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Abstract

In the design of steel crane girders, various sources of uncertainty such as material properties, loads, and
geometric tolerances are inherent and inevitable. Using deterministic structural and/or load conditions may lead
to low-reliability systems in real applications. In this paper, the probability of failure of overhead crane bridge
girders with uncertain design parameters is investigated. First, the design problem of a crane double girder
is introduced within a set of analytical stress and defection constraints. Then, the response surface method is
used in conjunction with Monte Carlo methods to quantify the effect of the parameter uncertainties on the
constraints of stress and deflection. For illustrative examples, various configurations of girders with original
deterministic parameters proposed in the literature are selected and their deterministic optimization values are
considered as the mean of random variables. The obtained results reveal that uncertainties such as coefficients
of variation (COV) in structures and loads have strong effects on the probability of failure for all stated crane
girder configurations. For only a wheel load COV of 0.05 and geometric dimension COV of 0.025, the means of
geometric parameters have to be larger than 1.1 their deterministic-based values in order to reach a probability
of failure at a level of 10−4.
Keywords: failure probability; double-box girder; overhead crane; Monte Carlo method.
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1. Introduction

Cranes are widely used for moving, lifting, and handling tasks in various industrial fields, such as
construction and manufacturing [1, 2]. According to their primary dynamic properties and structural
characteristics, cranes can mainly be classified into three types: overhead crane, mobile crane, and
tower crane. An overhead traveling crane consists of three independent motions (i.e. hosting, long
travel, and cross travel), which allow handling and transferring payloads from one position to another
in the working space within its own traveling and hoisting. As a wide application and multi-functional
purposes, overhead cranes are the primary equipment in the area of transport and handling machinery
[1].

Cranes are widely used for moving, lifting, and handling tasks in various industrial fields, such as
construction and manufacturing [1, 2]. According to their primary dynamic properties and structural
characteristics, cranes can mainly be classified into three types: overhead crane, mobile crane, and
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tower crane. An overhead traveling crane consists of three independent motions (i.e. hosting, long
travel, and cross travel), which allow handling and transferring payloads from one position to another
in the working space within its own traveling and hoisting. As a wide application and multi-functional
purposes, overhead cranes are the primary equipment in the area of transport and handling machinery
[1].

The main task during the design process of a bridge crane structure is to optimize the shape and
dimensions of the main girder. In terms of deterministic-based design, different methods have been
proposed to archive the geometric parameters of the rectangular hollow section of the girder that has
a minimum area [3, 4]. Currently, these optimization methods mainly include finite element method
(FEM) [5, 6], neural networks [7, 8], Lagrange multipliers [9, 10], amongst others [11, 12]. How-
ever, these methods are all based on deterministic optimum designs without considering effects of
randomness or uncertainties in the structure parameters and/or load conditions. Deterministic opti-
mum designs, which are pushed to the limits of their constraint boundaries and have no room for
uncertainty, may result in low-reliability designs [13, 14]. Recently, reliability-based design problems
of crane structure have been reported in a few reference works [15]. Using the FEM simulations and
response surface method (RSM), a reliability-based design of the structure of tower crane was intro-
duced in Ref. [16]. A neural network model based on finite element and first-order second-moment
(FOSM) method is used to investigate the reliability and sensitivity of crane steel structure [17].

Structural reliability can be analyzed using analytical methods, such as FOSM and second-order
second moments (SOSM) or with simulation methods such as Monte Carlo (MC) method [18, 19].
The FOSM method is very simple and requires minimal computation effort but sacrifices accuracy
for nonlinear limit state functions. The accuracy of the SOSM method is improved compared with
that of the FOSM [20]. However, SOSM method is not widely used due to demanding computational
costs. MC method seems to be a computationally intensive option when requiring a large number
of samples to evaluate small failure probabilities (e.g., for multi-scale FEM computations in high-
dimensional problems), but it is accurate for cases of large samplings available based on analytical or
surrogate models [21].

In this work, the design problem of a crane double girder is introduced within a set of analytical
stress and defection constraints. The response surface method is then used in conjunction with the
MC method to quantify the effect of the parameter uncertainties on the proposed constraints in order
to estimate the failure probability of girder designs.

2. Formulations of girder design problem

2.1. Overhead crane and its girder structure

In this study, we consider a configuration of double girder overhead cranes, that makes up of
two box-type bridge girders, two end trucks or end girders, and a trolley hoist assembly (Fig. 1(a)).
The trolley hoist handling hook loads travels on top of rails that are mounted or welded to the top of
the bridge girders. For a sake of simplicity, the cross-section of the girder (as shown in Fig. 1(c)) is
assumed constant throughout its span, and the rail and the stiffeners are neglected in the calculation
of the cross-sectional characteristics.

Fig. 1(b) shows the calculation schema for modeling a double girder of overhead cranes. This
simplified model consists of a simple-span beam with a length of L. For single girder, two-wheel
loads F are equal to a quarter of the total of the trolley mass Gt and the service load H. The linear
distributed masses q represents the self-weight of the girder and the additional distributed masses
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(like rails and the sidewalk). Noted that the wind load, buffer loads, and skew loads due to travelling
are not considered here.

2.2. Constraint functions

The static problem for designing a crane structure has been proposed in a number of studies.
Herein, we focus on three design constraints as follows [3]:
Constraint on the static stress in the lower flange

The constraint on the static stress in the lower flange at mid-span due to biaxial bending is:

σs =
Mx

Wx
+

My

Wx
≤ σ̄s (1)

where Mx and My are the bending moments, Wx and Wy are the section moduli. σ̄s is the allowable
stress estimated as σ̄s = αd(αsYs) where Ys is the yield stress, αd is the duty factor, and αs = 0.59
[3, 22].

The moments of inertia are calculated as,
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The section moduli are:

Wx =
2Ix

h + 2t f
; Wy =
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The bending moment due to vertical loads is given as,
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Figure 1. Crane configuration and calculation schema of its girder
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where (ψdH + Gt) /4 is the wheel load, q =
(
kgAρ + pr + ps

)
g is the linear distributed weight with

kgAρ is girder distributed mass within considering stiffeners and diaphragms by a factor of kg = 1.05,
and A = 2

[
htw + (b + d) t f

]
is the girder cross-sectional area given. k is the distance between the

trolley axes, g = 10 m/s2, and ρ = 7850 kg/m3.
The bending moment due to horizontal loads is given as,

My = kM

L2q
8

+
Gt

8L

(
L −

k
2

)2 (5)

where kM = 0.3 × 0.5 with a factor of 0.3 represents the effect of inertia forces, and a factor of 0.5
recognizes that two of four trolley wheels are driven [3].
Constraint on fatigue stress

Based on the fatigue failure theory, the constraint on fatigue stress in the lower flange at mid-span
may be given as [3],

σ f =
Mx f

Wx
+

My

Wx
≤ σ̄ f (6)

where σ̄ f is the permissible tensile fatigue stress depending on the number of cycles NG and the
ratio fσ between the minimum and the maximum stress, fσ ≈ Mx1/Mx with Mx1 = L2q/8. The
approximate formulas to calculate σ̄ f are presented in Table 2. The moment Mx f due to fatigue is
expressed as,

Mx f =
L2q
8

+
KpψdH + Gt

8L

(
L −

k
2

)2

(7)

where Kp is the spectrum factor.
Constraint on static deflection

The maximum deflection due to all considered loads is estimated as,

wp =
(H + Gt) (L − k)

192EIx

[
3L2 − (L − k)2

]
+

5qL4

384EIx
≤ w̄p (8)

in which w̄p is the permissible deflection.

3. Formulation of structural reliability analysis

3.1. Definition of reliability

Time-independent reliability is often used in the design of civil structural systems under various
uncertainty sources. This definition can estimate the probability that the actual performance of an
engineering system meets the required or specified design performance. By modeling uncertainty
sources as random variables, the time-independent reliability R(X) can be formulated as,

R(X) = P (G(X) ≥ 0) = 1 − P (G(X) < 0) (9)

where the random vector X = [X1, X2, . . . , Xn]T presents uncertainty sources, G(X) is a system per-
formance function, and P(E) is the probability of the event E. The uncertainties in vector X further
propagate and lead to the uncertainty of the system performance function G. In reliability analysis,
equation G(X) = 0 is called the limit-state function, which divides the working space into the safety
region G(X) ≥ 0 and the failure region G(X) < 0.
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Consider the safety margin between the strength S of an engineered system and the load L on this
system. This well-known performance function takes the following form,

G = S − L (10)

The strength S and load L are random in nature, and their randomness can be characterized re-
spectively by the probability density function (PDF) fS (S) and fL(L). Fig. 2(a) shows these PDFs for
a case of normal distribution. The probability of failure depends on the intersection area of the two
PDFs, where the load on the system might exceed its strength. In Fig. 2(b), the probability of failure
is indicated by the shaded area. Noted that the distance between the mean performance function µG

and the limit state G = 0 is equal to the standard deviation σG multiplied by a factor β named the
reliability index. In reliability analysis, this factor is calculated as,

β = Φ−1 (R) (11)

(a) Distributions of load and strength (b) Probability of failure

Figure 2. Probabilistic design concept

For the girder design problem mentioned above, the corresponding performance functions of three
independent constraints can be expressed as,

G1 = σ̄s − σs

G2 = σ̄ f − σ f

G3 = w̄p − wp

(12)

3.2. Monte Carlo approach

Typically, MC method involves the analysis of a large number of simulations of an analytical or
numerical system model. The MC approach considers functions given as Y = Γ(X), in which Γ repre-
sents the model under consideration, X is a vector of uncertain input variables, X = [H Ys h tw b t f ]T ,
and Y is a vector of estimated outputs, Y = [σs σ f wp]T . A general procedure of the MC approach
is introduced as follows:

(i) Construct a vector X consisting of 6 relevant input parameters. Here, the probability distribu-
tion for each input parameter is generated based on the normal distribution.
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(ii) Generate a sample value for each of the 6 input variables. Specifically, a sample of X j =

[X j1, X j2, . . . , X j6] is generated from the input parameter space.
(iii) Evaluate the output response from an analytical model using the input parameter values X j as

model parameter values.
(iv) Repeat steps (ii) and (iii) to generate a distribution for the output metric. For a stable con-

vergence of output distribution, the number of simulations N is chosen to be large enough. Then,
the probability distribution of the output metric can be determined, and its statistics (e.g., mean E,
standard deviation D, Skewness Sk, and Kurtosis Ku) can be calculated:

E(Y) =
1
N

∑N

i=1
Γ (Xi)

D(Y) =

√
1
N

[∑N

i=1
Γ (Xi) − E(Y)

]2

Sk =
1
N

∑N

i=1

[
Γ (Xi) − E(Y)

D(Y)

]3

Ku =
1
N

∑N

i=1

[
Γ (Xi) − E(Y)

D(Y)

]4

(13)

The probability of the failure can be mathematically defined by,

P f =

∫
. . .

∫∫
I(X) fx(X)dX (14)

where fx(X) is the probability density function of X and I(X) is the indicator function defined as,

I(X) =

{
1 if X is in the failure region

(
e.g., G (X)< 0

)
0 otherwise

(15)

Eq. (13) shows that the failure probability is indeed the mean value of the indicator function I(X),
which can thus be estimated as,

P f =
1
N

N∑
i=1

I(Xi) (16)

where Xi denotes the ith sample of X in the sampling N.

4. Results and discussion

4.1. Illustrative girder configurations

To carry out the aim of this study, various reference configurations of girders proposed in Table 2
of Ref. [3] are selected. The original deterministic parameters of these crane girders are tabulated in
Table 1. For the name of girders listed in the first column, the prefixes L-, H-, and M- indicate respec-
tively the Light, Moderate, and Heavy loading states, whereas the suffixes -1, -2, and -3 correspond
three levels of the steel strength (Ys = 230/355/450 N/mm2).

The present work uses the following deterministic data [3]: L = 22.5 m, Gt = 42.25 × 103 N,
pr + ps = 190 kg/m, E = 2.1 × 106 N/mm2, d = 10 mm. Others (H,Ys, h, tw, b, t f ) are considered
as normal random variables with their mean µi and coefficients of variation COVi. We select µH =

200×103 N, µYs = 230/355/450 N/mm2, and µx = kgeoxop with four remaining geometric parameters,
whereas coefficients of variation COVF and COVgeo for (H,Ys) load and (h, tw, b, t f ) geometry factors
are chosen as tuned factors.
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4.2. Reliability analysis of girder design

First, the uncertainty of load and geometric parameters is given with COVF = 0.05, COVgeo =
0.025, and kgeo = 1.05. The probability statistics of the working static stress, fatigue stress, and static
deflection are depicted in Table 3 (herein, N = 106 for all MC simulation samplings). Generally, the
obtained results reveal that three working parameters have the same normal distribution (e.g., factor
Sk is in range of 0.15 to 0.24, and factor Ku is in range of 3.04 to 3.12). This means that these output
metrics have the same distribution function compared to the input uncertain variables.

For sake of clear visibility of the state limit function, the distribution functions of working and
permissible parameters are demonstrated. As an example, Fig. 3(a) and 3(b) show the PDFs of the
working and permissible stresses for girder L1, whereas Fig. 3(c) and 3(d) show the PDFs of the
working and permissible static stress and deflection for girder M2. The shape of the obtained proba-
bility densities reveals again the Gaussian-like distribution of the output metric. The level of overlap-
ping between the working metric and the permissible one shows clearly the performing of the design
constraints (see Fig. 3(a), 3(c) and 3(d)). For a case of fatigue stress constraint in Fig. 3(b), the non-
overlapping or a large distance between two PDFs shows clearly the fulfillment on this constraint (see
also Table 4 for relevant columns with P f = 0 and β = +∞ for all girder configurations).

Table 4 presents the probability of failure and reliability index with three independent limit
functions. In general, for girders (i.e., L1, M1, H1 named group C1) made up of low yield steels,
Ys = 230 N/mm2, it seems that only the static stress constraint works (C1). In the contrary, we need
to consider the limit state function based on the static deflection constraint for all remaining girders
named group C3 with a high yield stress, Ys = 355/450 N/mm2. In detail, for crane girders of the
group C1 the probability of failure varies from 0.0052 to 0.0129 (as decreasing in the reliability index
from 2.8676 to 2.2284). In addition, girder designs in the group C3 show the good configuration L2
with P f = 0.0002 (as β ∼ 3.5) and the poor configuration H2 with P f = 0.0099 (as β ∼ 2.3).

Next, we investigate the probability of failure of girder designs with two different coefficients,
COVF = 0.05 and COVF = 0.1. In order to reduce the probability of failure of girder design, the
geometric factor kgeo is tuned from 1.0 to 1.1 and all COVgeo are kept at 0.025. The results shown in
Fig. 4 indicate that girders of group C1 and C3 are related to the corresponding calculated constraints
as stated previously. For only a wheel load COVF of 0.05 and geometric dimension COVgeo of 0.025,
the means of geometry parameters have to be larger than 1.1 their deterministic-based values in order
to reach a probability of failure at a level of 10−4. For COVF of 0.1, it is seen that girders having a
factor kgeo = 1.1 is only enough for a very high level of failure probability (P f ∼ 0.1, see lines with

Table 1. Steel yield stress and optimum geometric parameters xop of girders [3]

Girder Ys (N/mm2) hop(mm) top
w (mm) bop (mm) top

f (mm)

L1 230 1050 6 400 14
L2 355 950 5 375 14
L3 450 1050 5 375 10
M1 230 1150 7 375 14
M2 355 1050 5 325 14
M3 450 1000 5 325 14
H1 230 1150 6 450 18
H2 355 1000 5 325 14
H3 450 1050 5 425 14
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Table 2. Parameters of considered girders with different working states [3]

State of loading Kp w̄p NG αd ψd σ̄ f (N/mm2)

Light (L) 0.50 L/500 0.5 × 106 1.00 1.1 169 + 145( fσ − 0.1)
Moderate (M) 0.63 L/600 1.0 × 106 0.95 1.3 155 + 135( fσ − 0.1)

Heavy (H) 0.80 L/700 2.0 × 106 0.90 1.4 142 + 125( fσ − 0.1)

Table 3. Probability statistics of the working stresses and deflection

Girder
Static stress, σs (N/mm2) Fatigue stress, σ f (N/mm2) Static deflection, wp (mm)

E D Sk (-) Ku (-) E D Sk (-) Ku (-) E D Sk (-) Ku (-)

L1 111.1 5.0 0.15 3.05 81.9 3.2 0.15 3.06 25.5 1.9 0.24 3.12
L2 134.9 6.1 0.16 3.05 97.9 3.9 0.16 3.05 34.8 2.6 0.24 3.11
L3 148.3 6.9 0.16 3.05 107.4 4.4 0.16 3.05 35.8 2.7 0.24 3.11
M1 110.4 5.1 0.16 3.05 87.8 3.6 0.16 3.05 20.7 1.6 0.24 3.11
M2 140.4 6.5 0.15 3.04 111.0 4.7 0.16 3.04 29.4 2.2 0.24 3.11
M3 142.9 6.6 0.16 3.04 113.2 4.8 0.16 3.04 31.0 2.3 0.24 3.11
H1 102.1 4.7 0.15 3.05 90.4 4.0 0.15 3.05 18.4 1.4 0.24 3.11
H2 133.0 6.1 0.15 3.04 117.8 5.2 0.16 3.05 27.1 2.0 0.24 3.11
H3 126.5 6.0 0.15 3.04 111.6 5.0 0.15 3.04 25.4 1.9 0.24 3.10
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Figure 3. Probability density of the working and permissible factors for girder L1 (a,b) 
and girder M2 (c,d). 
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For sake of clear visibility of the state limit function, the distribution functions 
of working and permissible parameters are demonstrated. As an example, Fig. 3(a,b) 
show the PDFs of the working and permissible stresses for girder L1, whereas Fig. 
3(c,d) show the PDFs of the working and permissible static stress and deflection for 
girder M2. The shape of the obtained probability densities reveals again the Gaussian-
like distribution of the output metric. The level of overlapping between the working 

(b) Constraint G2
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Table 3. Probability statistics of the working stresses and deflection 
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For sake of clear visibility of the state limit function, the distribution functions 
of working and permissible parameters are demonstrated. As an example, Fig. 3(a,b) 
show the PDFs of the working and permissible stresses for girder L1, whereas Fig. 
3(c,d) show the PDFs of the working and permissible static stress and deflection for 
girder M2. The shape of the obtained probability densities reveals again the Gaussian-
like distribution of the output metric. The level of overlapping between the working 
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Table 3. Probability statistics of the working stresses and deflection 
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Figure 3. Probability density of the working and permissible factors for girder L1 (a,b) 
and girder M2 (c,d). 
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For sake of clear visibility of the state limit function, the distribution functions 
of working and permissible parameters are demonstrated. As an example, Fig. 3(a,b) 
show the PDFs of the working and permissible stresses for girder L1, whereas Fig. 
3(c,d) show the PDFs of the working and permissible static stress and deflection for 
girder M2. The shape of the obtained probability densities reveals again the Gaussian-
like distribution of the output metric. The level of overlapping between the working 

(d) Constraint G4

Figure 3. Probability density of the working and permissible factors for girder L1 (a, b) and girder M2 (c, d)
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Table 4. Results of failure probability and the corresponding reliability index

Girder
Static stress Fatigue stress Static deflection

P f β P f β P f β

L1 0.0021 2.8676 0 +∞ 0 +∞

L2 0 +∞ 0 +∞ 0.0002 3.4973
L3 0 +∞ 0 +∞ 0.0011 3.0615
M1 0.0129 2.2284 0 +∞ 0 +∞

M2 2 × 10−6 4.6114 0 +∞ 0.0005 3.2945
M3 0 +∞ 0 +∞ 0.0046 2.6038
H1 0.0052 2.5646 0 +∞ 0 +∞

H2 2 × 10−6 4.6114 0 +∞ 0.0099 2.3291
H3 0 +∞ 0 +∞ 0.0007 3.1841

circle markers in Fig. 4(a)).
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Figure 4. Probability of failure (in semilogarithmic scale) of girders with COVF = 
0.05 (squares and legends with subscripts i) and COVF = 0.1 (circles and legends with 

subscripts ii): the static stress constraint (a), and the deflection constraint (b). 

5. Conclusions 

This paper focuses on estimating the failure probability of overhead crane 
bridge girders with uncertain design parameters. Monte Carlo approach is utilized to 
quantify the effect of the uncertainties of design parameters on the failure probability 
with several limit state functions constructed from a set of selected design constraints. 
From the obtained results, the following concluding remarks can be stated: 

(i) For the considered normal distribution, all output metrics including 
maximum stress and deflection tend to have the same distribution function in 
compared with the input uncertain variables. 

(ii) By increasing the geometric factor from kgeo = 1 to kgeo = 1.1, we can make 
the deterministic-based designs with a low reliability (Pf ~ 0.5) to reliability-based 
designs with a very low failure probability (~ 10-4) for a case of COV < 0.05. 

(iii) For high strength steels (Ys > 355 N/mm2) the deflection constraint should 
be considered only, whereas for low strength steels (Ys < 230 N/mm2) it is required to 
check the constraint on static stress. Having Pf  = 0 for all girder configurations, this 
means that the constraint fatigue stress can be neglected. 

Finally, it is obvious that uncertain design parameters lead to the failure 
probability of crane girders, but a reliability and sensitivity analysis of a crane girder 
involving parameters of its building frame [23] should be conducted in forthcoming 
works for reaching reliability-based designs in real applications. 

Commented [A1]: Kiểm tra lại xem giá trị trên trục tung là Pf 
hay log(Pf) 
Vì cách biểu diễn 10 …. 10-1 …. Như hình là của hàm log 
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be considered only, whereas for low strength steels (Ys < 230 N/mm2) it is required to 
check the constraint on static stress. Having Pf  = 0 for all girder configurations, this 
means that the constraint fatigue stress can be neglected. 

Finally, it is obvious that uncertain design parameters lead to the failure 
probability of crane girders, but a reliability and sensitivity analysis of a crane girder 
involving parameters of its building frame [23] should be conducted in forthcoming 
works for reaching reliability-based designs in real applications. 
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(b) Constraint G2

Figure 4. Probability of failure (in semilogarithmic scale) of girders with COVF = 0.05
(squares and legends with subscripts i) and COVF = 0.1 (circles and legends with subscripts ii):

the static stress constraint (a), and the deflection constraint (b)

5. Conclusions

This paper focuses on estimating the failure probability of overhead crane bridge girders with un-
certain design parameters. Monte Carlo approach is utilized to quantify the effect of the uncertainties
of design parameters on the failure probability with several limit state functions constructed from a
set of selected design constraints. From the obtained results, the following concluding remarks can be
stated:
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(i) For the considered normal distribution, all output metrics including maximum stress and de-
flection tend to have the same distribution function in compared with the input uncertain variables.

(ii) By increasing the geometric factor from kgeo = 1 to kgeo = 1.1, we can make the deterministic-
based designs with a low reliability (P f ∼ 0.5) to reliability-based designs with a very low failure
probability (∼ 10−4) for a case of COV < 0.05.

(iii) For high strength steels (Ys > 355 N/mm2) the deflection constraint should be considered
only, whereas for low strength steels (Ys < 230 N/mm2) it is required to check the constraint on static
stress. Having P f = 0 for all girder configurations, this means that the constraint fatigue stress can be
neglected.

Finally, it is obvious that uncertain design parameters lead to the failure probability of crane
girders, but a reliability and sensitivity analysis of a crane girder involving parameters of its building
frame [23] should be conducted in forthcoming works for reaching reliability-based designs in real
applications.
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