
Journal of Science and Technology in Civil Engineering NUCE 2020. 14 (2): 53–64

STRUCTURAL DAMAGE DETECTION USING HYBRID
DEEP LEARNING ALGORITHM

Dang Viet Hunga,∗, Ha Manh Hunga, Pham Hoang Anha, Nguyen Truong Thanga

aFaculty of Building and Industrial Construction, National University of Civil Engineering,
55 Giai Phong road, Hai Ba Trung district, Hanoi, Vietnam

Article history:
Received 04/02/2020, Revised 16/3/2020, Accepted 18/3/2020

Abstract

Timely monitoring the large-scale civil structure is a tedious task demanding expert experience and significant
economic resources. Towards a smart monitoring system, this study proposes a hybrid deep learning algorithm
aiming for structural damage detection tasks, which not only reduces required resources, including compu-
tational complexity, data storage but also has the capability to deal with different damage levels. The tech-
nique combines the ability to capture local connectivity of Convolution Neural Network and the well-known
performance in accounting for long-term dependencies of Long-Short Term Memory network, into a single
end-to-end architecture using directly raw acceleration time-series without requiring any signal preprocessing
step. The proposed approach is applied to a series of experimentally measured vibration data from a three-story
frame and successful in providing accurate damage identification results. Furthermore, parametric studies are
carried out to demonstrate the robustness of this hybrid deep learning method when facing data corrupted by
random noises, which is unavoidable in reality.
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1. Introduction

Large-scale civil infrastructures play a critical role in society by facilitating transportation, sup-
porting economic growth, and improving the quality of daily life. Thereby, it is of great importance
for ensuring their smooth operations despite various external excitations such as wind loads, vehicular
loads, accidental loads, environmental changes, blast loads, fire, earthquakes. To this end, effective
and efficient continuous monitoring systems are indispensable. Recently, applying Deep Learning
(DL) algorithms to the analysis of the structure’s behavior [1, 2] and monitoring the operational con-
dition of infrastructure is an exciting research direction in the engineering community owing to their
capacity in dealing with a large amount of measurement data and the rapid development of technol-
ogy such as high-performance computers and new sensors devices, i.e., wireless sensors, Internet of
Thing sensors, etc. The data fed into DL algorithms are collected from a system of sensors embedded
across structures. Different types of sensors are helpful, but the measured vibration data are currently
the most common.

Formally, using vibration data to detect potential deterioration in structural components is termed
Vibration-based Structural health monitoring (VSHM) [3]. Classical methods for VSHM usually re-
quire a modal analysis step to extract modal characteristics of the structure such as natural frequencies,
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and mode shapes. The deviation between experimentally extracted values with those of intact state is
determined then being fed into an optimization method to detect any structural damages. However,
for large-scale infrastructure, the modal identification step is challenging because of a vast number
of required degrees of freedom and inevitable environmental noise. Besides, low-frequency modal
characteristics are insensitive to local damages, while high-frequency ones are arduous to determine.
Thus, DL is a promising alternative method because it allows for direct identification of damage from
raw sensory data.

Recently, Abdeljaber et al. [4] proposed a one dimensional convolution neural network (1DCNN)
to detect changes in structural properties of a steel frame using measured acceleration signals. Li et al.
[5] published promising results for structural damage detection of Euler-Bernoulli beams by combin-
ing 1DCNN and original waveform signals in lieu of handcrafted features. Avci et al. [6] addressed
the loss of connection stiffness of a steel frame structure via a novel structural health monitoring
(SHM) method using 1DCNN and wireless sensors networks. Zhang et al. [7] developed a 1DCNN
method for VSHM of bridge structures and successfully tested on both a simplified laboratory model
and a real steel bridge. Ince [8] demonstrated that the 1DCNN architecture was highly effective in
real-time monitoring motor conditions because their model took only 1.0 ms per classification, and
the experimental accuracy result was more than 97%. To address the fault diagnosis problem of the
wind turbine gearbox, Jiang et al. [9] proposed a 1DCNN-based method with the ability to learn rel-
evant features at multiple time scales in a parallel fashion. Jing et al. [10] showed that the 1DCNN
outperformed the popular machine learning methods such as support vector machine, random forest,
which utilized classical manual feature extraction in detecting faults of gearboxes.

On the other aspect, the recurrent neural network (RNN) is a special architecture among DL algo-
rithms designed for capturing time-dependent characteristics; thus, RNNs are naturally proposed for
feature learning of sensor measurements. However, the sensor data usually consist of long sequential
samples; therefore, the vanilla RNN suffers either the gradient exploding or vanishing. To cope with
this long-range dependencies, some derived architectures from RNN are developed by scientists such
as Long Short Term Memory (LSTM) and its simplified version Gated Recurrent Unit. Zhao et al.
[11] developed two LSTM-based methods for structural health monitoring of high-speed CNC ma-
chines using sensory data, namely basic LSTMs, and Deep LSTMs. Their results confirmed that the
LSTM network could perform better than a number of baseline methods. Yuan et al. [12] investigated
the remaining useful life of aero-engine utilizing LSTM under various operation modes and several
degradation scenarios. They found that the standard version of LSTM itself has a strong ability to
achieve accurate both long term and short term prediction during the degradation process. Lei et al.
[13] developed a LSTM-based method for fault diagnosis of wind turbines based on multiple-sensor
time-series signals. In their study, LSTM achieved the best performance among deep learning archi-
tectures, including the vanilla RNN, the MLP, and the Deep Convolution Neural Network. Qiu et al.
[14] addressed the bearing faults diagnosis problem by designing a modified bidirectional LSTM,
which could reduce error rates by six times compared to conventional methods.

However, when the length of the time-series becomes larger, the time complexity of the LSTM will
intractably increase compared to other counterparts, which hinders the application of LSTM to long-
term structural health monitoring. To overcome this drawback, ones propose a hybrid architecture
combining the efficiency of 1DCNN in capturing local connectivity with the well-known performance
in recognizing long-term dependencies of LSTM network into a single end-to-end architecture. The
main contributions of the work are summarized as below:

- This work proposes a hybrid deep learning algorithm for low complexity analysis of structural
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damage detection.
- With the use of the proposed approach, relatively high accuracy is achieved for damage identifi-

cation tasks, including minor damage level which is difficult to visually identify.
- A parametric study is conducted to demonstrate that the present method is robust in handling

data corrupted by random environmental noise in practice.
The remainder of this paper is organized as follows: Section 2 introduces in details the components

of the architecture of the hybrid Deep Learning algorithm; Section 3 describes the experimental data
set and data augmentation techniques; Section 4 presents damage identification results obtained by
the mean of the proposed method. Finally, Section 5 draws the conclusion and gives some ideas for
future work.

2. Hybrid Deep learning model CNN-LSTM

It is commonly acknowledged that the convolution neural networks (CNNs) can provide outstand-
ing performance on signal classification and pattern recognition because of two folds. On the one
hand, its architecture is especially suitable for discovering local relationships in space; on the other
hand, it reduces the number of network parameters, thus leading to a lower computational complexity
compared to conventional Deep Learning architectures. The hyperparameters of a 1D convolution
layer comprise the number of kernels, the kernel length, and the stride value. The formula of one
typical convolutional layer is expressed as follows [15]:

hk = conv1D (wk, X) + bk (1)

where hk,wk and bk are respectively the output vector, weight vector and bias parameter of the kernel
k, X is the input vector and conv1D is the 1D convolution operator whose ith output is calculated by
the following formula:

conv1D (wk, X(i)) = wk ⊗ X(i) =
Nk∑
j=1

wk jxαi− j (2)

where Nk is the length of the kernel k,wk is the jth element of vector wk.

On the other aspect, LSTM is a special type of deep neural network, using signal information at
multiple previous time steps to perceive insight into the recent time step, referred to as “long-term
dependencies”. The fundamental theory of the LSTM can be found in the work of Hochreiter and
Schmidhuber [16]. The structure of LSTMs consist of repeating cells jointly connected, each cell has
three gates, namely forget gate, input gate, and output gate to control information flow. The output
of the LSTM sequences is fed into a fully connected layer with softmax activation function, which
further provides the probability for each predicted class.

The mathematical formulas of this model are described as follows. A linear transformation of the
combination of input xt at time step t and output of hidden layer ht−1 at time step t−1, is expressed by:

L (ht−1, xt) = W [ht−1, xt] + b (3)

where W and b are the weight matrix and bias vector of the network.
Formulas of three gates inside each cell of LSTM are written by Olah [17]:

f f = σ
(
L f (ht−1, xt)

)
fi = σ (Li (ht−1, xt))

f0 = σ (L0 (ht−1, xt))

(4)
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The new candidate of information created at time step t is calculated by applying the tanh activa-
tion function on a linear transformation of a concatenation [ht−1; xt]:

Ct = tanh (Lc (ht−1, xt)) (5)

Then the flow of information is updated with the new candidate by element-wise operations:

st = f f ⊕ ( fi �Ct) (6)

and the output of the cell at time step t is calculated based on the updated information and the output
gate:

ht = f0 � st (7)

In summary, the function computing hidden outputs can be expressed as:

ht = F (xt, ht−1) (8)

In these equations, σ is the sigmoid function, tanh denotes the hyperbolic tangent functions, � and ⊕
stand for component-wise multiplication and addition of two vectors, respectively.

In terms of data processing steps, we need to reshape data into the three-dimensional format
accepted by the LSTM. The first dimension is the number of measured cases, which can be up to
ten thousands. The second dimension is the number of time steps fed into each LSTM cell, which is
of an order of hundreds, and the last dimension is the total number of sensors utilized for a specific
structure. In fact, the number of time steps is a hyperparameter, being fine-tuned further to improve
the performance of the model.
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The new candidate of information created at time step t is calculated by applying the 
tanh activation function on a linear transformation of a concatenation [ht-1 ; xt]: 
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Figure 1. Architecture of the hybrid 1DCNN-LSTM architecture

Having established the convolutional layer and LSTM’s memory cell, the hybrid deep learning
architecture is schematically illustrated in Fig. 1, whose workflows are described as follows. Once
vibration data enter into the network, it is divided into fixed-length segments, then the 1DCNN layer
will extract inner relationships between measured points and their higher derivatives before feeding
to the memory cell of LSTM where long-term dependencies are identified and retained over time.
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The output of the last time instant will be converted into a one dimensional vector, then fed to a fully
connected layer where the features are elaborated one more time before being passed to the output
layer with the softmax activation function to provide damage identification results.

In this hybrid DL architecture, the essential hyperparameters which need to be determined further
are the number of kernels k, the kernel length, the stride value in the convolution layer, and the number
of hidden layers in LSTM cell.

3. Structural Health Monitoring Dataset

3.1. Description of laboratory data

In this section, the proposed hybrid deep learning structure is validated through a case study
case involving experimentally measured vibration data from a three-story frame structure realized at
Los Alamos National Laboratory [18], as shown in Fig. 2. The dataset is selected because of its re-
semblance to real scenarios, its appropriate number of time series, as well as its validity. The frame
consists of columns with 17.7 cm length and 2.5 × 0.6 cm2 cross-section, and plates with 2.5 cm
thickness and 30.5×30.5 cm2 area. These structural components are made from aluminum and joined
together using bolts. An electrodynamic shaker at the base floor serves to excite the structure ran-
domly, the excitation is band-limited in the range of 20-150 Hz. At the top floor and the third floor, an
additional column (15.0× 2.5× 2.5 cm) and a bumper are installed, respectively. The contact between
these two elements when the frame vibrates will induce non-linearity into the dynamic behavior of
the frame. Each floor of the structure is equipped with an accelerometer of 1000 mV/g nominal sensi-
tivity to measure the structure vibration. An acceleration signal is recorded for 25.6 s with a sampling
frequency of 320 Hz, resulting in a time-series of 8192 data points. As the maximum excitation fre-
quency is 150 Hz, such sampling frequency is large enough to capture essential information content
in the structure response. Fig. 1 shows the setup of the experiment.
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0.05mm 
gap 

0.2mm gap, 
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0.2mm gap, 
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Figure 2: Three-story frame structure experiment [18] 
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with the bumper. As a change in mass or column stiffness does not impose non-linearity 
in structure’s responses, associated structural states numbered from 1 to 9, can be 
classified as undamaged states. Otherwise, the intermittent contact between the column 
and the bumper leads to sudden changes in the structure’s responses. Therefore 
corresponding states number from 10 to 17 are treated as damaged conditions. It is 
noteworthy that by varying frequency of contact between these two elements through 
their initial distance, one could generate different levels of damage in the structure 
(minor, medium, or major). Table 1 lists all 17 structural states with detailed 
descriptions. Each state is measured ten times so that there are in total 170 time series 
for each accelerometer. Fig. 3 illustrates examples of time-series data measured from 
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The above default configuration of the structure is considered as the baseline condition. After-
ward, a number of modifications are introduced to the structure to generate different structural state
conditions. The modifications involve reducing 12.5% stiffness of one or two columns at each story,
adding 19% extra floor’s mass at the base or the 1st floor, and inducing contact between the suspended
column at the top floor with the bumper. As a change in mass or column stiffness does not impose
non-linearity in structure’s responses, associated structural states numbered from 1 to 9, can be clas-
sified as undamaged states. Otherwise, the intermittent contact between the column and the bumper
leads to sudden changes in the structure’s responses. Therefore corresponding states number from 10
to 17 are treated as damaged conditions. It is noteworthy that by varying frequency of contact between
these two elements through their initial distance, one could generate different levels of damage in the
structure (minor, medium, or major). Table 1 lists all 17 structural states with detailed descriptions.
Each state is measured ten times so that there are in total 170 time series for each accelerometer.
Fig. 3 illustrates examples of time-series data measured from the top floor for all 17 structural states.
As observed, it is difficult to distinguish damaged structural condition with undamaged ones visually.
As such, the proposed hybrid deep learning is used to perform structural damage detection later.

Table 1. Structural state conditions in the three-story frame structure experiment

State 1 2 3 4 5 6

Condition 0 0 0 0 0 0
Description Baseline Added

mass
Added
mass

Column
stiffness
reduction

Column
stiffness
reduction

Column
stiffness
reduction

State 7 8 9 10 11 12

Condition 0 0 0 1 (minor) 1 (medium) 1(medium)
Description Column

stiffness
reduction

Column
stiffness
reduction

Column
stiffness
reduction

0.2 mm
gap

0.15 mm
gap

0.13 mm
gap

State 13 14 15 16 17

Condition 1 (medium) 1 (major) 1 (minor) 1 (minor) 1 (minor)
Description 0.10 mm

gap
0.05 mm
gap

0.2 mm
gap, added
mass

0.2 mm
gap, added
mass

0.1 mm
gap, added
mass

* 0: undamaged condition, 1: damaged condition (major, medium, minor).

3.2. Data augmentation

In this section, the process of generating data for the development of the hybrid deep learning is
presented. The vibration of the whole structure is measured at each floor, but the floor close to the
non-linear source, i.e., the suspended column and bumper, will be most influenced, thereby, time-
series from the top floor will be utilized to generate the required data set. In general, a large and well-
balanced database benefit the performance of Deep Learning algorithm, therefore data augmentation
techniques are adopted to increase the size of the experimental data. In principle, the data augmen-
tation technique introduces some minor changes in the original data without altering its underlying
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altering its underlying pattern. Herein the utilized techniques are flipping (rotation), 
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Figure 3: Acceleration-time series measured from top floor for all 17 structural states. 

 Figure 3. Acceleration-time series measured from top floor for all 17 structural states

pattern. Herein the utilized techniques are flipping (rotation), scaling, and permuting [19]. Flipping
inverts the sign of the signal, scaling increases/decreases the magnitude of the raw data slightly by
a random ratio from 5 to 10%, and permuting will swap two randomly selected small fractions (2%
length) of the signal. Fig. 4 illustrates how data augmentation techniques work. After applying data
augmentation techniques, the size of the final database increases up to 1000 time series, which is
sufficient for training and validation of the proposed hybrid deep learning model.
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Figure 4: Data augmentation techniques for time-series data 

3.3 Data preparation 
After applying the data augmentation technique, the obtained database is used to 

train and evaluate the performance of the hybrid deep learning algorithm. Traditionally, 
the database is divided into three subsets, namely, training, validation, and testing one 
with a predefined ratio. However, a single split might not ensure a well-balanced 
distribution of different structural conditions among sub-dataset. Therefore, the K-fold 
cross-validation strategy is employed to reduce the bias in the final model. First, the 
data is broken down into the training and testing subset with a ratio of 90:10. Then, the 
training dataset is split further into the K equal portions. Here a common value K=10 is 
selected, meaning the training process will be iterated ten times, each time one different 
portion is used for validation, whereas the remaining serves for training. The K cross-
validation strategy is graphically shown in Fig. 5. 

 
Figure 5: K-Fold cross-validation strategy 
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4.1 Training process 
In this part, the proposed method is applied to the above acceleration database to 

determine the structural condition of the frame, i.e., damaged/undamaged. As 
previously mentioned in Section 3, the hyperparameters of the proposed hybrid 
architecture are the number of kernels k, the kernel length Lk, in the convolution layer, 
and the number of hidden layers Nh in LSTM cell. Specifically, k varies in the range [5, 
50], Lk in [10, 100], and Nh in [3, 30]. Such ranges are predetermined based on the size 
of the database (1000), the length of one time series (8192), and the number of output 
classes (2).  

Figure 4. Data augmentation techniques for time-series data

3.3. Data preparation

After applying the data augmentation technique, the obtained database is used to train and evaluate
the performance of the hybrid deep learning algorithm. Traditionally, the database is divided into three
subsets, namely, training, validation, and testing one with a predefined ratio. However, a single split
might not ensure a well-balanced distribution of different structural conditions among sub-dataset.
Therefore, the K-fold cross-validation strategy is employed to reduce the bias in the final model.
First, the data is broken down into the training and testing subset with a ratio of 90 : 10. Then, the
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training dataset is split further into the K equal portions. Here a common value K = 10 is selected,
meaning the training process will be iterated ten times, each time one different portion is used for
validation, whereas the remaining serves for training. The K cross-validation strategy is graphically
shown in Fig. 5.
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4. Computation results

4.1. Training process

In this part, the proposed method is applied to the above acceleration database to determine the
structural condition of the frame, i.e., damaged/undamaged. As previously mentioned in Section 3,
the hyperparameters of the proposed hybrid architecture are the number of kernels k, the kernel length
Lk, in the convolution layer, and the number of hidden layers Nh in LSTM cell. Specifically, k varies
in the range [5, 50], Lk in [10, 100], and Nh in [3, 30]. Such ranges are predetermined based on the
size of the database (1000), the length of one time series (8192), and the number of output classes (2).

Table 2. Training and validation accuracy obtained for 10-fold cross-validation

Fold 1 2 3 4 5 6 7 8 9 10 Mean Std

Train_Acc(%) 98.6 99.0 99.8 98.8 99.2 97.1 99.0 99.8 98.0 97.8 98.7 0.8
Valid_Acc(%) 84.5 93.1 79.3 89.6 82.7 82.7 84.2 87.7 89.4 82.4 85.5 4.0

Let take an example with k = 100, Lk = 100, and Nh = 10, Fig. 6 shows the evolution of training
loss and validation accuracy versus the number of epochs. As observed, the training loss curve in blue
is decreased steadily, and the accuracy curve in red increases at the same time, for the first 50 epoch.
After that, the accuracy improves gradually, before reach to a convergent value of 84.2% around the
160th epoch. Apparently, there is a drop in the final validation accuracy compared to the highest
peak around 90%. It can be explained that the model is trapped by a local optimization area, not
the desirable global optimized solution. To overcome this problem, one could feed more data for the
model, but this solution is not always available. Another solution is using the proposed 10-fold cross-
validation strategy, which repeats the training process ten times with different training/validation pair,
thus could avoid locally optimized solutions. Afterward, the mean and standard deviation of results
are estimated (see Table 2).
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Actually, these do not exist a common way for the selection of the best parameters, but it depends
on specific problems. Thus, one adopts the Grid search technique to test all possible combinations of
hyperparameters for the identification of the optimal architecture. It is noted that other parameters are
fixed throughout the whole training process. For example, the learning rate is set to lr = 0.0001, the
number of epochs Nepoch = 200, the batch size = 32, the optimizer is Adam [20]. These values are
defined by a preliminary study by authors to ensure cover as many details as possible in behaviors of
DL model during the training process. In fact, the performance of the final model can be improved
further by fine-tuning these training process parameters, but this work mainly focuses on the hybrid
deep learning architecture, then only hyper-parameters directly related to the later are investigated.
Fig. 7 shows the results of the Grid search technique. It is recorded that the final hybrid deep learning
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model with the number of convolutional kernels k = 50, the kernel length Lk = 200, and the number
of LSTM cell’s hidden layers Nh = 20 provides the highest averaged accuracy of 96.1% and a standard
deviation of 1.2% on the validation dataset. When applied to the testing data, it yields an accuracy of
93.0%, unexceptionally. Fig. 8 presents the confusion matrix obtained from the testing data. Moreover,
the inference time of the model for one testing time series is only 0.001 s, meaning suitable for a real-
time structural health monitoring application. This result confirms the correctness of the proposed
method in structural damage identification only using raw measured vibration data, no additional
signal pre-processing is required.
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Fig. 9 depicts how the damage detection accuracy evolves with respect to the 
noise amplitude. It can be seen that with low level of noise, the proposed method still 
provides highly accurate results, i.e. more than 90% with a noise level up to 6%. The 
accuracies remain reasonable with noise level up to 12%, i.e., an accuracy of around 
85%. However, when the noise became excessively high (from 15%), the model 
performance degrades sharply below 80%. At the same time, the variance of the 
prediction results increases with the increasing noise level. These results confirm that 
the proposed hybrid DL algorithm can be applied for real data contaminated by 
environmental noise whose amplitude is fairly small compared to that of vibration data. 
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4.2. Noisy and missing data

In practice, measured vibrational data encompass inevitable noise caused by device instability,
modeling assumption, or human errors. Therefore, it is of great importance to quantify the robustness
of a SHM application in dealing with noisy data before applying to the real-world structure. For this
purpose, one incorporates white-noise of different levels to the above testing data, then estimate the
corresponding detection accuracy of the optimized hybrid DL model for these noisy data. The white-
noise is defined by the following equation:

Xnoise(t) = X(t) + α.η(t) (9)

in which X(t) and Xnoise(t) are original and added-noise time series, respectively, η(t) is the white
noise time series with zero mean and unit variance, α is the noise amplitudes based on the rot mean
squared value of X(t). The value of a varies in the range of 0%–20%. Because the noise is random,
ten run are carried out for each noise level, then mean and standard deviation values are calculated.

Fig. 9 depicts how the damage detection accuracy evolves with respect to the noise amplitude. It
can be seen that with low level of noise, the proposed method still provides highly accurate results, i.e.
more than 90% with a noise level up to 6%. The accuracies remain reasonable with noise level up to
12%, i.e., an accuracy of around 85%. However, when the noise became excessively high (from 15%),
the model performance degrades sharply below 80%. At the same time, the variance of the prediction
results increases with the increasing noise level. These results confirm that the proposed hybrid DL
algorithm can be applied for real data contaminated by environmental noise whose amplitude is fairly
small compared to that of vibration data.
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5. Conclusions

In this study, one developed a hybrid deep learning framework leveraging the superiority in cap-
turing local connectivity of 1DCNN and the capability in retaining long-term dependency of LSTM
to structural damage detection. The present framework is able to deliver highly accurate damage de-
tection results directly using raw time-series data without any additional signal-preprocessing. The
efficacy and efficiency of the proposed method are proved through a case study with experimental
vibrational data obtained from a three-story frame. Moreover, a parametric study is carried out to
provide insight into the influence of random noise on output results. It is desirable that a method ap-
plicable in reality needs to keep their performance at the acceptable level when the measured data is
lightly lost or contaminated by noise. As expected, the robustness of the hybrid architecture is clearly
shown by the parametric study results.

For the next step of this study, the proposed approach could be extended to allow much larger and
longer input data because the real-world structures usually contain many sensors across their physical
bodies. Moreover, other kinds of monitoring data should be incorporated into datasets, such as strain,
rotation measurement, camera, and computer-vision based data for the purpose of detecting different
types of structural anomalies such as concrete crack, steel corrosion, and fatigues.
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