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Abstract

The main objective of this paper is to investigate the responses of the inclined cable due to rain-wind induced
vibration (RWIV) considering the bending stiffness and support excitation of the cable. The single-degree-of-
freedom (SDOF) model is employed to determine the aerodynamic forces. The 3D model of a cable subjected to
RWIV is developed using the linear theory of the cable oscillation and the central difference algorithm in which
the influences of wind speed change according to the height above the ground, bending stiffness, and support
excitation of the cable are considered. The numerical results showed that the cable displacement calculated by
considering cable bending stiffness in RWIV is slightly smaller than in the case of neglecting it. And, the cable
diameter had a nonlinear relationship with cable displacement, where when both diameter and mass per unit
length of cable increase cable displacement will decrease. In addition, the periodic oscillation of cable supports
extremely increases the amplitude of RWIV if its frequency is nearby that of the cable.
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1. Introduction

Among the various types of wind-induced vibrations of cables, rain-wind induced vibration
(RWIV), first observed by Hikami and Shiraishi [1] on the Meikonishi bridge, has attracted the atten-
tion of scientists around the world. Hikami and Shiraishi revealed that neither vortex-induced oscil-
lations nor a wake galloping could explain this phenomenon. After Hikami and Shiraishi, a series of
laboratory experiments (Bosdogianni and Olivari [2], Matsumoto et al. [3], Flamand [4], Gu and Du
[5], Gu [6]...), and field later (Costa et al. [7], Ni et al. [8]. . . ) were conducted to study this special
phenomenon. They found that the basic characteristic of RWIV was the formation of the upper rivulet
on cable surface, which oscillated with lower cable modes in a certain range of wind speed under a
little or moderate rainfall condition. Furthermore, Wu et al. [9] also observed the amplitude of RWIV
was dependent on the length, inclination direction, surface material of the cables, and the wind yaw
angle. In other hands, Cosentino et al. [10], Macdonald and Larose [11], Flamand and Boujard [12],
and Zuo and Jones [13] indicated that the RWIV was related to Reynolds number and its mechanisms
are similar to that of the dry galloping phenomenon of cable. Recently, Du et al. [14] found out that
the continuous change of aerodynamic forces acting on the cable owing to the oscillation of the upper
rivulet was the excitation mechanics of the RWIV.
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To look into the nature of this phenomenon, lots of theoretical models explaining this phenomenon
have been developed. Yamaguchi [15] first established the model with the two-degree-of-freedom
theory (2-DOF). He found that when the frequency of upper rivulet oscillation coincided with the ca-
ble’s natural frequency, aerodynamic damping was negative and caused the large cable displacement.
Thereafter, Xu and Wang [16], Wilde and Witkowski [17] presented an SDOF model based on Yam-
aguchi’s theory to aim only to investigate cable response due to RWIV. The forces caused by rivulet
oscillation were substituted into the cable vibration equation, considering them as given parameters
based on the assumption of rivulets motion law. Gu [6] also developed an analytical model for RWIV
of 3D continuous stayed cable with a quasi-steady state assumption. Limaitre et al. [18], based on the
lubrication theory, simulated the formation of rivulets and studied the variation of water film around
the horizontal and static cable. Bi et al. [19] presented a 2D coupled equations model of water film
evolution and cable vibration based on the combination of lubrication and vibration theories of a
single-mode system.

Generally, theoretical models so far have been concentrated mainly on the 2D model. According
to the knowledge of the author, the number of studies about the 3D model of RWIV of cable was rela-
tively small. Some researches can be listed as Gu [6], Li et al. [20], Li et al. [21], etc. However, these
studies were still limited, none being a comprehensive review of the fundamental factors affecting
fluctuations of cables, such as the change of inclination angle because of cable sag, the distribution
of the rivulet on the entire length of the cable, the effect of cable height. Some important factors that
affect the cable vibration also have not been mentioned, such as cable bending stiffness or bridge
tower and deck vibration.

To fill this gap in the literature, this paper is to develop the new 3D inclined cable model to
investigate the response of the inclined cable due to RWIV considering the bending stiffness and
support excitation of the cable. The single-degree-of-freedom model in [16, 17] is applied to calculate
the aerodynamic forces. The 3D model of a cable subjected to RWIV is then developed using the linear
theory of cable oscillation and the central difference algorithm in which the influences of wind speed
change according to the height above the ground, bending stiffness, and support excitation of the cable
are considered. The relationship between diameter and RWIV displacement of inclined cable is then
investigated. Finally, the effect of cable supports excitation is obtained in RWIV.

2. 3D model of rain – wind induced vibration of the inclined cable

2.1. Aerodynamic forces functions

Based on the single-degree-of-freedom model presented in [16, 17], Truong and Vu [22] devel-
oped the functions of the aerodynamic forces as follows:

Fdamp =
Dρ
2

(
S 1 + S 2 sin (ωt) + S 3 sin (2ωt) + S 4 sin (3ωt) + S 5 sin (4ωt) +

S 6 cos (ωt) + S 7 cos (2ωt) + S 8 cos (3ωt)

)
(1)

Fexc =
Dρ
2

(
X1 + X2 sin (ωt) + X3 sin (2ωt) + X4 sin (3ωt) + X5 sin (4ωt) +

X6 cos (ωt) + X7 cos (2ωt) + X8 cos (3ωt) + X9 cos (5ωt)

)
(2)

where ρ is the density of the air; D is the diameter of the cable; ω is the cable angular frequency; S i

and Xi are the parameters that can be found in [22]. The oscillation of a cable element is written as

ÿ +

(
2ξsω +

Fdamp

m

)
ẏ + ω2y +

Fexc

m
= 0 (3)
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where ξs is the structural damping ratio of the cable; m is the mass of the cable per unit length. Details
of the formulation of Eqs. (1) and (2) can be found in [22].

2.2. The theoretical formulation of the 3D inclined cable model

Considering an inclined cable in Fig. 1 with the dynamic equilibrium of an element of cable
as Fig. 2. Equations governing the motions of a 3D continuous cable in the in-plane motion can be
written as

∂

∂s

[
(T + ∆T )

(
dx
ds

+
∂u
∂s

)
− (V + ∆V)

(
dy
ds

+
∂ν

∂s

)]
+ Fx(y, t) = m

∂2u
∂t2 + c

∂u
∂t

(4a)

∂

∂s

[
(T + ∆T )

(
dy
ds

+
∂v
∂s

)
+ (V + ∆V)

(
dx
ds

+
∂u
∂s

)]
+ Fy(y, t) = m

∂2v
∂t2 + c

∂ν

∂t
− mg (4b)

where u and v are the longitudinal and vertical components of the in-plane motion, respectively; T
and ∆T are the tension and additional tension generated, respectively; V and ∆V are the shear force
and additional shear force, respectively; m and c are the mass per unit length and damping coefficient
of the cable, respectively; Fx(y, t) and Fy(y, t) are wind pressure on the cable according to the x and y
axes, respectively; g is the gravitational acceleration.
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Figure 2. Equilibrium of a cable element

In Fig. 2, the vertical and longitudinal equilibrium of the cable element located at (x, y) require that

d
ds

(
T

dy
ds

)
= −mg (5a)

T
dx
ds

= H (5b)

∆H = ∆T
dx
ds

(5c)

∂

∂s
=

1√
1 + y2

x

∂

∂x
(5d)

V + ∆V =
∂ (M + ∆M)

∂s
≈ −EI

(
d3y
ds3 +

d3ν

ds3

)
≈ −EI

d3v
ds3 (5e)

where H and ∆H are the horizontal component of cable tension and additional tension, respectively;

yx is the first derivative of the cable equation at the initial position. In Eq. (5e),
d3y
ds3 is eliminated
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because the function of cable is assumed quadratic equation of the horizontal coordinate (presented
in Eq. (24)).

Substitution of Eqs. (5) into Eqs. (4), and terms of the second-order are neglected. So the equations
of motion are transformed into

1√
1 + y2

x

∂

∂x

[
(H + ∆H)

(
1 +

∂u
∂x

)]
+

yx

1 + y2
x

EI
∂4ν

∂x4 + Fx(y, t) = m
∂2u
∂t2 + c

∂u
∂t

(6a)

1√
1 + y2

x

∂

∂x

[
(H + ∆H)

(
1 +

∂v
∂x

)
+ ∆Hyx

]
−

1
1 + y2

x
EI
∂4ν

∂x4 + Fy(y, t) = m
∂2v
∂t2 + c

∂v
∂t

(6b)

2.3. The response of cable to support excitation

The initial condition of two ends of cable: At A: u1 (t) and ν1 (t), at B: u2 (t) and ν2 (t). The two
components of displacement u (x, t) and v (x, t) of a cable subjected at both supports acting in the x
and y directions as shown in Fig. 1, are expressed in the form:

u(x, t) = us(x, t) + ud(x, t) (7a)

v(x, t) = vs(x, t) + vd(x, t) (7b)

where us (x, t) and vs (x, t) are the pseudo-static displacements in the x and y directions, respectively.
ud (x, t) and vd (x, t) are the relative dynamic displacements in the x and y directions, respectively.

From the geometry of a cable under different support motion [23], the pseudo-static displacements
are given by:

us(x, t) =

(
1 −

x
L

)
u1(t) +

x
L

u2(t) (8a)

vs(x, t) =

(
1 −

x
L

)
v1(t) +

x
L

v2(t) (8b)

Applying Hooke’s law and the second order is neglected, we have:

∆H =
EA(

1 + y2
x

)3/2

(
∂u
∂x

+ yx
∂v
∂x

)
−

EA
Lcab

(u1 + u2) (9)

where E and A are elastic modulus and cross-sectional area of the cable; Lcab is the cable length.
Substitution of Eqs. (7), (8), and (9) into Eqs. (6), consequently Eq. (6) is transformed to(

a1
∂2ud

∂x2 + a2
∂2vd

∂x2 + a3
∂ud

∂x
+ a4

∂vd

∂x

)
+

(
a3
∂us

∂x
+ a4

∂vs

∂x

)
+

yx

1 + y2
x

EI
∂4νd

∂x4 −

−
1√

1 + y2
x

EA
Lcab

(u1 + u2)
∂2ud

∂x2 + Fx(y, t) = m
∂2ud

∂t2 + c
∂ud

∂t
+ m

∂2us

∂t2 + c
∂us

∂t

(10a)

(
a5
∂2vd

∂x2 + a2
∂2ud

∂x2 + a6
∂vd

∂x
+ a4

∂ud

∂x

)
+

(
a6
∂vs

∂x
+ a4

∂us

∂x

)
−

1
1 + y2

x
EI
∂4νd

∂x4

−
1√

1 + y2
x

EA
Lcab

(u1 + u2)
∂2vd

∂x2 −
1√

1 + y2
x

EA
Lcab

(u1 + u2)
∂2y
∂x2 + Fy(y, t)

= m
∂2vd

∂t2 + c
∂vd

∂t
+ m

∂2vs

∂t2 + c
∂vs

∂t

(10b)

where a1, a2, a3, a4, a5, and a6 are parameters that are given in Appendix A.
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2.4. Discretization of differential equation

To solve Eqs. (10), the cable is divided into N parts so that the horizontal length of one part is
lh with lh = L/N (Fig. 3). Using the central difference algorithm for points i from 2 to N − 2, the

components
∂2ud

∂x2 ,
∂2vd

∂x2 , and
∂4vd

∂x4 are estimated as

∂2ud (xi)
∂x2 =

1
lh2

(
ud,i−1 − 2ud,i + ud,i+1

)
(11a)

∂2vd (xi)
∂x2 =

1
lh2

(
vd,i−1 − 2vd,i + vd,i+1

)
(11b)

∂4vd (xi)
∂x4 =

1
lh4

(
vd,i−2 − 4vd,i−1 + 6vd,i − 4vd,i+1 + vd,i+2

)
(11c)

 6 
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v x
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¶
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At point 1 and point N − 1:

∂2ud (x1)
dx2 =

1
l2h

(
−2ud,1 + ud,2

) ∂2vd (x1)
dx2 =

1
l2h

(
−2vd,1 + vd,2

)
∂4ud (x1)

dx4 =
1
l4h

(
ud,3 − 4ud,2 + 7ud,1

) ∂4vd (x1)
dx4 =

1
l4h

(
vd,3 − 4vd,2 + 7vd,1

)
∂2ud (xn−1)

dx2 =
1
l2h

(
−2ud,n−1 + ud,n−2

) ∂2vd (xn−1)
dx2 =

1
l2h

(
−2vd,n−1 + vd,n−2

)
∂4ud (xn−1)

dx4 =
1
l4h

(
ud,n−3 − 4ud,n−2 + 7ud,n−1

) ∂4vd (xn−1)
dx4 =

1
l4h

(
vd,n−3 − 4vd,n−2 + 7vd,n−1

)
(12)

Substituting Eqs. (11) and (12) into Eqs. (10), the discrete equations of motion can be obtained as
below:

[M]
d2 {ud}

dt2 + [C]
d {ud}

dt
+

(
[K] +

[
Ksti f

]
+

[
Ksup (t)

])
{ud} = {F} (13)

where [K], [M], and [C] given in Appendix A are stiffness, mass, and damping matrix, respectively;[
Ksti f (t)

]
and

[
Ksup (t)

]
are the stiffness increases due to bending stiffness and support excitation of ca-

ble, respectively; {ud} is the dynamic displacement vector with {ud}=
[
ud,1, vd,1, . . . , ud,i, vd,i, . . . , ud,N−1,

vd,N−1
]T , and {F} is force vector with {F} =

[
Fx (y1, t) , Fy (y1, t) , . . . , Fx (yN−1, t) , Fy (yN−1, t)

]T
.
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According to Section 2.1, the aerodynamic forces acting on the cable element ith are written as

Fdamp (i) = Fdamp (U (i) , γ0 (i) , α (i) , θ0 (i) , am (i) , t) (14a)

Fexc (i) = Fexc (U (i) , γ0 (i) , α (i) , θ0 (i) , am (i) , t) (14b)

As can be seen in Eqs. (14), aerodynamic forces include two components Fexc and Fdamp, in which
Fdamp continuously changes the damping ratio of oscillation. Thus, the damping matrix [C] and force
vector {F} in Eq. (13) are rewritten as

[DAMP] = [C] +
[
Fdamp

]
(15)

{F} = {Fexc} + {Fsta} + {Fsta1} + {Fsta2} (16)

where [DAMP],
[
Fdamp

]
, {Fexc},{Fsta}, {Fsta1}, and {Fsta2} are given in Appendix A. Now, Eq. (13)

can be expressed as

[M]
d2 {ud}

dt2 + [DAMP]
d {ud}

dt
+

(
[K] +

[
Ksti f

]
+

[
Ksup (t)

])
{ud} = {Fexc} (17)

The total displacements at nodes can be calculated as follows. From Eqs. (8) the vector of pseudo-
static displacements is given by

{us} =
{
u1,s, v1,s, . . . , ui,s, vi,s, . . . , uN−1,s, vN−1,s

}T (18)

in which:

ui,s(t) = (1 − i)u1(t) + iu2(t) (19a)

vi,s(t) = (1 − i)v1(t) + iv2(t) (19b)

The vector of total displacements as follows:

{u} = {us} + {ud} (20)

The change of wind velocity according to the height above the ground can be calculated by using
the below equation [24]:

U0(y1, t)
U0(y2, t)

=

(
y1

y2

)n

(21)

where U0(y1, t) and U0(y2, t) are wind velocities at the heights y1 and y2, respectively; n is an em-
pirically derived coefficient that is dependent on the stability of the atmosphere. For neutral stability
conditions, n is approximately 1/7, or 0.143. Therefore, n is assumed to be equal to 0.143 in this
study. The unstable balance angle, θ0, and the amplitude, am, of the rivulet on the cable surface can
be calculated as follows [24]:

θ0 = 0.0525U3
0 − 1.75U2

0 + 14.72U0 + 24.938 for 6.5 < U0 < 12.5(m/s) (22)

am = −1.9455U4
0 + 60.543U3

0 − 699.05U2
0 + 3557U0 − 6738.4 for 6.5 < U0 ≤ 9.5(m/s) (23a)

am = −2.1667U4
0 + 97.167U3

0 − 1626.2U2
0 + 12028U0 − 33137 for 9.5 < U0 < 12.5(m/s) (23b)

am = 0 for U0 ≤ 6.5 or 12.5 ≤ U0 (23c)
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The function of cable shape is assumed as a quadratic equation of the horizontal coordinate as

y = −
mg
2H

sec (α) x2 +
mgL
2H

sec (α) x + tan (α) x (24)

Matrix of inclination angle {α} with

tan (α (i)) =
mg
H

sec (α) x (i) (25)

Matrix of the effective wind speed {U} and wind angle effect {γ0} in the cable plane is

U (i) = U0 (i)
√

cos2β + sin2α (i) sin2β (26)

where {U0} is the matrix of initial wind velocity calculated from Eq. (21), and

γ0 (i) = sin−1

 sinα (i) sin β√
cos2β + sin2α (i) sin2β

 (27)

Finally, we have the formula of aerodynamic forces at the node ith as

Fdamp (i) = Fdamp (U (i) , γ0 (i) , α (i) , θ0 (i) , am (i) , t) (28a)

Fexc (i) = Fexc (U (i) , γ0 (i) , α (i) , θ0 (i) , am (i) , t) (28b)

3. Results and discussion

The investigated cable has the following properties: length Lcab = 330.4 m, mass per unit length
m = 81.167 kg/m, diameter D = 0.114 m, first natural frequency f = 0.42 Hz, structural damping
ratio ξs = 0.1%. RWIV appears in the range of wind velocity from 6.5 m/s to 12.5 m/s, and maximum
amplitude peaks at 9.5 m/s. The initial conditions are y0 = 0.001 m and ẏ0 = 0. The inclination and
the yaw angles are 27.80 and 350, respectively. The coefficients CD and CL are calculated based on
the actual angle between the wind acting on cable and the rivulet, φe, as follows [24]:

CD = −1.6082φ3
e − 2.4429φ2

e − 0.5065φe + 0.9338 (29a)

CL = 1.3532φ3
e + 1.8524φ2

e + 0.1829φe − 0.0073 (29b)

The cable is divided into 20 elements to perform the above-developed analysis.

3.1. Influence of cable bending stiffness on RWIV

Eq. (17) is developed based on the general evaluation of many factors that influence the RWIV
of the inclined cable, especially bending stiffness and supports excitation of cable. In this section, the
influence of cable bending stiffness on RWIV is considered. Notes that, the simple model without
considering bending stiffness and supports excitation of cable can be found in [24]. In this cable
model, Eq. (17) is rewritten as follows:

[M]
d2 {u}

dt2 + [DAMP]
d {u}

dt
+

(
[K] +

[
Ksti f

])
{u} = {Fexc} (30)
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Eq. (30) shows that matrix
[
Ksti f (t)

]
is the change of cable rigidity due to its bending stiffness.

Clearly, the bigger ratio between two matrixes
[
Ksti f (t)

]
and [K] is, the larger the effects of cable

bending are. From Eqs. (A.9) and (A.10), diameter and length of cable are the parameters that greatly
influence the value of the matrix

[
Ksti f (t)

]
. To obtain effects of cable bending stiffness in RWIV, six

cases of diameter (D) are analyzed corresponding to 0.5D, 0.8D, D, 1.2D, 1.5D, and 2D. Notes that,
mass per unit length (m) closely relates with diameter. However, to deeply understand the effect of
cable bending stiffness on RWIV, such as (1) m is changed according to D, and (2) m is constant.

Figs. 4 and 5 show the maximum cable displacement according to wind velocity with different
cable diameters. With initial values of cable diameter, the maximum cable displacements are 33.27
and 33.126 cm corresponding to the cable model ignoring and considering cable bending stiffness,
respectively. It also can be seen that the shape of cable responses according to wind velocity is iden-
tical in all the cases. Cable amplitude increases from the wind speed of 5.5 m/s to 9.5 m/s and then
decreases up to 12.5 m/s. With each wind velocity, cable displacement is proportional to the diameter
if mass per unit length is constant. This is in contrast to the case that diameter and mass per unit length
of cable change together.
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Figure 5. Cable response with the variation of cable diameter

Fig. 6 and Table 1 show cable displacement at wind velocity 9.5 m/s with different cable diame-
ters. Four case studies are calculated corresponding to the considering and neglecting cable bending
stiffness in the RWIV model combining with m changing and not changing according to D. For sim-
plicity, the results are presented in the form of the ratio with those of the initially investigated cable
where the cable bending stiffness is ignored. As can be seen in Fig. 6, if mass per unit length and
diameter of cable change together, the maximum cable displacement decreases when cable diameter
increases. Specifically, when cable diameter rises 300%, the cable displacement drops about 57.51%
and 58.52% corresponding to the cable model considering or ignoring cable bending stiffness. If mass
per unit length of the cable is constant when cable diameter changes, contrary to the first case, the
cable maximum displacement is proportional to cable diameter. For example, the cable displacement
increases about 160.17% and 156.72% corresponding to the cable model considering and ignoring
cable bending stiffness when cable diameter rises 200%. Furthermore, in all cases, the curve lines in
Fig. 6 indicate that the relationship between cable displacement and cable diameter is nonlinear and
the change of cable displacement reduces when cable diameter continues to increase.
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Figure 6. Change of cable displacement with different cable diameter (U0 = 9.5 m/s)

Table 1. Comparison of cable responses with cable bending stiffness (U0 = 9.5 m/s)

Change
of cable
diameter

(%)

The case m and D change The case only D change

No considering
cable bending

stiffness

Considering
cable bending

stiffness

Rate
(%)

No considering
cable bending

stiffness

Considering
cable bending

stiffness

Rate
(%)
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100 0.33272 0.33126 −0.4403 0.33272 0.33126 −0.4403
120 0.29107 0.28937 −0.5829 0.37817 0.37539 −0.7354
150 0.24533 0.24292 −0.9817 0.43848 0.43298 −1.2551
200 0.19471 0.19136 −1.7214 0.53293 0.52146 −2.1524
300 0.13886 0.13507 −2.7297 0.64525 0.62261 −3.5082

On the other hand, it is easy to recognize that the cable bending stiffness reduces cable displace-
ment in RWIV. The ratio of cable amplitude reduction is shown in Fig. 6 combined with Fig. 7. When
the diameter D is 0.114 m, the decline is about 0.4403%. This value increases quickly from 0.4403%
to more than 2.7% when the diameter D rises 300%. However, there is a big difference in the reduc-
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Figure 7. Cable amplitude reduction with different cable diameter
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tion of cable amplitude in two cases of the diameter change. In Fig. 7, the cable amplitude reduction
in the case that both D and m increase is smaller than the case that only D increases, and vice versa.

3.2. Influence of periodic excitation of cable supports on RWIV

In a cable-stayed bridge, inclined cables connecting the pylons and the deck by anchorages have
different lengths. Thus, the cable oscillation is naturally associated with wind- or traffic-induced
vibration of the deck and/or the towers. If the frequency of oscillation of the deck and/or towers falls in
certain ranges, the stay cables may be excited and exhibit large response amplitudes. It should be noted
that the interactive movements of deck and pylon are very complex and need deeper structural analysis.
To easily obtain the effects of excitation of cable supports on RWIV, the vibration of anchorages is
assumed to be periodic, and only deck vibration is considered. RWIV of inclined cable is studied with
harmonic vertical excitation of its lower support as follows:

v2 (t) = v2 sin(ω1t) (31)

where v2 and ω1 are the amplitude and the angular frequency of vertical excitation of the cable lower
support. The cable model considering cable bending stiffness in Section 3.1 continues to be studied.
Three cases of v2 are analyzed corresponding to 1 cm, 2 cm, and 3 cm.

Fig. 8 shows the cable displacement with different values ofω1. Obviously, cable amplitude is very
large when the value of ω1 is nearly angle frequency of RWIV of the cable ω. The cable displacement
is 1.13 m, 2.59 m, and 4.06 m corresponding to ω1 is 1 cm, 2 cm, and 3 cm. These values are too
greater than cable displacement of RWIV of cable (33.126 cm). However, when the ratio ω1/ω is
smaller 95% or larger 105%, the effect of support periodic vibration is small. With ω1/ω = 95%,
cable displacement is 37.83 cm, 42.7 cm, and 47.59 cm corresponding to ω1 is 1 cm, 2 cm, and 3 cm.
This means that the displacement of RWIV of cable increases by about 14.2%, 28.91%, and 43.68%,
respectively. Clearly, deck oscillation with a small amplitude makes a large displacement of RWIV of
cable.
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Figure 8. Cable displacement with different angle frequency of cable lower support vibration

4. Conclusions

The new 3D model considering the bending stiffness and support excitation of the cable was
successfully developed for RWIV of the inclined cable. The following points can be summarized
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from the present study:
- The cable bending stiffness reduces cable displacement in RWIV but not great. This effect is

proportional to cable diameter. In the case of cable study in this paper, the displacement of cable
RWIV decreases about 2.7 – 3.7% when cable diameter increases by 300%.

- The cable diameter had a nonlinear relationship with cable displacement. This relationship is
proportional if only cable diameter changes. When both diameter and mass per unit length of cable
increase, cable displacement will decrease.

- The periodic oscillation of cable supports extremely affects RWIV of the inclined cable when
its frequency is nearby that of cable. In other cases, its effect is still quite significant.
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3EAyx(
1 + y2

x

)3

∂2y
∂x2 (A.5)

a4 =
EA

(
1 − 2y2

x

)
(
1 + y2

x

)3

∂2y
∂x2 (A.6)

a5 =
H√

1 + y2
x

+
EAy2

x(
1 + y2

x

)2 (A.7)

a6 =
EA

(
2yx − y3

x

)
(
1 + y2

x

)3

∂2y
∂x2 (A.8)

a7 =
yx

1 + y2
x

EI
l4h

(A.9)

a8 = −
1

1 + y2
x

EI
l4h

(A.10)
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a9 = a3
−u1 (t) + u2 (t)

L
+ a4
−v1 (t) + v2 (t)

L
(A.11)

a10 = a4
−u1 (t) + u2 (t)

L
+ a6
−v1 (t) + v2 (t)

L
(A.12)

a11 (t) = −
u1 (t) + u2 (t)√

1 + y2
x

EA
l2hLcab

(A.13)

a12 (t) = −
u1 (t) + u2 (t)√

1 + y2
x

EA
Lcab

∂2y
∂x2 (A.14)

[Ai] =


a1(i)
lh2 −

a3(i)
2lh

a2(i)
lh2 −

a4(i)
2lh

a2(i)
lh2 −

a4(i)
2lh

a5(i)
lh2 −

a6(i)
2lh

 (A.15)

[Bi] =


−

2a1(i)
lh2 −

2a2(i)
lh2

−
2a2(i)

lh2 −
2a5(i)

lh2

 (A.16)

[Ci] =


a1(i)
lh2 +

a3(i)
2lh

a2(i)
lh2 +

a4(i)
2lh
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lh2 +
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2lh

a5(i)
lh2 +
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2lh

 (A.17)

K = −



[B1] [C1]
[A2] [B2] [C2]

. . . . . .

[Ai] [Bi] [Ci]
. . . . . .

[AN−2] [BN−2] [CN−2]
[BN−1] [CN−1]


(A.18)

[
Asti f ,i

]
=

[
0 6a7(i)
0 6a8(i)

]
(A.19)

[
Bsti f ,i

]
=

[
0 −4a7(i)
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]
(A.20)

[
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]
=

[
0 a7(i)
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]
(A.21)

[
Dsti f

]
=

[
0 7a7(1)
0 7a8(1)

]
(A.22)

Ksti f = −
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[Bsti f ,2] [Asti f ,2] [Bsti f ,2] [Csti f ,2]

[Csti f ,3] [Bsti f ,3] [Asti f ,3] [Bsti f ,3] [Csti f ,3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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[
Asup,i

]
=

[
0 a11(i, t)
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=
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]
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=
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{Fexc} =
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Fx,exc(y1, t), Fy,exc(y1, t), . . . , Fx,exc(yN−1, t), Fy,exc(yN−1, t)

]T
(A.28)

{Fsta} = [a9(1, t), a10(1, t), a9(2, t), a10(2, t), . . . , a9(N − 1, t), a10(N − 1, t)]T (A.29)
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(A.30)

Fsta1,v(i, t) = −

{
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i
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)
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∂t2 +
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n
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]
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)
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i
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(A.31)

{Fsta1} =
[
Fsta1,u(1, t), Fsta1,v(1, t), Fsta1,u(2, t), Fsta1,v(2, t), . . . , Fsta1,u(N − 1, t), Fsta1,v(N − 1, t)

]T (A.32)

{Fsta2} = [0, a12(1, t), 0, a12(2, t), . . . , 0, a12(N − 1, t)]T (A.33)
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