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Abstract

The 2011 Tohoku Earthquake and tsunami were one of the most devastating natural disasters in history. It caused
significant ground subsidence and erosion along the Japan coastline. The Natori river mouth which is a habitat
for both fishes and bivalves, as an important fishing ground, has been damaged by the tsunami because of the
change of the process of salt transport in an estuarine system. In general, salinity intrusion into the river mouth
can be affected by many factors such as river water discharge and tidal level, as well as estuarine morphology.
In this study, the response of salinity intrusion to the river mouth morphological changes induced by the 2011
Tsunami is investigated. The topographical changes caused by the tsunami are mainly divided into two stages.
The first is the direct action of the tsunami, which caused the severe scouring of the coast and the widening of
the river. The results have clearly indicated that after tsunami the salt water can intrude much further upstream
compare to the condition before the tsunami event. Another changes occurred during the restoration process
after the tsunami. The sediment accumulation in the river channel prevented the saltwater from entering the
river channel, which reduced the salt intrusion degree. However, the effect of the morphology change caused
directly by the tsunami is far greater than the sedimentation of the river.
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https://doi.org/10.31814/stce.nuce2020-14(2)-01 c© 2020 National University of Civil Engineering

1. Introduction

Salt intrusion is one of the important problems in estuaries because it affects the quality of surface
water and groundwater as well as the aquatic habitat. Salinity has been used as an indicator of the
water quality for organism distribution [1, 2]. The Natori River is an important fishing ground both
for bivalves and fishes in central Miyagi prefecture. It is important to figure out the salinity distribution
in this area, as it will prove invaluable in the maintenance of fishery resources in Miyagi. The effects
of the Great East Japan Tsunami on fish populations and ecosystem recovery has been studied, which
indicates that the distribution and abundance of bivalve can be affected by variations of salinity and
depth of the water. The brackish area has extended upstream after the tsunami, presumably caused by
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ground subsidence in this area [3]. The extension of brackish water area may increase the operation
cost for the desalination processes such as using the nanofiltration technique for the drinking water
treatment in the lower Thu Bon River Basin [4].

Based on this background, discussion about the salinity distribution in the Natori River mouth
will be conducted. This research will reveal the spatial and temporal variations in salinity and the
roles of river discharge, tidal period as well as morphology changes in regulating salt transport.

Many kinds of complex processes such as tidal variation, hydrological flux, wind stress reflect
changes in salinity. Numerous efforts have been made to understand the spatial and temporal dis-
tributions of salinity under the external influences of these factors. The distribution depends on the
estuarine response to river discharge, wind and tidal mixing over time scales from days to weeks and
months. There is a consensus that salt intrusion is inversely correlated to river discharge. A high river
flow results in a decreased salinity intrusion. The relationship between salt intrusion length and river
discharge follows a power law with an exponent of n, which varies in different estuaries [5, 6]. And
the response of salt intrusion to tidal mixing has also been studied extensively, while the relationship
between salt and tidal mixing differs largely. For a well-mixed or salt wedge estuary, salt intrudes more
landward during spring tides than during neap tides [7]. On the other hand, observations, analytical
and numerical model results have indicated that larger upstream salt flux or salinity intrusion happens
during neap tides in partially mixed estuaries. The difference has been attributed to the different salt
transport mechanisms for different estuaries [5, 6, 8].

In addition, the salt transport process can be also affected by changes in some geometric charac-
teristics. Such changes can alter both the hydrodynamics and the rate of mixing in the coastal ocean,
thereby having a profound effect on salt transport in estuaries. Salt intrusion is generally caused by
an imbalance between river and tidal flows but variation in seawater intrusion is also attributable to
estuarine geometry. Morphological changes during tidal variation drastically affect the longitudinal
salinity distribution [9, 10].
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Figure 1. Aerial photographs of the Natori estuary morphological changes after the 2011 tsunami

Because of the Great Tsunami which occurred on 11 March 2011, many coastlines and river
mouths has been greatly damaged. The serious coastal and estuarine morphological changes due to
the 2011 tsunami in Tohoku region has been reported in the study by [11]. In addition, a detail study
of the morphological characteristics of Natori River mouths after the 2011 tsunami and recovery
process have carried out by [12]. Fig. 1 shows the aerial photos of the river mouth taken between
March 6, 2011 and March 4, 2013. Comparing Figs. 1(a) and 1(b), it can be found that the tsunami
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severely washed away the estuary’s lagoon area and the river channel was also greatly expanded. After
this event, the estuary has entered a slow recovery phase, and the washed and broken coastline has
gradually become complete again, after 2013, the shape of the river mouth maintaining a relatively
stable state. However, comparing Figs. 1(f) with 1(a), there is still a large difference between the form
of the estuary and that before the tsunami: a clear sediment accumulation inside the river can be
observed in 2013.

As indicated above, the general understanding of estuarine dynamics and salt intrusion has ad-
vanced greatly in recent decades. However, for a specific estuary, such as Natori Estuary in particular,
which was under the severe impact of the tsunami, the morphology changed in a short period of time
and continued to change in the subsequent recovery process, the changes in salt transport have not
been quantitatively evaluated so far. Therefore, several observation datasets (topographic survey data
before and after tsunami, river discharge, water elevation, tidal level) are collected in this study. The
verified model is used to investigate the impacts of morphology change, river discharge, and tidal level
on salt transport in the Natori River Estuary. The purpose of this study is to quantitatively evaluate
the changes in salinity distribution induced by factors with different time scales, from weeks (spring-
neap tide) to months (seasonal river discharge change) and years (morphology change), then identify
the extent to which each factor affects changes in salinity. The results obtained provide significant
implications for the sustainable development of the estuarine system and the local fishery revival.

2. Materials and methods

2.1. Study area

The Natori River is located in central Miyagi prefecture, in the Tohoku region of northern Japan,
which is listed as a first-class river according to the River Act of Japan (Ministry of Land, Infrastruc-
ture, Transport and Tourism (2013)). The Natori River is approximately 55 km in length, and has 13
branches. The basin area is about 939 km2, yearly averaged discharge is 16.32 m3/s. The Natori River
Estuary is located on Japan’s east coast, and faces the Pacific Ocean (Fig. 2). The river divided into
two branches about 5.5 km upstream from the river mouth, one of which is the Hirose River, whichJournal of Science and Technology in Civil Engineering NUCE 2018            ISSN 1859-2996 
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passes through the city of Sendai. In the downstream close to the coast, there is the Idoura Lagoon on
the north coast and Hiroura Lagoon on the south coast.

The Great East Japan Earthquake and Tsunami in March 2011 were one of the most devastating
natural disasters in history, affecting the society, economy, coastlines, infrastructure, and housing. In
addition to affecting human life, the subsequent tsunami also struck organisms living in the water.
Miyagi Prefecture is the second largest fishery landing region in Japan and as a result of the tsunami
this fishery was heavily affected: many ships were lost; ports and jetties were destroyed [13]. The
Natori River is an important fishing ground both for bivalves and fishes, various fish species live
in brackish water areas, which are very important for the maintenance of fishery resources [3]. The
tsunami resulted in significant ground subsidence and deposition of rubble and mud in the Natori
River.

2.2. Data collection

In this study, to achieve the above objectives, the required data sets are the bathymetry data in
different years before and after the tsunami, river discharge and tidal elevation were specified as
boundaries, water level and salinity were used for model calibration and verification. Table 1 is the
list of all data available from 2009-2016.

Table 1. Summary of the data collection from 2009-2016 (Black dots indicate the data availability) [14]

Morphology Water level Tidal River discharge Salinity

2009 • • • •

2010 •

2011 • •

2012 • • •

2013 • • • •

2014 • • • • •

2015 • • • • •

2016 • • • • •

a. Bathymetry data

The topographic map of 2009 was used as the bottom elevation before the tsunami. From 2011
to 2015, the bottom elevation of shallow coastal terrain was measured every one kilometer along
the coast of the Sendai Bay with the survey line which is perpendicular to the coastline, which was
carried out by the Geospatial Information Authority of Japan. On the other hand, the Tohoku Regional
Bureau, Ministry of Land, Infrastructure and Transport (MLIT) provided the bottom topography data
of 4 sections, with the survey line which is perpendicular to the channel, within a distance of 0.6
km from the ocean side to the Natori River mouth as shown in Fig. 3. By combining these two data
sets, the detailed topograpthic maps of the Natori estuary can be determined for each year by an
interpolation process.

b. Hydrodynamic data

There are two river discharge measurement stations located in the upstream of the study area
which are Hirosebashi station located on the Hirose river branch and Natoribashi station on the Natori
river. These river discharge stations are located far enough to avoid the impacts by the tidal motion. In
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Figure 3. Natori river mouth transection measurement data before and after the 2011 tsunami [MLIT]

addition, there are two water level stations where Fukurobara station is located upstream and Yuriage
station is located downstream near the estuary respectively. Annual, monthly and hourly river dis-
charge and water level data for 4 hydrodymanic stations are provided by the Japan Meteorological
Agency (JMA) website [14].

The tidal levels used in this study are obtained from hourly measured data at Sendai Port station,
provided by the JMA [14] The distribution of tidal phases in the Natori River estuary is mixed tide
and the tidal range is from about 0.8 m to 1.6 m. The tidal amplitudes decrease gradually when the
tide propagates upstream.

c. Salinity data
In this study, measured salinity data for the three years from 2013 to 2015 were used. This salinity

data was provided by the College of Agriculture, Tohoku University. As shown in Fig. 4, there are
three salinity measurement points, St.A, St.B., and St.C respectively. St.A as the basic setting point,
located under the Yuriage Ohashi Bridge, with coordinates of 38◦10.949N, 140◦8.850E. St.B is lo-
cated downstream which is very close to the estuary, St.C is located upstream of the Yuriage Ohashi
Bridge, in the deep waters near the right bank. All of the measurement point is set 10-20 cm from the
bottom of the river bed elevation.
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Figure 4. The location of salinity measurement stations

The salinity measurement is divided into two periods. From 2014 to 2015, a salinity sensor named
the YSI 6920V2 multi-item water quality meter was used. The measurable items include salinity,
water temperature, turbidity, water depth, pH, etc. The salt measurement range is 0-70 ppt, with the
resolution 0.01 ppt. On these two years, the measuring interval is 10 minutes, and the salinity changes
at measurement points St.A and St.B were mainly measured, besides, in a few months, the salinity
data at St.C was also measured. From 2016, the salinity measuring instrument was changed to the
small memory water temperature and salt meter INFINITY-CT, the measurable items include salinity
and water temperature. This salinity sensor employs a 7-electrode in-tube method for the electrical
conductivity sensor with a high-precision. The observation interval is 1 minute, and the salinity is
converted by measuring the conductivity of the water body, the measurement range is 0.5-70 mS/cm,
and the resolution is 0.001 mS/cm, the precision is ±0.05 mS/cm. In 2016, only the salinity data of
measurement point St.A was measured. An example of the time variation of salinity data at three
station is shown in Fig. 5.
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2.3. Numerical model and model setup

a. Numerical model

In this study, a three-dimensional numerical EFDC+ (Environmental Fluid Dynamics Code Plus)
model is used [15]. This is an open-source code model that can be downloaded from the website at
https://github.com/dsi-llc/EFDCPlus. In recent years, this model has been widely used in the study of
estuarine hydrological environment and salt distribution. Through the model results after verification,
it can provide more accurate and clear temporal and spatial changes of salinity in different estuar-
ies. The study by [16] predicted the hydro-environmental impacts of a renewable energy structure,
including sluice gates and turbines, across the Severn Estuary by refinements to the EFDC model.
In particular, a comparison between salinity concentration distributions predicted by the 2D and 3D
models indicated that near the barrage site, the salinity levels predicted slightly different both on the
upstream and downstream. Hence, it is preferable to use a 3D model for more detailed and accurate
hydrodynamic and solute concentration distributions. Gong and Shen [17] studied salt intrusion in the
Modaomen Estuary, one of the estuaries in the PRD area, China. The EFDC model was calibrated and
verified for water elevation, water current, and salinity. Their result indicated that the estuary gains
salt during neap tides and loss salt during spring tides and a river discharge pulse suppresses the salt
intrusion greatly. Yoon and Woo [18] applied EFDC model in tidally-dominated Han River Estuary,
South Korea to understand the along-channel salinity distribution and its response to river discharge.
Although in a tidally-dominated estuary, freshwater discharge is still the primary environmental factor
controlling the salinity.

The model solves the three dimensional continuity and free surface equations of motion [19].
The Mellor and Yamada level 2.5 turbulence closure scheme is implemented in the model [20]. The
model also solves the three dimensional continuity and free surface equations of motion. The model
uses stretched vertical coordinates and curvilinear, orthogonal horizontal coordinates. It simulates
density and topographically induced circulation as well as tidal and wind-driven flows, and spatial and
temporal distributions of salinity, temperature, and conservative/non-conservative tracers. The model
has a flexible grid network structure, which is capable of linking multiple tributaries to the main
channel through grid linkage between upstream and downstream grid cells, including dam structures.
The model has been successfully applied to a wide range of environmental studies [16–18, 21].

b. Numerical setup

Fig. 6 shows the model grid, bottom elevation of the Natori River Estuary, and the location of each
measurement stations. The EFDC model domain covers the Natori River Estuary and upstream to the
Hirose River and the Natori River, where two hydrological stations, Hirosebashi and Natoribashi, are
located. To ensure that the study area was fully covered by the model, the boundary with the open
sea was extended approximately 4 km to the offshore. A curvilinear and orthogonal grid was used
over the entire domain, and this refined grid was utilized for the Natori River Estuary. The horizontal
spatial resolution ranges from about 300 m at offshore to 10 m in the area near the river channels.
Several sensitivity tests were conducted for the vertical resolution using 5, 10, 15, and 20 sigma layers
in the vertical. It was found that using 15 layers improved model results considerably compared to 5
and 10 layers, whereas 20 layers did not improve results further. Thus, the use of 15 sigma layers was
adopted in the vertical direction. Sufficient grid resolution was provided to adequately schematize the
bottom elevation of the Natori River Estuary.

At the two upstream boundaries of the two hydrological stations, Hirosebashi and Natoribashi,
Hourly river discharges were specified as the inflowing boundaries with an inflowing salinity of
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zero based on statistical result of observation data. The upstream boundaries were set with sufficient
distance from the Natori River Estuary to ensure that any effects from morphology changes were
negligible. The water levels were specified for offshore open boundary conditions, allowing the tidal
flow to freely propagate across the model domain. In this study, one coastal open boundary was set
at the east boundary, which was forced by water elevation obtained from the hourly observation data
in Sendai Bay station. References to the average salinity of the world’s oceans and the measured
data of salinity in this study, the incoming salinities at the offshore open boundary were specified as
35 ppt. With regard to the initial hydrodynamic conditions, the water elevation was set as zero over the
domain. To obtain the initial conditions for salinity, the model was run iteratively for approximately
30 days using the forced boundary conditions. The resulting salinity distribution at the end of the
simulation was used as the initial salinity condition in all cases.

3. Model calibration and validation

In this study, the bathymetry data input to the model adjusted the topography for each year after
the tsunami, considering the possible impact on the accuracy of the estuary salt distribution results
simulated by the model, and the feasibility of verifying this method, the model calibration and verifi-
cation were done in 2014-2016, all of the three years that have available salinity data. The simulation
period for the model calibration was from December 1 to 31 in 2014, January 1 to 31 in 2015, and
April 1 to 30 in 2016 respectively; and the model verification was from August 1 to 31 in 2014. The
available boundary conditions during the period were implemented into the model.

3.1. Calibration of water level

The modeled water elevations were compared with the observations data. The root–mean–square
error (RMSE) and Nash–Sutcliffe Efficiency coefficient (NSE) were used to assess the model accu-
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racy of the model. These criteria are defined as following:

RMSE =

√
Σ(M − D)2

n
(1)

NSE = 1 −
Σ(M − D)2

Σ(D − D̄)2
(2)

where D is the observational data, D̄ is the mean of the observational data, and M is the corresponding
modeled data.

As shown in Fig. 7, the modeled water levels agreed well with the observations at the two hydro-
logical stations in the Natori River Estuary, and the model evaluation index values of water elevations
are shown in Table 2. In each year, the results of downstream station (Yuriagedaini) are generally bet-
ter than the upstream station (Fukurobara). The averaged RMSE between the modeled and observed
data was 0.117 m. The NSE values for the results at different stations varied from 0.527 to 0.945,
indicating that the modeled water levels achieved very good performance.

Journal of Science and Technology in Civil Engineering NUCE 2018            ISSN 1859-2996 

12 

 

2015 Yuriagedaini  0.081 0.945 

 

2016 

Fukurobara  0.165 0.527 

Yuriagedaini  0.114 0.907 

Average  0.117 0.792 

 As shown in Fig. 7, the modeled water levels agreed well with the observations 291 

at the two hydrological stations in the Natori River Estuary, and the model evaluation 292 

index values of water elevations are shown in Table 2. In each year, the results of 293 

downstream station (Yuriagedaini) are generally better than the upstream station 294 

(Fukurobara). The averaged RMSE between the modeled and observed data was 0.117 295 

m. The NSE values for the results at different stations varied from 0.527 to 0.945, 296 

indicating that the modeled water levels achieved very good performance. 297 

 298 

 299 

Figure 7. Water level calibration results 300 

Date Date


(m

)


(m
)


(m

)


(m

)


(m
)


(m

)

Model result Measured data

(a) – Time variation comparison of 

water level at Fukurobara station in 

2014, 2015, 2016

(b) – Time variation comparison of 

water level at Yuriage station in 

2014, 2015, 2016

(a) Time variation comparison of water level at
Fukurobara station in 2014, 2015, 2016

Journal of Science and Technology in Civil Engineering NUCE 2018            ISSN 1859-2996 

12 

 

2015 Yuriagedaini  0.081 0.945 

 

2016 

Fukurobara  0.165 0.527 

Yuriagedaini  0.114 0.907 

Average  0.117 0.792 

 As shown in Fig. 7, the modeled water levels agreed well with the observations 291 

at the two hydrological stations in the Natori River Estuary, and the model evaluation 292 

index values of water elevations are shown in Table 2. In each year, the results of 293 

downstream station (Yuriagedaini) are generally better than the upstream station 294 

(Fukurobara). The averaged RMSE between the modeled and observed data was 0.117 295 

m. The NSE values for the results at different stations varied from 0.527 to 0.945, 296 

indicating that the modeled water levels achieved very good performance. 297 

 298 

 299 

Figure 7. Water level calibration results 300 

Date Date


(m

)


(m
)


(m

)


(m

)


(m
)


(m

)
Model result Measured data

(a) – Time variation comparison of 

water level at Fukurobara station in 

2014, 2015, 2016

(b) – Time variation comparison of 

water level at Yuriage station in 

2014, 2015, 2016

(b) Time variation comparison of water level at
Yuriage station in 2014, 2015, 2016

Figure 7. Water level calibration results

9



Tinh, N. X., et al. / Journal of Science and Technology in Civil Engineering

Table 2. The model evaluation index values for calibration of water level in 2014, 2015 and 2016

Year Station RMSE (m) NSE

2014
Fukurobara 0.133 0.726

Yuriagedaini 0.122 0.849

2015
Fukurobara 0.086 0.798

Yuriagedaini 0.081 0.945

2016
Fukurobara 0.165 0.527

Yuriagedaini 0.114 0.907

Average 0.117 0.792

3.2. Calibration of salinity

Fig. 8 shows comparisons between the modeled and observed salinities in the estuary, and the
model evaluation index values for calibration of salinity shows in Table 3. The model results were
particularly accurate when reproducing the salinity of St.A and St.B in 2014 and 2015, with the
RMSE less than 3.9, and NSE over 0.64. Although the trough of salinity variation did not capture
well in the St.C, but the evaluation index values in most stations are showing a good performance,
suggesting that the model is capable of accurately simulating the process of salt transport. AlthoughJournal of Science and Technology in Civil Engineering NUCE 2018            ISSN 1859-2996 
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the discrepancies between the modeled and observed salinities were significantly greater than those
for simulations of the water level, the salinities modeled in this study are generally considered to be
acceptable.

Table 3. The model evaluation index values for calibration of salinity in 2014, 2015 and 2016

Station RMSE (ppt) NSE

2014
A 3.628 0.836
B 3.900 0.748

2015
A 3.585 0.815
B 3.701 0.641
C 2.453 0.805

2016 A 5.129 0.729

Average 3.733 0.762

4. Results and discussion

4.1. Numerical simulation scenarios

In order to evaluate the different extent of the three factors (river discharge, tide, and morphology
changes) impact on the salinity transport mechanism of the Natori River Estuary, after obtaining the
ideal calibration result, at the stage of analysis, different scenarios were designed and simulated to
quantify the salinity distribution in estuary under different conditions. In order to assess the salinity
intrusion into the estuary under different flow conditions throughout the year, three different inflowing
boundary conditions such as high discharge, normal discharge and low discharge were set at the two
upstream boundaries at the Hirosebashi Station, and the Natoribashi Station respectively. High river
discharge is defined as 95 days of river discharge in a year not less than this value; normal river
discharge is 185 days of river discharge in a year not less than this value; low discharge is 275 days
of river discharge in a year not less than this value. The specific values are calculated based on the
information provided by the Japan Meteorological Agency website [13] from year of 1969 to 2016 and
shown in Table 4. Specifically, in Hirosebashi station, the high discharge is: 11.73 m3/s; the normal

Table 4. The determine the high-, normal-, and
low-mean river discharges based on the data

collected between 1969 and 2016

Hirosebashi Natoribashi
(m3/s) (m3/s)

High discharge 11.73 15.17
Normal discharge 6.26 7.81
Low discharge 3.62 4.67
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discharge is: 6.26 m3/s; the low discharge is: 3.62 m3/s. In Natoribashi station, the high discharge is:
15.17 m3/s; the normal discharge is: 7.81 m3/s; the low discharge is: 4.67 m3/s.

In total, there 9 simulation scenarios were set up which consisted of three typical river discharges
over three different bathymetries in 2009, 2013, and 2014. The models were simulated over one month
tidal cycle to cover the spring tide and neap tide effects. The analysis of simulation results will focus
on the salinity distribution during the high, normal, and low river discharge, as well as during the
different tidal stages as shown in Fig. 9.

4.2. Effect of river discharge and tidal level on salinity instrusion length

In order to quantify salt transport and to analyze the controlling mechanisms, the distributions
in salinity along the longitudinal section from the river mouth at the Section A (Fig. 3) to the river
upstream. Fig. 10 is the numerical simulation results of the longitudinal distribution of salinity cor-
responding to the actual bathymetric conditions in the years of 2009 and 2014. These two simulation
cases represent to the situation before and after the 2011 tsunami event. The results were compared un-
der the high, normal and low river discharge during a whole spring-neap tidal cycle to detect changes
in the vertical stratification of salinity in the Natori River Estuary. As a result, the longitudinal and
vertical distributions of salinity before and after the 2011 event are distinctly different. More salinity
intrusion after the tsunami during 3 stages of river flow, it is mainly due to the river mouth morpho-
logical changes. Under high river discharge conditions, no significant salt intrusion was observed in
2009. While as the river discharge decreases, the salt intrusion in the estuary become very obvious.
Under the conditions of normal and low discharge, near the river mouth, salinity in the bottom water
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layer almost always changes within the range of more than 20 ppt in the year of 2014 and the salinity
intrusion length has also greatly increased.

In addition, short-term changes in salinity are also very sensitive to the tide periods. As shown in
Fig. 11, salt is intruded into the estuary during the flood-tide periods; the salinity thus increases, and
the maximum salt intrusion occurs at flood slack. However, salt is expelled from the estuary during
ebb-tide periods; the salinity decreases, and the minimum salt intrusion occurs at ebb slack. During
the same tidal period, due to the effects of high tide and low tide, the difference between the maximum
salt intrusion length in the estuary varies from 300 to 2000 meters, with the increased tidal range in
the spring tide, the salt intrusion length at its high tide level is always longer than that of neap tide.
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4.3. Effect of river mouth morphological change on salinity

Fig. 12 shows a comparison of the maximum salinity intrusion length during the high tide and
low tide period for three different years of 2009, 2013 and 2014. The previous analysis suggests that
the topographic subsidence caused by the tsunami and the severe erosion of the beach near the estuary
resulted in more seawater pouring into the river and the salinity concentration increased significantly.
Due to the limited range of traceability of seawater under high river discharge conditions, this change
in salinity distribution caused by topographic differences is more pronounced at low and normal river
discharge. Comparing the situation before and after the tsunami, there is a significant difference in
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Figure 12. Maximum salinity intrusion length before and after the 2011 tsunami

the maximum salt intrusion length before and after the tsunami event. Here, the maximum intrusion
length is defined as a distance from the 0.0 km of the river to the 1 ppt contour in the upstream. Table 5
summarizes all maximum salinity intrusion length during the different conditions of river flow and
tidal periods. The salinity intrusion length and concentration before the tsunami event in 2009 are
much shorter and smaller compare to the situation after tsunami in 2013 and 2014. By comparing
the results of 2013 and 2014, it can be found that, due to the obvious sediment deposition inside the
river channel in 2013, which prevented seawater invasion to a certain extent, the salt intrusion in the
estuary in that year was weaker than in 2014, but the increase in salt transport caused by tsunami
is significantly stronger than the weakening effect from sand deposition. In addition, by comparing
the longitudinal distribution of salinity before and after the tsunami, the vertical stratification has

Table 5. The Maximum salinity intrusion length – Unit is meter

Year
High discharge Normal discharge Low discharge

High tide Low tide High tide Low tide High tide Low tide

2009 120 0 630 510 1700 1680
2013 2410 1480 3360 2360 3850 3010
2014 2490 1680 3480 2480 4060 3060
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also changed significantly. In 2009, the estuary was mainly in a highly stratified state, the salinity
isohaline is nearly horizontal. However, because the topographic changes increase the mixing effect
of freshwater and saltwater at the estuary area, the stronger tidal mixing effect generally weakened the
stratification of the water column and destroyed the salt wedge in the corresponding cases after the
tsunami.

5. Conclusions

In this study, the EFDC model was used to quantitatively evaluate the impacts from river dis-
charge, tidal and the morphology change caused by tsunami on salt transport in the Natori River
Estuary. The model calibration and validation using observed data collected from 2014 to 2016 in-
dicate that the model successfully simulated the dynamic processes and salinity distribution in the
estuary. The simulation results of salinity distribution in the river mouth were compared under differ-
ent conditions.

The modeled results indicate that the river discharge greatly affects the change of salinity, and
it directly determines whether the salt intrusion occurs in the estuary. At the same time, the salt
distribution also responds to the cyclical changes in the tide level during a short term period. Due to
the impact of the 2011 tsunami, the increase of river month width and water depth caused more salt
water to enter the river mouth, exacerbating the salt intrusion, and the sediment accumulation during
the estuary restoration after the tsunami reduced the salinity in the estuary, but with the effect far less
dramatic than the effects of the tsunami. The expansion of the Natori estuary is not only caused by the
tsunami but also caused by a river flood. Therefore, a similar salinity intrusion mechanism might also
be happened. Thus, the findings from this study will be very useful for the river authority to find the
best countermeasure plans for the sustainability development of the fishery activities and agricultural
purposes in the future.
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