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Abstract

This paper is an extension of our recent work that presents a two-scale design method of porosity-like materials
using adaptive geometric components. The adaptive geometric components consist of two classes of geometric
components: one describes the overall structure at the macrostructure and the other describes the structure of the
material at the microstructures. A smooth Heaviside-like elemental-density function is obtained by projecting
these two classes on a finite element mesh, namely fixed to reduce meshing computation. The method allows
simultaneous optimization of both the overall shape of the macrostructure and the material structure at the
micro-level without additional techniques (i.e., material homogenization), connection constraints, and local
volume constraints, as often seen in most existing methods. Some benchmark structural design problems are
investigated and a selected design is post-processed for 3D printing to validate the effectiveness of the proposed
method.
Keywords: topology optimization; concurrent optimization; porosity structures; two-scale topology optimiza-
tion; adaptive geometric components.
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1. Introduction

Porosity-like materials that exist in nature have exceptionally high strength for their own weight
[1, 2]. Trabecular bones and beehives represent the structures of such materials (Fig. 1). In addition
to high strength-to-mass ratios, this kind of material is also capable of diffusion of fluid media [3, 4],
energy absorption, and shock resistance [5, 6]. Especially in some medical cases, porous materials
require diffusion of liquids through themselves. Regarding the two-scale topology optimization or
concurrent topology optimization [4, 7–14] of porosity-like materials, most of the existing methods
are mainly based on the material homogenization technique [15]. Accordingly, the design domain is
divided into a finite number of macro elements, each of which is a microstructure that is subdivided
into a finite number of microelements and designed independently. The geometries of a microstructure
are used to approximate the mechanical properties of the macro element through material homoge-
nization. In each optimization loop, the finite element analysis and new variable updates are required
at two levels, macro and microstructures, which require a lot of calculations. Besides, some constraints
on the connection between macro elements and local volume constraints to ensure structural porosity
are also needed, leading to memory consumption. (see [12] for a short review of concurrent designs).

Recently, Hoang and his collaborators have proposed a direct two-scale topology optimization
method for honeycomb-like structures [17] using adaptive geometric components, which is inspired
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Fig. 1. Porosity-like structures: (a) trabecular bone by [23], (b) honeycomb by [24] 63 

2. Adaptive geometric components 64 

 The adaptive geometric components consist of two classes of geometric 65 
components: one consisting of macro moving bars describes the macrostructure and 66 
the other consisting of micro void circles describes the microstructure [16]. Each 67 

macro bar is described by the positions of endpoints  and its thickness  and 68 

each micro bar is described by the position  and its radius  (see Fig. 2a). Mapping 69 
these two classes of geometric components onto the finite element mesh yields the 70 

element density field  as illustrated in Fig. 2a. In which, element density  71 
(solid) if the element locates both inside the macro bars and outside the micro circles, 72 

 (void) if the element locates outside macro bars or inside micro circles, and 73 

 if the element locates around the structural boundaries.  74 
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(a) Trabecular bone by [3]
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(b) Honeycomb by [16]

Figure 1. Porosity-like structures

by moving morphable bar method [18, 19]. The method allows straightforwardly optimizing macro
and microstructures through searching a set of geometry parameters (including macro and micro
parameters) without the use of material homogenization techniques and additional constraints. Two-
scale model using adaptive geometric components was also extended to the design of lattice structures
[20] and coated structures with nonperiodic infill [21]. In this paper, we briefly review the projection
technique of adaptive geometric components for non-uniform honeycomb-like structure optimization
and extend the proposed method for flexible designs of porosity-like materials. In which, non-moving
micro void circles in [17] are replaced by moving micro void bars to enhance degrees of freedom in
optimization design.

In the scope of this paper, the developed scheme is limited to two-dimensional (2D) design prob-
lems. To extend the current method for three-dimensional (3D) problems, readers are recommended
to refer to moving morphable patch method [22] which aims to full-thickness control of 3D structural
optimization, and extruded geometric component method [23] where an adaptive mapping technique
was employed to enhance computational efficiency and 2D calculations could be replaced for 3D
calculations. A Matlab code for extruded-geometric-component-based 3D topology optimization is
available at [24].

2. Adaptive geometric components

The adaptive geometric components consist of two classes of geometric components: one consist-
ing of macro moving bars describes the macrostructure and the other consisting of micro void circles
describes the microstructure [17]. Each macro bar is described by the positions of endpoints xk1, xk2
and its thickness 2rk and each micro circle is described by the position xm and its radius rm (see
Fig. 2(a)). Mapping these two classes of geometric components onto the finite element mesh yields
the element density field ρe as illustrated in Fig. 2(a). In which, element density ρe = 1 (solid) if the
element locates both inside the macro bars and outside the micro circles, ρe = 0 (void) if the element
locates outside macro bars or inside micro circles, and 0 < ρe < 1 if the element locates around the
structural boundaries.
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Fig. 2. Mapping adaptive geometric components: (a) solid material is highlighted in 75 

cyan, (b) level sets of the minimum distance functions  are illustrated with  76 
being a positive number  77 

 The element density function is given by 78 

          (1) 79 

where  is obtained by projecting the macro bars onto the mesh and  is obtained 80 
by projecting the micro circles onto the mesh, expressed as follows 81 

        (2) 82 

        (3) 83 

where  and  represent the minimum distances from element  to the center axis 84 

of macro bar  and the center of micro circle , respectively (see Fig. 2b);  and 85 

 denote the number of macro bars and micro circles, respectively and  is a 86 
positive control parameter [17,25]. 87 

3. Two-scale designs of porosity-like structures 88 

 The goal is to find a set of geometry parameters 89 

 so that the overall stiffness is as close as 90 
possible to the maximum. This leads to a compliance minimal problem, given by 91 
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Figure 2. Mapping adaptive geometric components: (a) solid material is highlighted in cyan, (b) level sets of
the minimum distance functions (dek, dem) are illustrated with ε being a positive number

The element density function is given by

ρe = (1 − φma)φmi (1)

where φma is obtained by projecting the macro bars onto the mesh and φmi is obtained by projecting
the micro circles onto the mesh, expressed as follows

φma =

Ma∏
k=1

1
1 + exp[−β(dek − rk)]

(2)

φmi =

Mi∏
m=1

1
1 + exp[−β(dem − rm)]

(3)

where dek and dem represent the minimum distances from element e to the center axis of macro bar
k and the center of micro circle m, respectively (Fig. 2(b)); Ma and Mi denote the number of macro
bars and micro circles, respectively and β is a positive control parameter [18, 25].

3. Two-scale designs of porosity-like structures

The goal is to find a set of geometry parameters x = {xk1, xk2, rk, rm} , k = 1, 2, ...,m = 1, 2, ... so
that the overall stiffness is as close as possible to the maximum. This leads to a compliance minimal
problem, given by

min
x

c(x) =

N∑
e=1

χdT
e k0de

subject to
1
|Ω0|

∫
Ω0

ρedΩ − f ≤ 0

xmin ≤ x ≤ xmax

(4)
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where c represents the structural compliance; N is the number of elements of the finite element mesh;
k0 denotes the element stiffness matrix; de ⊂ d is the element displacement vector; |Ω0| denotes
the design-domain volume; f denotes the volume fraction; xmin, xmax are the bounds of the design
variable vector x; and d is the global displacement vector, obtained by solving the following equation,

Kd = F (5)

where K and F correspond to the global stiffness matrix and force vector, respectively.
The characteristic function χ in Eq. (4) is defined as in the isotropic material with penalization

(SIMP) [26],
χ = ρmin + ρ

η
e(1 − ρmin) (6)

where η = 3 is the penalization parameters and ρmin = 10−4 is a small positive number for numerical
treatment.

4. Examples

4.1. Non-uniform honeycomb problem with fixed-position void circles
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Fig. 3. Simply supported beam design definitions 116 

 Firstly, the moving-morphable-bars-based method [17] is employed to optimize 117 
the beam with solid material. The initial layout of 48 moving morphable bars is 118 
employed (see Fig. 4a). The problem is solved with a 50% material volume of the 119 
design domain volume by moving material blocks (moving morphable bars) in the 120 
design domain and changing their thicknesses. The optimized layout of moving 121 
morphable bars is presented in Fig. 4b and the optimized design is plotted in Fig. 4c. 122 
This is the optimum shape of the beam that we often see in the literature.  123 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Simply supported beam: (a) initial layout of moving morphable bars, (b) 124 
optimized layout of moving morphable bars, (c) optimized design of solid material 125 

(material zones are highlighted in blue, void zones are highlighted in yellow) 126 

Figure 3. Simply supported beam design
definitions

In this subsection, the design of a simply sup-
ported beam is investigated. The design defini-
tions are given in Fig. 3, in which a rectangu-
lar design domain is described with dimensions
150 × 50, fixed horizontal degrees of freedoms of
the left side, fixed vertical degree of freedoms of
the lower right point, and unit load on the top-left.
The design problem is solved in the plane-stress
state using 300 × 100 four-node elements and vol-
ume fraction f = 0.5. The base material is as-
sumed to be homogeneous with Young’s modulus
E0 = 1 and Poisson’s ratio ν0 = 0.3.

Firstly, the moving-morphable-bars-based method [18] is employed to optimize the beam with
solid material. The initial layout of 48 moving morphable bars is employed (Fig. 4(a)). The problem is
solved with a 50% material volume of the design domain volume by moving material blocks (moving
morphable bars) in the design domain and changing their thicknesses. The optimized layout of moving
morphable bars is presented in Fig. 4(b) and the optimized design is plotted in Fig. 4(c). This is the
optimum shape of the beam that we often see in the literature.

Now, we apply the projection technique of adaptive geometric components in topologically opti-
mizing the beam with porosity-like material. The initial layout of adaptive geometric components is
given in Fig. 5(a), where we use 48 marco bars and 335 micro circles corresponding to 575 geometry
parameters. The problem is solved by straightforwardly optimizing the geometry parameters of adap-
tive geometric components. As expected, a design with porosity is successfully achieved on a coarse
mesh of 300 × 100 elements as shown in Fig. 5(c). Fig. 5(b) plots optimized geometries of adaptive
geometric components.

It is worth noting that the proposed method uses a dramatic reduction of design variables, i.e., 575
design variables in the current example compared to dozen million design variables if the homoge-
nization-based conventional methods such as SIMP or level set methods is used [14]. Whereas the
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Figure 4. Simply supported beam: (a) initial layout of moving morphable bars, (b) optimized layout of moving
morphable bars, (c) optimized design of solid material (material zones are highlighted in blue, void zones are

highlighted in yellow)
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335 micro circles corresponding to 575 geometry parameters.  The problem is solved 130 
by straightforwardly optimizing the geometry parameters of adaptive geometric 131 
components. As expected, a design with porosity is successfully achieved on a coarse 132 
mesh of  elements as shown in Fig. 5c. Fig. 5b plots optimized geometries of 133 
adaptive geometric components. 134 

 It is worth noting that the proposed method uses a dramatic reduction of design 135 
variables, i.e., 575 design variables in the current example compared to dozen million 136 
design variables if the homogenization-based conventional methods such as SIMP or 137 
level set methods is used [14]. Whereas the homogenization technique, connector 138 
constraints, and local volume constraints are not required in the proposed method. 139 
This also means that the proposed method requires less storage space. Although we 140 
can not provide a truly fair comparison of the proposed method with others because of 141 
the differences in the problem definitions, kinds of used computers, and selected 142 
design-parameters. But it is clear that the use of fewer design variables, the absence of 143 
homogenization techniques, and local volume and connectivity constraints will reduce 144 
computational and storage costs. Our convergence usually reaches after about 100 145 
loops with a period of several minutes, cheaper than the costs in [12] (hourly to 146 
dozens of hours). 147 
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Fig. 5. Porosity-like structure [16]: (a) initial layout of adaptive geometric 148 
components, (b) optimized layout of adaptive geometric components, (c) optimized 149 

design 150 

 The design in Fig. 5c is post-processed for STL format to be printed on Zortrax 151 
M200 Plus printing machine. The printing result, which is shown in Fig. 6, confirms 152 
the possibility of realizing the two-scale design of porous materials using adaptive 153 
geometric components for additive manufacturing techniques. It’s worth remarking 154 
that the material continuity of microstructures and the porosity of each microstructure 155 
can be ensured without additional constraints. The minimum thickness of members of 156 
the microstructures, which is to ensure the ability to fabricate by 3D printers, can also 157 
be straightforwardly controlled by the selection of thickness parameters of micro 158 
circles (see [16,19] for more details). 159 
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Fig. 6. 3D printing result of the design sample with bounded dimensions 161 
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 In this subsection, we extend the proposed method for other types of micro 164 
geometric components to enhance degrees of freedom in optimization design. In this 165 
situation, fixed micro circles in the above examples are replaced by moving micro 166 
bars (see Fig. 7a-b). Each micro bar plays like a moving void component that can be 167 
move and change its orientation and thickness in a local domain belonging to the 168 

design domain . Once again, a  porosity-like design is obtained by searching an 169 
optimal set of macro and micro geometry parameters without the homogenization and 170 
additional constraints. The optimized porous design is shown in Fig. 7, in which Fig. 171 
7b plots optimized adaptive geometric components and Fig. 7c plots optimized design 172 
in the element density field. 173 

150 50 3(mm)´ ´

0W

(c)

Figure 5. Porosity-like structure [17]: (a) initial layout of adaptive geometric components, (b) optimized layout
of adaptive geometric components, (c) optimized design

homogenization technique, connector constraints, and local volume constraints are not required in the
proposed method. This also means that the proposed method requires less storage space. Although we
can not provide a truly fair comparison of the proposed method with others because of the differences
in the problem definitions, kinds of used computers, and selected design-parameters. But it is clear
that the use of fewer design variables, the absence of homogenization techniques, and local volume
and connectivity constraints will reduce computational and storage costs. The convergence criterion
usually reaches after about 100 loops with a period of several minutes, cheaper than the costs in [12]
(hourly to dozens of hours).
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Figure 6. 3D printing result of the design sample
with bounded dimensions 150 × 50 × 3 (mm)

The design in Fig. 5(c) is post-processed for
STL format to be printed on Zortrax M200 Plus
printing machine. The printing result, which is
shown in Fig. 6, confirms the possibility of realiz-
ing the two-scale design of porous materials using
adaptive geometric components for additive man-
ufacturing techniques. It’s worth remarking that
the material continuity of microstructures and the
porosity of each microstructure can be ensured without additional constraints. The minimum thick-
ness of members of the microstructures, which is to ensure the ability to fabricate by 3D printers,
can also be straightforwardly controlled by the selection of thickness parameters of micro circles (see
[17, 20] for more details).

4.2. Non-uniform honeycomb problem with moving void bars

In this subsection, we extend the proposed method for other types of micro geometric compo-
nents to enhance degrees of freedom in optimization design. In this situation, fixed micro circles in
the above examples are replaced by moving micro bars (Fig. 7(a) and 7(b)). Each micro bar plays like
a moving void component that can be move and change its orientation and thickness in a local domain
belonging to the design domain Ω0. Once again, a porosity-like design is obtained by searching an
optimal set of macro and micro geometry parameters without the homogenization and additional con-
straints. The optimized porous design is shown in Fig. 7, in which Fig. 7(b) plots optimized adaptive
geometric components and Fig. 7(c) plots optimized design in the element density field.
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Fig. 7. Simply supported beam design with micro moving void bars: (a) initial layout 174 
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components, (c) optimized design 176 

 Finally, we employ the proposed method for simultaneously optimizing the 177 
macro structure and micro material structures of a cantilever beam under a unit load as 178 

defined in Fig. 8. The design domain with dimensions  is discretized with 179 

plane-stress  elements. The base material is assumed to be homogeneous 180 

with unit Young’s modulus and Poisson's ratio . Two cases with different 181 
allowed volumes of the design material are considered: one is 30% volume of the 182 
design domain and the other is 40% volume of the design domain. Fig. 9. Shows the 183 
optimized designs with solid material, and shows Fig. 10 the optimized designs with 184 
porous material.  185 
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(a) Initial layout of adaptive geometric components
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(b) Optimized layout of adaptive geometric components
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(c) Optimized design

Figure 7. Simply supported beam design with micro moving void bars

Finally, we employ the proposed method for simultaneously optimizing the macro structure and
micro material structures of a cantilever beam under a unit load as defined in Fig. 8. The design
domain with dimensions 40×80 is discretized with 160×320 plane-stress elements. The base material
is assumed to be homogeneous with unit Young’s modulus and Poisson’s ratio ν0 = 0.3. Two cases
with different allowed volumes of the design material are considered: one is 30% volume of the design
domain and the other is 40% volume of the design domain. Fig. 9 shows the optimized designs with
solid material, and Fig. 10 shows the optimized designs with porous material.
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Fig. 9. Cantilever beam optimization with solid material: (a) optimized design with  189 
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 As expected, the overall structural topology and micro material structures can be 191 
optimized at the same time by straightforwardly optimizing the geometries of the 192 
adaptive geometric components while the optimizer does not require the 193 
homogenization technique. The continuity of material microstructures and their 194 
porosities are always ensured without connection constraints and local volume 195 
constraints. It’s noted that the values of objective functions of the solid design in Fig. 196 
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Figure 8. Cantilever beam with design definitions

As expected, the overall structural topology
and micro material structures can be optimized
at the same time by straightforwardly optimizing
the geometries of the adaptive geometric compo-
nents while the optimizer does not require the ho-
mogenization technique. The continuity of mate-
rial microstructures and their porosities are always
ensured without connection constraints and local
volume constraints. It’s noted that the values of ob-
jective functions of the solid design in Fig. 9 are
smaller than those of the porous design in Fig. 10.
In other words, the solid design is stiffer than the
porous design. This is in agreement with [10], in which with the same volume of material, the less
porosity, the higher stiffness; the solid structure has higher stiffness than the porous one does.
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Figure 10. Cantilever beam optimization with porous material

81



Hoang, V. N. / Journal of Science and Technology in Civil Engineering

5. Conclusions

A straightforward topology optimization method of porosity-like materials was proposed by us-
ing adaptive geometric components consisting of two classes of geometric components. The overall
topology of the macrostructure and the microstructures are simultaneously optimized by searching
an optimal set of macro and micro geometry parameters without material homogenization, connector
constraints, and local volume constraints. Some benchmark structural problems were investigated and
a selected design was post-processed for 3D printing to validate the effectiveness of the proposed
method.

In this paper, the finite element method was employed for structural analysis and the moving
morphable bar method was applied for structural optimization. In the near future, a combination of
isogeometric analysis [27, 28] and moving polygonal morphable voids [29] in the design of porous
materials will be explored.
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