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Abstract

Effects of end-plate on the lateral buckling of doubly symmetrical I-section cantilever beam with free end
restrained laterally are analyzed using the software COMSOL and linear shell finite elements. The torsional
stiffness of the end-plate prevents the free warping of flanges and decreases the warping effective length of the
cantilever beam. A parametric study is conducted on 3231 cantilever beams under uniform bending to propose
an approximative formula to determine the warping effective length factor which depends on the ratio between
the torsional constant of the end-plate and the warping stiffness of the beam. The small standard deviation
and high coefficient of determination show a very good correlation between analytical formulas and numerical
results. Numerical applications are applied to analyze some cantilever beams subjected to uniform bending to
demonstrate the reliability of the proposed formula and the effects of the end-plate on the enhancement of the
global stability of cantilever beams with free end restrained laterally.

Keywords: cantilever lateral buckling; end-plate; edge stiffener; flexural-torsional buckling; warping effective
length; warping effective length factor.
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1. Introduction

A cantilever is the beam with one end fixed and the other free. In practice, the free end of the
cantilever is usually restrained laterally by a bracing system or another beam. Thus, the cantilever
beam with free end restrained both for the lateral translation and the twisting is considered in this
research. On the lateral buckling problem, this case can be seen as one end fixed and the other pinned
for both lateral bending and twisting. That is, the lateral bending effective length and warping effective
length factors are equal to 0.7 (k = kw = 0.7). The pinned-end boundary condition for the twisting is
satisfied when the torsional rotation is equal to zero and the end section is free to warp as shown in
Fig. 1(a).

Considering a cantilever beam with end-plate tightly welded to the free end of the beam, when
the flanges of the beam are warped, the end-plate is deformed and the torsional stiffness of the end-
plate prevents partially the warping of the flanges as indicated in Fig. 1(b). Therefore, the boundary
condition for the warping changes and the end section of the beam is no longer free to warp. Thus,
the warping effective length factor is less than 0.7 (kw < 0.7).
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Considering a cantilever beam with end-plate tightly welded to the free end of the 1 
beam, when the flanges of the beam are warped, the end-plate is deformed and the 2 
torsional stiffness of the end-plate prevents partially the warping of the flanges as 3 
indicated in Fig. 1(b). Therefore, the boundary condition for the warping changes and 4 
the end section of the beam is no longer free to warp. Thus, the warping effective 5 
length factor is less than 0.7 ($k_w<0.7$). 6 

 7 

Figure 1. Warping of the end section of the cantilever. 8 

For simply supported beams, some studies analysed effects of the elastic restraint 9 
against the warping at the beam supports [1, 2]. Those studies theoretically 10 
demonstrate and experimentally verify the increase of the warping stiffness at the 11 
supports resulting in the increase of the torsional stiffness of the beam. Takabatake [3, 12 
4] developed a lateral buckling theory for beams with web stiffeners and batten plates. 13 
In the theory, the web stiffeners and the batten plates are assumed to not have any 14 
impact on the warping. This assumption does not reflect the behavior of end-plates as 15 
shown in Fig. 1(b). Amara et al. [5] only paid attention to the torsion restraint but 16 
ignored the warping restraint of end connections. Piotrowski and Szychowski [6, 7] 17 
used the energy method including the energy of the elastic restraint against warping at 18 
the support sections to establish the expression of critical moment.  The previous 19 
studies [1-7] are rather theoretical when there have not been any expressions for 20 
determining torsional stiffness at the end supports presented. Among others, Lindner 21 
and Gietzelt [8], Trahair [9], Pi and Trahair [10] proposed approximative expressions 22 
to calculate kw which depends on the ratio of the torsional constant and the warping 23 
stiffness of the beam.  24 

For cantilever beams, Hassanein et al. [11] proposed approximate formulas of 25 
exponential law to calculate coefficients representing the magnification of the critical 26 
moment due to using web stiffeners. However, they did not pay attention to the change 27 
of the warping effective length factor. Recently, Bui [12] established a formula to 28 
calculate the latter. However, the works of Hassanein et al [11] and Bui [12] have not 29 
focused on the lateral buckling of cantilever beams with free end restrained laterally. 30 

Free warping Warping partially prevented

k=0.7,   k  =0.7w k=0.7,   k  <0.7w

(a) Free end laterally restrained without end-plate (b) Free end laterally restrained with end-plate

Lateral restraint

(a) Free end laterally restrained without
end-plate
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Figure 1. Warping of the end section of the cantilever

For simply supported beams, some studies analysed effects of the elastic restraint against the
warping at the beam supports [1, 2]. Those studies theoretically demonstrate and experimentally verify
the increase of the warping stiffness at the supports resulting in the increase of the torsional stiffness
of the beam. Takabatake [3, 4] developed a lateral buckling theory for beams with web stiffeners
and batten plates. In the theory, the web stiffeners and the batten plates are assumed to not have any
impact on the warping. This assumption does not reflect the behavior of end-plates as shown in Fig.
1(b). Amara et al. [5] only paid attention to the torsion restraint but ignored the warping restraint
of end connections. Piotrowski and Szychowski [6, 7] used the energy method including the energy
of the elastic restraint against warping at the support sections to establish the expression of critical
moment. The previous studies [1–7] are rather theoretical when there have not been any expressions
for determining torsional stiffness at the end supports presented. Among others, Lindner and Gietzelt
[8], Trahair [9], Pi and Trahair [10] proposed approximative expressions to calculate kw which depends
on the ratio of the torsional constant and the warping stiffness of the beam.

For cantilever beams, Hassanein et al. [11] proposed approximate formulas of exponential law to
calculate coefficients representing the magnification of the critical moment due to using web stiffen-
ers. However, they did not pay attention to the change of the warping effective length factor. Recently,
Bui [12] established a formula to calculate the latter. However, the works of Hassanein et al. [11] and
Bui [12] have not focused on the lateral buckling of cantilever beams with free end restrained laterally.

This research investigates effects of the torsional stiffness of the end-plate to the warping effec-
tive length factor of the cantilever beam with free end restrained laterally. The critical moment of the
cantilever under uniform bending is calculated using both linear shell finite elements implemented in
COMSOL and Djalaly’s formula [13]. Firstly, the critical moment of the cantilever with end-plate is
determined using COMSOL, then the warping effective length factor, kw in Djalaly’s formula is calcu-
lated from the numerical critical moment. A parametric study was conducted to find an approximative
expression for the determination of kw.

2. Critical moment formula

Some researchers proposed formulas to determine the critical moment of the beam. Among others,
Djalaly [13] provided a general expression:

Mcr = C1
π2EIy

(kL)2


√(

k
kw

)2 Iw

Iy
+

(kL)2GIt

π2EIy
+ (C2yg −C3y j)2 − (C2yg −C3y j)

 (1)
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Figure 2. Mono-symmetrical I-section. 2 

Eq. (1) is one of the most commonly used formulas to estimate the critical moment. 3 
This equation was included in European pre-standard version (ENV) of the design 4 
standard Eurocode-1993 (EC3) [14]. The completed European Norm (EN) version of 5 
this design standard [15] does not provide information considering the determination 6 
of Mcr. In the ENV version [14], it is conservatively suggested to take the warping 7 
effective length factor,  equal to 1.0 unless special provisions for the warping 8 

restraint are provided. 9 

For a beam of doubly symmetrical I-section:   and  , hence Eq. (1) is 10 

reduced as following: 11 

 12 

  (4) 13 

When loads are applied at the shear center of the doubly symmetrical I-section, i.e.  14 

=0, Eq. (4) is reduced to: 15 

  (5) 16 

where . is equal to 1.0 for the beam subjected to uniform bending. 17 

3. Lateral buckling analysis on beams using linear shell finite elements and 18 
proposition of a formula to determine the warping effective length factor 19 
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Figure 2. Mono-symmetrical I-section

where L is the beam length; k and kw are the bend-
ing effective length and warping effective length
factors, respectively. C1, C2 and C3 are coeffi-
cients which depend on load and boundary condi-
tions. Ix, Iy, It and Iw are second moments of area
about x and y axis, torsion constant, and warping
constant, respectively. yg is the distance between
the loading point and the shear center:

yg = ya − ys (2)

where ya is the ordinate of the loading point with-
respect-to (w.r.t) the gravity center of the section;
ys is the ordinate of the shear center w.r.t the grav-
ity center; y j is calculated as:

y j = ys −
1

2Ix

∫
A

y(x2 + y2)dA (3)

The y ordinate and the geometrical properties are determined according to the section shown in
Fig. 2.

Eq. (1) is one of the most commonly used formulas to estimate the critical moment. This equation
was included in European pre-standard version (ENV) of the design standard Eurocode-1993 (EC3)
[14]. The completed European Norm (EN) version of this design standard [15] does not provide infor-
mation considering the determination of Mcr. In the ENV version [14], it is conservatively suggested
to take the warping effective length factor, kw equal to 1.0 unless special provisions for the warping
restraint are provided.

For a beam of doubly symmetrical I-section: ys = 0 and y j = 0, hence Eq. (1) is reduced as
following:

Mcr = C1
π2EIy

(kL)2


√(

k
kw

)2 Iw

Iy
+

(kL)2GIt

π2EIy
+ (C2yg)2 −C2yg

 (4)

When loads are applied at the shear center of the doubly symmetrical I-section, i.e., yg = 0, Eq. (4)
is reduced to:

Mcr = C1
π2EIy

(kL)2


√(

k
kw

)2 Iw

Iy
+

(kL)2GIt

π2EIy

 (5)

where C1 is equal to 1.0 for the beam subjected to uniform bending.

3. Lateral buckling analysis on beams using linear shell finite elements and proposition of a
formula to determine the warping effective length factor

For the simply supported I-section beam with end-plates, Lindner and Gietzelt [8], Trahair [9], Pi
and Trahair [10] proposed approximate expressions for the calculation of kw as below.

Lindner and Gietzelt’s expression:

kw = 1 −
0.5

1 +
2
αwL
EIw

(6)
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Trahair’s expression:

kw =
4 + αwL

EIw

4 + 2αwL
EIw

(7)

Pi and Trahair’s expression:

kw =
6.5 + αwL

EIw

6.5 + 2.25αwL
EIw

(8)

with
αw =

1
3

Gt3
s b f d (9)

αw can be called torsional constant of the end plate; ts, b f , and d are respectively the thickness, width
and height of the end-plate with a practical assumption that b f = bs and d = hs (Fig. 3).

After a transformation, it can be recognized that Eqs. (6) and (7) are identical.
Based on the above expressions and the numerical simulation in COMSOL, a parametric study

is performed. 3231 cantilever beams are simulated in COMSOL using linear shell elements; the end-
moment is simulated using a couple of concentrated loads as shown in Fig. 3.

6 
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To validate the finite element (FE) model, convergence study was conducted and is 3 
presented in Table 1. The convergence condition is satisfied when the mesh is finer. 4 

Table 1. Validation of FE model 5 
Section 

 

(mm) 

Span 

$L$ 
mm 

Number 

of 

elements 

for a 

flange  

Number 

of 

elements 

for the 
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Number 

of 
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for the 

span 

Number 

of 

elements 

for the 

end-

plate 

Total 

number 

of 
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$M_{cr}$ 
Tm 

500x250x16x10 4000 
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Figure 3. Simulation of the cantilever beam with free end restrained laterally

To validate the finite element (FE) model, a convergence study was conducted and is presented in
Table 1. The convergence condition is satisfied when the mesh is finer.

Table 1. Validation of FE model

Section
d × b f × t f × tw

(mm)

Span
L

(mm)

Number of
elements for

a flange

Number of
elements for

the web

Number of
elements for

the span

Number of
elements for
the end-plate

Total
number of
elements

Mcr

(Tm)

500 × 250 × 16 × 10 4000 2 3 30 6 216 318.39
4 6 60 24 864 292.75
6 9 90 54 1944 287.87
8 12 120 96 3456 286.11
10 15 150 200 5450 285.27
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For the parametric study, 3231 cantilevers are selected with a range of dimensions as: d =
{200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200}, b f = {200, 250, 300, 400, 500}, t f = {14, 16, 18,
20, 22, 25, 28, 30}, tw = {8, 10, 12, 14, 16}.

The thickness of the end-plate is taken: ts = {8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 30, 32, 36, 40,
45, 60}.

The selective cantilevers satisfy geometrical ratios as follows:
d
b f
= 1.0→ 5.0;

b f

t f
= 8.0→ 25.0;

d
tw
= 20.0→ 75.0;

L
d
= 4.0→ 20.0;

L
b f
= 15.0→ 75.0.

Firstly, the critical moment of the cantilever with end-plate is determined in COMSOL then the
numerical warping effective length factor, kw,num can be determined using Eq. (10) after a transforma-
tion from Eq. (5) with

kw,num =
k√[(

Mcr,COMS OL(kL)2

π2EIy

)2
−

(kL)2GIt
π2EIy

]
Iy
Iw

(10)

Finally, the formula for the determination of kw is proposed as:

kw = 0.7
2.8 + n

2.8 + 1.4n
(11)

in which, the relative warping stiffness in this proposition is defined as:

n =
αw(0.7L)

EIw
(12)

where αw is calculated from Eq. (9).
It is can be found that kw calculated according to Eq. (11) yields a value ranging from 0.7 to 0.5

when the relative warping stiffness varies from zero to infinity.
Fig. 4 shows the correlation between the numerical results, kw,num analyzed using COMSOL

(Eq. (10)) and the analytical curve plotted using Eq. (11).
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Figure 4. Correlation between numerical analysis and approximative formula
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To evaluate the fit between the proposed formula (kw) and numerical results (kw,num), the standard
deviation and coefficient of determination are calculated as follows:

σ =

√√√√ m∑
i=1

(
kw,num,i − k̄w,i

)2

m − 1
= 0.0121 (13)

R2 = 1 −

m∑
i=1

(
kw,num,i − kw,i

)2

m∑
i=1

(
kw,num,i − kw,i

)2
= 0.9507 (14)

where kw,num,i is the numerical value analyzed using COMSOL and Eq. (10); kwi is the value calculated
from the proposed formula (Eq. (11)) corresponding to the relative warping stiffness from Eq. (12);
kw,i is the mean value of kw,num,i and m is the total numerical models (m = 3231).

The value of the standard deviation, σ is 0.0121. This value is only about 2.0% when compared to
the mean value of kw in range of 0.7-0.5. The coefficient of determination, R2 is 0.9507. Thus, there
is a very good correlation between the proposed formula and numerical results.

Table 2. Critical moment of cantilever beams under uniform bending

Section
d × b f × t f × tw

(mm)

Span
L

(mm)

Thick. of
end-plate
ts, (mm)

n
Eq. (12)

kw

Eq. (11)

Mcr

Eq. (5)
(Tm)

Mcr

COMSOL
(Tm)

Differ.
(%) Mcr/Mocr

300×200×14×8 3000 - 0 0.70 142.37 138.20 3.02% 1.000
8 0.0197 0.6981 142.71 140.77 1.38% 1.019

16 0.1575 0.6854 144.97 143.15 1.27% 1.036
22 0.4095 0.6660 148.60 146.09 1.72% 1.057
30 1.0385 0.6316 155.63 151.69 2.60% 1.098
40 2.4615 0.5897 165.41 160.51 3.05% 1.161
60 8.3077 0.5388 179.41 177.53 1.06% 1.285
80 19.69 0.5184 185.83 188.77 −1.56% 1.366

100 38.46 0.5099 188.68 194.880 −3.18% 1.410
120 66.4615 0.5058 190.06 194.882 −2.47% 1.410

600×200×20×14 4500 - 0 0.70 187.84 187.65 0.10% 1.000
10 0.0202 0.6980 188.27 190.35 −1.09% 1.014
20 0.1615 0.6851 191.11 193.15 −1.06% 1.029
30 0.5452 0.6572 197.64 198.56 −0.46% 1.058
40 1.2923 0.6215 206.93 206.40 0.26% 1.100
60 4.3615 0.5629 224.99 225.26 −0.12% 1.200
80 10.3385 0.5324 236.07 241.55 −2.27% 1.287

100 20.19 0.5180 241.79 252.75 −4.34% 1.347
120 34.8923 0.5108 244.77 259.93 −5.83% 1.385

1200×500×28×16 9000 - 0 0.70 1887.42 1873.42 0.75% 1.000
12 0.0040 0.6996 1888.43 1888.98 −0.03% 1.008
25 0.0361 0.6965 1896.43 1897.70 −0.07% 1.013
36 0.1077 0.6898 1913.66 1912.35 0.07% 1.021
45 0.2103 0.6810 1936.95 1930.57 0.33% 1.031
60 0.4985 0.6601 1994.67 1975.34 0.98% 1.054

100 2.3077 0.5929 2209.02 2165.15 2.03% 1.156
130 5.07 0.5566 2346.72 2213.46 6.02% 1.182

* Note: Mocr is the critical moment of the cantilever beam without end-plate analyzed using COMSOL.
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4. Numerical applications

Table 2 shows the difference between the values of critical moments of cantilever beams under
uniform bending, which are determined using Eq. (5) with kw calculated from Eq. (11) and numerical
analysis using COMSOL (Eq. (10)). The table also presents the ratio between critical moments of the
beam with end-plate and the beam without end-plate (shown in the last column). It should be noted
that these critical moments are all analyzed using COMSOL.

From Table 2, it can be seen that the difference between values of critical moments calculated
using the proposed formula and COMSOL is small enough for the application in civil engineering.
The comparison between critical moments of the cantilever beam with end-plate and the cantilever
beam without end-plate in the last column of Table 2 shows that when the thickness of end-plate
increases, the critical moment increases. The increase is significant, i.e. Mcr/Mocr > 1.05 when the
warping effective length factor, kw is less than 0.66.

5. Conclusions

The end-plate prevents the warping of cantilever beam restrained laterally. The prevention leads
to the reduction of the warping effective length factor and the increase of the critical moment. The
research proposes an approximate formula for the determination of the warping effective length factor
replacing effects of the end-plate. The small standard deviation and the high coefficient of determina-
tion show the very good correlation between the proposed formula and numerical results. The increase
is significant when the effective warping length factor is less than 0.66.

Acknowledgement

This article is a part of research results of the project “Effects of web stiffeners on the lateral
torsional buckling of symmetrical I-section beams”, code: 33-2020/KHXD-TĐ. The authors would
like to thank the financial support of the National University of Civil Engineering for the project.

References
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