nθ3,Nθ4} are the matrices of
interpolating functions for u0,w0, and θ herein. The following polynomials are adopted in the present
work.

- Axial displacement u0

Nu1 =
x
l
; Nu2 = 1 −

x
l

(16)

- Transverse displacement w0

Nw1 =
1

(1 + λ)

[
2
( x

l
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− 3

( x
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( x
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)
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]
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−
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) ( x
l
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+

(
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2

) ( x
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)]
Nw2 =
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−

(
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2

) ( x
l

)2
−
λ

2

( x
l
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(17)

- Rotation θ

Nθ1 =
6

(1 + λ) l

[( x
l

)2
−

( x
l

)]
; Nθ2 = −

1
(1 + λ)

[
3
( x

l

)2
− (4 + λ)

( x
l

)
+ (1 + λ)

]
Nθ3 = −

6
(1 + λ) l

[( x
l

)2
−

( x
l

)]
; Nθ4 =

1
(1 + λ)

[
3
( x

l

)2
− (2 + λ)

( x
l

)] (18)

where λ = 12A22/
(
l2ψA33

)
. The cubic and quadratic polynomials in Eqs. (17) and (18) were derived

by Kosmatka [18], and have been employed by several authors to formulate finite element formula-
tions for analysis of FGM beams, e.g. Shahba et al. [19], Nguyen et al. [15].

Based on Eq. (14), one can write the strain and kinetic energies in Eqs. (8) and (11) in the forms

U =
1
2

nELE∑
i=1

dT kd; T =
1
2

nELE∑
i=1

ḋT mḋ (19)

with the element stiffness and mass matrices k and m can be written in the forms

k = k11 + k12 + k22 + k33 (20)

m = m11 +m12 +m22 (21)

where

k11 =

l∫
0

NT
u,xA11Nu,xdx; k12 = −

l∫
0

NT
u,xA12Nθ,xdx

k22 =

l∫
0

Nθ,x
T A22Nθ,xdx; k33 =

l∫
0

(
Nw,x − Nθ

)TψA33
(
Nw,x − Nθ

)
dx

(22)
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and

m11 =

l∫
0

(
NT

u I11Nu + NT
w I11Nw

)
dx; m12 = −

l∫
0

NT
u I12Nθdx; m22 =

l∫
0

Nθ
T I22Nθdx (23)

The equations of motion for the beam in the discrete form is as follows

MD̈ +KD = 0 (24)

where D, D̈,M and K are, respectively, the structural vectors of nodal displacements and accelerations,
mass, and stiffness matrices. Assuming a harmonic form for vector of nodal displacements, Eq. (24)
leads to an eigenvalue problem for determining the frequency ω as(

K − ω2M
)

D̄ = 0 (25)

where ω is the circular frequency and D̄ is the vibration amplitude. Eq. (14) leads to an eigenvalue
problem, and its solution can be obtained by the standard method.

4. Numerical results

In this section, a soft core BFGSW beam made from aluminum (Al), zirconia (ZrO2), and alumina
(Al2O3) (as M1, M2, and M3, respectively) with the material properties of these constituent materials
listed in Table 1 is employed in the numerical investigation. Three types of boundary conditions,
namely simply supported (SS), clamped-clamped (CC), and clamped-free (CF) are considered.

Table 1. Properties of constituent materials of BFGSW beam

Materials Note E (GPa) ρ (kg/m3) v

Alumina M1 380 3960 0.3
ZrO2 M2 150 3000 0.3

Aluminum M3 70 2702 0.3

The non-dimensional frequency in this work is defined according to [4] as

µi =
ωiL2

h

√
ρAl

EAl
(26)

where ωi is the ith natural frequency. Three numbers in the brackets as introduced in Ref. [4, 5] are
used herein to denote the layer thickness ratio, e.g. (1-2-1) means that the thickness ratio of the layers
from bottom to top surfaces is 1:2:1.

Before computing the vibration characteristics of BFGSW beams, the accuracy of the derived for-
mulation needs to be verified. Since there is no data on the frequencies of the present beam available
in the literature, the verification is carried for a special case of a unidirectional FGSW beam. Since
Eq. (1) results in V2 = 0 when nx = 0, and in this case the BFGSW beam becomes a unidirectional
FGSW beam formed from M1 and M3 with material properties varying in the thickness direction only.
Thus, the frequencies of the unidirectional FGSW beam can be obtained from the present formulation
by simply setting nx to zero. Table 2 compares the fundamental frequency of the unidirectional FGSW
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Table 2. Comparison of dimensionless fundamental frequencies for unidirectional FGM sandwich beam

nz Source (1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-8-1)

0.5
Ref. [4] 4.8579 4.7460 4.6294 4.4611 4.4160 3.7255
Present 4.8646 4.7545 4.6390 4.4689 4.4248 3.7282

1
Ref. [4] 5.2990 5.2217 5.1160 4.9121 4.8938 4.0648
Present 5.3061 5.2325 5.1296 4.9232 4.9080 4.0702

2
Ref. [4] 5.5239 5.5113 5.4410 5.2242 5.2445 4.3542
Present 5.5293 5.5218 5.4559 5.2365 5.2627 4.3627

5
Ref. [4] 5.5645 5.6382 5.6242 5.4166 5.4843 4.5991
Present 5.5672 5.6462 5.6375 5.4278 5.5038 4.6109

10
Ref. [4] 5.5302 5.6382 5.6621 5.4667 5.5575 4.6960
Present 5.5316 5.6414 5.6738 5.4766 5.5765 4.7094

beam with L/h = 20 obtained in the present work with that of Ref. [4] for various values of the layer
thickness ratio. Very good agreement between the result of the present work with that of Ref. [4] is
noted from Table 2.

Table 3 shows the convergence of the derived formulation in evaluating the fundamental frequency
parameter of the BFGSW beam. As seen from the table, the convergence is achieved by using 26
elements, regardless of the material indexes and the thickness ratio. In this regard, 26 elements are
used in all the computations reported below.

Table 3. Convergence of the formulation in evaluating frequencies of BFGSW beam

(h1 : h2 : h3) nx nz nELE = 16 nELE = 18 nELE = 20 nELE = 22 nELE = 24 nELE = 26

(2-1-2)

1/3 4.0588 4.0587 4.0586 4.0585 4.0585 4.0585
0.5 1 4.8336 4.8334 4.8333 4.8331 4.8330 4.8330

3 5.1781 5.1779 5.1778 5.1777 5.1776 5.1776

1/3 3.8594 3.8593 3.8592 3.8592 3.8592 3.8592
1 1 4.5370 4.5368 4.5367 4.5366 4.5365 4.5365

3 4.8517 4.8515 4.8514 4.8513 4.8511 4.8511

(2-2-1)

1/3 3.8588 3.8587 3.8586 3.8585 3.8585 3.8585
0.5 1 4.5648 4.5646 4.5645 4.5643 4.5642 4.5642

3 4.9436 4.9434 4.9432 4.9430 4.9429 4.9429

1/3 3.6905 3.6904 3.6903 3.6902 3.6902 3.6902
1 1 4.3028 4.3027 4.3025 4.3024 4.3023 4.3023

3 4.6407 4.6405 4.6403 4.6402 4.6401 4.6401

To investigate the effects of the material grading indexes and the layer thickness ratio on the fun-
damental frequencies, different types of symmetric and non-symmetric BFGSW beam with various
boundary conditions are considered. The numerical results of fundamental frequency parameters of
the BFGSW beam with an aspect ratio L/h = 20 are given in Tables 4, 5, and 6 for the SS, CC, and
CF beams, respectively. As seen from the tables, the frequency parameter increases by increasing the
index nz, but it decreases by the increase of the nx, irrespective of the layer thickness ratio and the
boundary condition. An increase of frequencies by the increase of the index nz can be explained by
the change of the effective Young’s modulus as shown by Eqs. (1) and (3). When index nz increases,

143



Anh, L. T. N., et al. / Journal of Science and Technology in Civil Engineering

Table 4. Fundamental frequency parameters of SS beam with L/h = 20 for various grading indexes and layer
thickness ratios

nx nz (1-0-1) (2-1-2) (2-1-1) (1-1-1) (2-2-1) (1-2-1) (1-8-1)

1/3

0 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371
1/3 4.2644 4.1609 4.0616 4.0627 3.9452 3.8946 3.3997
0.5 4.6413 4.5371 4.4106 4.4294 4.2789 4.2334 3.6104
1 5.0560 4.9807 4.8278 4.8811 4.6957 4.6736 3.9137
2 5.2742 5.2562 5.0967 5.1877 4.9881 5.0017 4.1756
5 5.3221 5.3818 5.2365 5.3639 5.1705 5.2287 4.3998

0.5

0 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371
1/3 4.1562 4.0584 3.9673 3.9663 3.8584 3.8093 3.3516
0.5 4.5119 4.4119 4.2951 4.3097 4.1708 4.1253 3.5457
1 4.9079 4.8328 4.6903 4.7365 4.5640 4.5388 3.8266
2 5.1208 5.0980 4.9480 5.0295 4.8423 4.8496 4.0705
5 5.1728 5.2224 5.0847 5.2005 5.0180 5.0668 4.2801

1

0 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371
1/3 3.9446 3.8591 3.7838 3.7796 3.6902 3.6454 3.2606
0.5 4.2549 4.1649 4.0674 4.0749 3.9588 3.9149 3.4227
1 4.6086 4.5363 4.4152 4.4484 4.3022 4.2726 3.6593
2 4.8062 4.7766 4.6470 4.7102 4.5494 4.5460 3.8667
5 4.8634 4.8954 4.7744 4.8679 4.7087 4.7405 4.0464

5

0 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371
1/3 3.4621 3.4076 3.3665 3.3587 3.3095 3.2785 3.0601
0.5 3.6597 3.5980 3.5429 3.5394 3.4736 3.4391 3.1500
1 3.8999 3.8425 3.7705 3.7797 3.6933 3.6621 3.2854
2 4.0476 4.0120 3.9314 3.9583 3.8595 3.8409 3.4080
5 4.1053 4.1061 4.0272 4.0740 3.9725 3.9742 3.5172

Table 5. Fundamental frequency parameters of CC beam with L/h = 20 for various grading indexes and layer
thickness ratios

nx nz (1-0-1) (2-1-2) (2-1-1) (1-1-1) (2-2-1) (1-2-1) (1-8-1)

1/3

0 6.3496 6.3496 6.3496 6.3496 6.3496 6.3496 6.3496
1/3 9.3196 9.0997 8.8966 8.8931 8.6518 8.5415 7.5147
0.5 10.1077 9.8836 9.6252 9.6555 9.3469 9.2443 7.9501
1 10.9797 10.8123 10.4993 10.5981 10.2180 10.1592 8.5770
2 11.4450 11.3945 11.0668 11.2425 10.8322 10.8444 9.1188
5 11.5559 11.6664 11.3665 11.6179 11.2191 11.3221 9.5832

0.5

0 6.3496 6.3496 6.3496 6.3496 6.3496 6.3496 6.3496
1/3 9.0837 8.8777 8.6919 8.6855 8.4645 8.3596 7.4142
0.5 9.8209 9.6084 9.3709 9.3941 9.1104 9.0104 7.8140
1 10.6458 10.4817 10.1919 10.2771 9.9255 9.8630 8.3916
2 11.0945 11.0363 10.7307 10.8867 10.5050 10.5063 8.8928
5 11.2116 11.3021 11.0203 11.2472 10.8738 10.9587 9.3238

1

0 6.3496 6.3496 6.3496 6.3496 6.3496 6.3496 6.3496
1/3 8.7556 8.5676 8.4056 8.3944 8.2014 8.1036 7.2722
0.5 9.4249 9.2255 9.0168 9.0289 8.7795 8.6821 7.6217
1 10.1905 10.0259 9.7678 9.8314 9.5186 9.4489 8.1299
2 10.6243 10.5478 10.2718 10.3970 10.0533 10.0361 8.5740
5 10.7591 10.8122 10.5537 10.7421 10.4016 10.4565 8.9585

5

0 6.3496 6.3496 6.3496 6.3496 6.3496 6.3496 6.3496
1/3 8.1605 8.0039 7.8848 7.8646 7.7221 7.6372 7.0127
0.5 8.7067 8.5295 8.3727 8.3640 8.1763 8.0836 7.2705
1 9.3670 9.1979 8.9973 9.0203 8.7777 8.6939 7.6519
2 9.7790 9.6629 9.4408 9.5067 9.2319 9.1790 7.9917
5 9.9553 9.9296 9.7133 9.8266 9.5453 9.5418 8.2914
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the volume fractions of Al2O3 and ZrO2 also increase. Since Young’s modulus of Al is much lower
than that of Al2O3 and ZrO2, the effective modulus increases by increasing nz and this leads to the
increase of the beam rigidities. The mass moments also increase by increasing the index nz, but this
increase is much lower than that of the rigidities. As a result, the frequencies increase by increasing
nz. The decrease of the frequencies by increasing nx can be also explained by a similar argument.
The numerical results in Tables 4 to 6 reveal that the variation of the material properties in the length
direction plays an important role in the frequencies of the BFGSW beams, and the desired frequency
can be obtained by approximate choice of the material grading indexes.

Table 6. Fundamental frequency parameters of CF beam with L/h = 20 for various grading indexes and layer
thickness ratios

nx nz (1-0-1) (2-1-2) (2-1-1) (1-1-1) (2-2-1) (1-2-1) (1-8-1)

1/3

0 1.0130 1.0130 1.0130 1.0130 1.0130 1.0130 1.0130
1/3 1.4143 1.3863 1.3588 1.3592 1.3265 1.3119 1.1716
0.5 1.5208 1.4934 1.4581 1.4639 1.4220 1.4090 1.2316
1 1.6363 1.6189 1.5760 1.5926 1.5409 1.5352 1.3186
2 1.6941 1.6949 1.6500 1.6788 1.6231 1.6289 1.3940
5 1.7014 1.7265 1.6857 1.7263 1.6726 1.6927 1.4585

0.5

0 1.0130 1.0130 1.0130 1.0130 1.0130 1.0130 1.0130
1/3 1.3444 1.3215 1.2990 1.2990 1.2723 1.2598 1.1433
0.5 1.4339 1.4115 1.3825 1.3870 1.3526 1.3412 1.1932
1 1.5313 1.5175 1.4819 1.4958 1.4531 1.4477 1.2658
2 1.5795 1.5817 1.5442 1.5688 1.5226 1.5271 1.3291
5 1.5841 1.6077 1.5735 1.6087 1.5640 1.5812 1.3835

1

0 1.0130 1.0130 1.0130 1.0130 1.0130 1.0130 1.0130
1/3 1.2549 1.2383 1.2220 1.2218 1.2025 1.1928 1.1070
0.5 1.3226 1.3064 1.2852 1.2883 1.2632 1.2540 1.1438
1 1.3969 1.3876 1.3611 1.3715 1.3400 1.3352 1.1978
2 1.4332 1.4368 1.4086 1.4278 1.3933 1.3963 1.2455
5 1.4349 1.4559 1.4299 1.4582 1.4247 1.4381 1.2869

5

0 1.0130 1.0130 1.0130 1.0130 1.0130 1.0130 1.0130
1/3 1.1854 1.1723 1.1607 1.1596 1.1459 1.1379 1.0765
0.5 1.2387 1.2249 1.2094 1.2102 1.1920 1.1836 1.1023
1 1.3003 1.2904 1.2704 1.2763 1.2525 1.2463 1.1414
2 1.3334 1.3327 1.3107 1.3231 1.2964 1.2954 1.1767
5 1.3390 1.3516 1.3307 1.3503 1.3236 1.3304 1.2080

Tables 4 to 6 also show an important role of the layer thickness ratio on the frequency of the
sandwich beam. A larger core thickness the beam has a smaller frequency parameter is, regardless of
the material index and the boundary conditions. However, the change of the frequency parameter by
the change of the layer thickness ratio is different between the symmetrical and asymmetrical beams.

The variation of the first four frequency parameters µi (i = 1..4) with the material grading indexes
is displayed in Figs. 3–5 for the SS, CC, and CF beams, respectively. The figures are obtained for the
(2-1-2) beams with an aspect ratio L/h = 20. The dependence of the higher frequency parameters
upon the grading indexes is similar to that of the fundamental frequency parameter. All the frequency
parameters increase by increasing the index nz, and they decrease by the increase of the index nx,
regardless of the boundary conditions.
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To show the influence of the aspect ratio on frequencies, the variation of fundamental frequency
parameter with aspect ratio of the SS and CC beams is depicted in Fig. 6 for and various layer thickness
ratios. We can see from the figure that the frequency parameter of the beams increases by the increase
of the aspect ratio. The layer thickness ratio can change the frequency, but it hardly changes the
dependence of the frequency on the aspect ratio. The result in Fig. 6 shows the good ability of the
derived finite element formulation in modelling the effect of the shear deformation on the frequency
of the BFGSW beam.
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Figure 7. Three first mode shapes of (1-1-1) SS beam

In Fig. 7, the first three vibration modes for the transverse displacement w0, axial displacement u0,
and rotation θ of the (1-1-1) SS beam are shown for two pairs of the grading indexes, (nx = 0, nz = 2)
and (nx = 2, nz = 2). When nx = 0, the beam becomes a unidirectional FGSW beam formed from
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M1 and M3, and thus Fig. 7 illustrates the vibration modes of the unidirectional FGSW beam. The
effect of the variation of the material properties in the longitudinal direction can be seen by comparing
Fig. 7(a) and Fig. 7(b). The symmetrical shape with respect to the mid-line of the first mode of the
transverse displacement w0 and rotation θ as seen in Fig. 7(a) is no longer seen for the BFGSW beam
in Fig. 7(b). Fig. 8 displays three first mode shapes of (1-2-1) BFGSW beam for(nx, nz) = (1, 3) and
(nx, nz) = (3, 3). By comparing Figs. 8(a) and 8(b), it can see that the index nx can change the vibration
modes of the BFGSW beam. Thus, the effect of the material properties in the longitudinal direction
is important in both the natural frequency and vibration mode of the BFGSW beam.
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Figure 8. Three first mode shapes of (1-2-1) SS beam

5. Conclusions

Free vibration BFGSW beams having different boundary conditions are studied in the basis of
the first-order shear deformation theory. A finite element formulation, in which the stiffness and mass
matrices are explicitly evaluated, has been derived and employed in computing natural frequencies and
mode shapes of the beams. The numerical result has confirmed the accuracy and the fast convergence
of the derived formulation. The effects of the power-law indexes, the layer thickness and aspect ratios
on the natural frequencies and vibration modes of the beams have been examined and highlighted. It
is found that the frequency parameter increases by increasing the transverse index nz, but it decreases
by the increase of the axial index nx. The obtained results also show an important role of the layer
thickness ratio on the frequency of the sandwich beam, a larger core thickness the beam has a smaller
frequency parameter is, regardless of the material index and the boundary conditions. The numerical
results of the present work are useful in the design of FGM sandwich beams, and desired frequencies
of the beams can be achieved by approximately choosing the power-law indexes.

References

[1] Koizumi, M. (1997). FGM activities in Japan. Composites Part B: Engineering, 28(1-2):1–4.

148

https://doi.org/10.1016/s1359-8368(96)00016-9


Anh, L. T. N., et al. / Journal of Science and Technology in Civil Engineering

[2] Wakashima, K., Hirano, T., Niino, M. (1990). Space applications of advanced structural materials, vol-
ume 303. European Space Agency, Noordwijk, The Netherlands.

[3] Amirani, M. C., Khalili, S. M. R., Nemati, N. (2009). Free vibration analysis of sandwich beam with FG
core using the element free Galerkin method. Composite Structures, 90(3):373–379.

[4] Vo, T. P., Thai, H.-T., Nguyen, T.-K., Maheri, A., Lee, J. (2014). Finite element model for vibration and
buckling of functionally graded sandwich beams based on a refined shear deformation theory. Engineer-
ing Structures, 64:12–22.

[5] Vo, T. P., Thai, H.-T., Nguyen, T.-K., Inam, F., Lee, J. (2015). A quasi-3D theory for vibration and
buckling of functionally graded sandwich beams. Composite Structures, 119:1–12.

[6] Bennai, R., Atmane, H. A., Tounsi, A. (2015). A new higher-order shear and normal deformation theory
for functionally graded sandwich beams. Steel and Composite Structures, 19(3):521–546.

[7] Trinh, L. C., Vo, T. P., Osofero, A. I., Lee, J. (2016). Fundamental frequency analysis of functionally
graded sandwich beams based on the state space approach. Composite Structures, 156:263–275.

[8] Su, Z., Jin, G., Wang, Y., Ye, X. (2016). A general Fourier formulation for vibration analysis of function-
ally graded sandwich beams with arbitrary boundary condition and resting on elastic foundations. Acta
Mechanica, 227(5):1493–1514.

[9] Mashat, D. S., Carrera, E., Zenkour, A. M., Al Khateeb, S. A., Filippi, M. (2014). Free vibration of FGM
layered beams by various theories and finite elements. Composites Part B: Engineering, 59:269–278.
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AM1
33 = bG1(z2 − z1); AM2

33 = bG2(z1 − z0 + z3 − z2)

AM1M2
33 = bG12

(
z1 − z0 + z3 − z2

nz + 1

)
; AM2M3

33 = bG23

(
1 −

1
nz + 1

)
(z1 − z0 + z3 − z2)

(A.4)

where E12 = E1 − E2, E23 = E2 − E3,G12 = G1 −G2,G23 = G2 −G3.
Mass moments Ii j in Eq. (13)
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where ρ12 = ρ1 − ρ2, ρ23 = ρ2 − ρ3.
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