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Abstract

Lightweight structures with soft inclusion material, such as hollow core slabs, foam sandwich wall, pervious
pavement . . . are widely used in construction engineering for sustainable goals. Voids and soft inclusion can be
modeled as a very soft material, while the main material is modeled with its original rigidity, which is so much
higher than inclusion’s one. In consequence, highly contrast bi-phase structure attracts the interests of scientists
and engineers. One important demand is how to build a homogeneous equivalent model to replace the multi-
phase structure which requires much resources and time to perform structure analysis. Various homogenization
schemes have succeeded in establishing a homogeneous substitution model for composite materials which fulfill
the scale separation condition (characteristic length of heterogeneity is very small in comparison to structure
dimensions). Herein, elastic stiffness matrix of a homogeneous model which replaces a bi-phase material is
computed by a higher-order homogenization scheme. A non-homogeneous boundary condition (a polynomial
inspired from Taylor series expansion) is used in computation. Homogeneous substitution model constructed
from this computation process, can give engineers a fast and effective tool to predict the behavior of bi-phase
structure. Instead of a classical Cauchy continuum, second gradient model is selected as a potential candidate
for substituting the composite material behavior because of the separation scale (volume ratio of inclusion to
matrix phase reaches unit).

Keywords: generalized continuum; second-gradient medium; higher-order homogenization; non-homogeneous
boundary conditions; representative volume element.
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1. Introduction

Multi-phase materials are widely used to construct structural members since recent decades. Lo-
cal mechanical behavior of each phase has impact on global member’s one. Therefore, engineers have
to take into account all local characters in their simulation. Such analyse requires a lot of computer
resources as well as computation time. For this reason, homogenization technique is developed to over-
come this challenge by establishment of a homogeneous model which requires much less resources
and can give a rapid prediction of global mechanical behavior. This technique has been developed
initially in the frame of mechanic and engineering of materials as mentioned in [1, 2] and expanded
to structural engineering, for instance [3–5]. In these later works, a homogeneous substitution model
are developed to substitute a bridge deck (composed of precast concrete panel), a hollow core slab
(whose the void formers are plastic boxes), and brick masonry. These studies concentrate on periodic
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structures, which means the whole structure configuration can be built from translation of unit cell
repeatedly in all directions. Some interesting results from these works are presented, but some discus-
sion still remain. In [3], a special boundary condition is developed to transform a 3D periodic bridge
deck modeled in detail (so-called micro-mechanical model) to a homogeneous orthotropic thick plate
model (so-called macro-mechanical model). In [4], periodic Representative Volume Element (RVE)
of hollow core slab is considered. A similar strategy as in [3] is performed. The homogeneous sub-
stitution thin shell is finally obtained after the homogenization scheme. Validation of the final sub-
stitution model hasn’t presented yet. In [5], homogeneous model of Reissner-Midlin orthotropic plate
is constructed to substitute a brickwork masonry. The boundary condition is also specific to capture
the real behaviour of masonry. Above works show that for different macro-scale structures, boundary
condition varies so much. Thus, each homogeneous scheme can be specifically used for one type of
structure (voided panels deck, hollow core slab, brick masonry). For other types, new boundary condi-
tion development needs to be performed, while in classical homogenization problem, in particular, the
case of periodic continuum, boundary condition is stable as described in Section 1. On other side, one
can recognize that in above works, structures composed of bi-phased material have been considered
(pre-tensioned concrete and mortar phases in [3], reinforced concrete and plastic void formers phases
in [4], brick and mortar in [5]). In this paper, a periodic structure composed of two different materials
with high contrast mechanical properties is considered. That means the matrix phase is hard and the
inclusion one is much softer. Interest of this kind of structure rises because of the increasing use of
composite structures with voids or void former in construction engineering such as foam or recycled
aggregate concrete, pervious pavement, and hollow core slabs or walls. This research aims at ex-
posing a more general homogenization scheme which can be applied to various types of high contrast
bi-phased structures. The essence of this scheme is using a high order polynomial boundary condition,
applied on a RVE mechanical problem, to obtain a homogeneous second-gradient continuum. One can
notice that all above mentioned structures do not fulfill the scale separation condition which is de-
scribed in detail in Section 2. The main idea of classical homogenization is recalled here for readers
who don’t have background of homogenization. Homogenization is a tool to determine the mechanical
properties of a homogeneous structure in the macro-scale from its heterogeneous micro-structure in a
smaller scale. For this purpose, a mechanical problem, in which a homogeneous boundary condition
is applied to a RVE, which has all information of the micro-structure, is established.
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Boundary condition on RVE edges

(1)

Boundary conditions in (1) may be a kinematic uniform boundary condition (so called KUBC) or a
stress uniform boundary condition (so called SUBC), or a periodic boundary condition which is used
in case of periodic structure. They are recalled respectively here for a more clear explanation:

u = E
∼

0.x ; σ
∼
.n = Σ

∼

0.n ; u = E
∼

0.x + v (2)

where a , a
∼

successively denote vector; second-order tensor; u denotes displacement vector, x denotes
position vector of nodes on boundary, n denotes normal vector of boundary edges and v denotes
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Figure 1. Classical homogenization process

periodic fluctuation of displacement prescribed on the boundary of RVE; E
∼

0,Σ
∼

0 denote respectively
the macro scale tensors of deformation and stress. Principle of classical homogenization is illustrated
in the Fig. 1. Once the problem (1) is solved, macro scale variables Σ

∼
, E
∼

of homogeneous substitution
structure can be computed as average of corresponding micro scale variables σ

∼
, ε
∼

on RVE:
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Based on behavior law of homogeneous equivalent continuum (macro-scale model) as described in
Eq. (4).

Σ
∼

= C
∼
∼

e f f : E
∼

or Σi j = Ce f f
i jkl .Ekl (4)

One can compute the components of Ce f f
i jkl (effective stiffness matrix of macro-scale model) as in (5)

C
∼
∼

e f f =

Σ
∗
11(E11) Σ∗11(E22) 0.5Σ∗11(E12)

Σ∗22(E11) Σ∗22(E22) 0.5Σ∗22(E12)
Σ∗12(E11) Σ∗12(E22) 0.5Σ∗12(E12)

 (5)

with Σ∗i j(Ek′l′) is deduced from problem (1) in the case Eαβ = δα′αδβ′β; with δi j is Kronecker delta.

2. Generalized continua and higher-order homogenization

2.1. Generalized continua

For structural members used in construction, automobile or marine industry, size of heterogene-
ity is comparable to overall dimensions. This character does not fulfill scale separation condition of
classical homogenization. Mathematical description of latter condition is l << LRVE << Lst, where
l, LRVE , Lst are respectively the characteristic length of micro-structure, RVE and macro-structure.
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As a consequence, classical homogenization cannot be valid anymore for these structures. As pre-
sented above in Section 1, the substitution homogeneous continua are restricted in the framework of
Cauchy continuum mechanics with various boundary conditions. For cases of non-scale-separation,
the generalized continua rise as hopeful candidates for homogeneous substitution models as in [6–8].
Generalized continua, which can describe the local behavior of micro-structure, are extended from
classical Cauchy continuum by adding either new degrees of freedom (DOFs) or high-order deriva-
tive of displacement. They have many members for instance, the micromorphic medium (where a
micro-deformation second order tensor was added as new DOFs) as in [9], Cosserat or micro-polar
medium (where a rotation vector was added to classical DOFs-three translation of displacement) as
in [7], or second gradient medium in [10, 11]...where the second derivatives of displacement ui, jk is
taken into account beside the classical deformation εi j. Herein, the second gradient medium is used
to construct a substitution homogeneous model for high contrast bi-phase structure. Its equilibrium
equations are recalled here:

τi j, j = 0; τi j = Σi j − mi jk,k (6)

where Σi j and mi jk is classical and hyper stress of second gradient medium. These stress are connected
to deformation and second gradient of displacement through the stiffness coefficients in elastic case:

Σi j = Ci jklEkl

mi jk = Ai jkpqrUp,qr = Ai jkpqrKpqr
(7)

where Up,qr is the second gradient of displacement, Kpqr = Up,qr. Hereinafter, Σi j is used for homo-
geneous substitution continuum, to avoid confuse with σi j - stress in micro-mechanical problem. For
the same reason, capital Ui is used to distinguished with the micro displacement ui in the next parts.

2.2. Higher-order homogenization

A question rises in construction of generalized substitution medium is how to connect classical
DOFs of Cauchy medium to new DOFs, or new derivatives of generalized ones. New boundary con-
ditions need to be developed from ones in classical homogenization in order to answer this question.
For this purpose, polynomial boundary conditions ansatz as shown in Eq. (8) is a good choice. More
details about this boundary condition is mentioned in [12]

ui = Ei jx j +
1
2

Di jkx jxk +
1
3

Di jklx jxkxl +
1
4

Di jklmx jxkxlxm + ... (8)

where i, j, k, l,m take the values from 1 to 3 (three space dimensions). Ones can recognize that this
polynomial has the form of Taylor expansion. In [13], a higher-order homogenization scheme was
developed with the concept of cluster RVE which is composed of many periodic unit cells. An unit
cell has a square shape whose edge dimension is unit (1 mm). The choice of unit system does not
change the generality of mechanical problem. Ones can extend problem to larger scale where struc-
tural members or construction works exist.

On its boundary edges, two first terms of polynomial boundary condition in Eq. (8) are applied.
That means the original boundary condition in Eq. (8) is restricted to:

ui = E0
i jx j +

1
2

Di jkx jxk (9)

From the remote boundary condition on cluster edges, mechanical variables including first and second
gradient of displacement as well as elastic energy are computed only on the central cell as in Fig. 2. In
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this figure, a periodic composite structure is also described with soft round inclusion whose diameter
is equal to 0.8 of square edge, covered by a hard matrix material. Both materials are isotropic elastic
whose Young modulus and Poisson coefficients are listed in Table 1. That means the same strategy
of micro-mechanical problem in (1) is applied again. But this time, problem is posed on the whole
cluster, not only on unit cell; with small modification of boundary condition (B.C)).
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It should remember that this homogenization scheme is a scale translation from microscopic (or
meso-scopic) classical Cauchy medium to macroscopic second gradient one. Once the mechanical
problem on cluster is solved, we found the stress and deformation field σ

∼
, ε
∼

on cluster domain. In the
next step, computation is realized on the central unit cell only. Ones consider Hill-Mandel theorem
(mentioned in [14]):
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∼
∼
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e f f ...K
∼

(11)

where capital letters Σ, M, E, K denote respectively stress, hyper stress, strain, hyper strain in macro-
scopic medium (second gradient); small letters σ, ε denote stress and strain of microscopic medium

(classical Cauchy); < q > denotes
1
V

∫
V

q.dV - average of an amount q. Remember that on right hand

side of Eq. (11), all variables belong to the substitution second gradient medium, but E
∼

and K
∼

can be
computed by average operators always on central unit cell:

Ei j =< εi j >; Ki jk =< ui, jk > only on central unit cell (12)

Left-hand side of Eq. (11) is easily computed as cluster problem is solved. It is equal to two times of
average of potential energy on central unit cell. Work in [13] showed that cluster problem in Eq. (10)
can be divided into two small problems (body load fi can be ignored for simplicity):
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Problem (a) in Eq. (13) is exactly the same as RVE problem in Eq. (1). It can provide stiffness prop-
erties of Cauchy substitution continuum in the same way as in section 1. Problem (b) in Eq. (13) can
provide stiffness properties which link strain gradient Ki jk to hyper-stress mi jk. Ones can compute
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Figure 2. Big clusters of RVE and the central unit cell stress, strain, hyper stress and hyper strain is computed

components Ai jkpqr through a similar process as in (5) with small modifications. For explaining in
detail the process, we use here 2w (with w is the average of potential energy on central unit cell) in-
stead of < σi jεi j >; AαβKαKβ instead of Ai jkpqr.Ki jk.Kpqr. Hence, the shortened Hill-Mandell theorem
theorem can be rewritten:

2w = AαβKαKβ (14)

Based on Eq. (14), ones can obtain values of Ai jkpqr by computing:

Aαα = 2w(Kα′) with Kα′ = δα′α (15)

then
Aαβ =

1
2

(
2w(Kα′ ,Kβ′) − Aαα − Aββ

)
with α , β (16)

In Eqs. (15) and (16), w(Kα′) and w(Kα′ ,Kβ′) are solution of problem (b) with Kα′ = δα′α,Kβ′ = δβ′β.
Because problem (b) is limited in elastic framework, Kα′ = δα′α can be controlled by changing values
of Di jk. It should note that this homogenization scheme did not give an analytical equation but a
numerical scheme for determining macroscopic coefficients C

∼
∼

e f f , A
∼
∼
∼

e f f .

3. Validation of substitution model

In the following part, a substitution second gradient model will be constructed in order to replace
a highly contrast bi-phase structure. Comparison between homogeneous second gradient model, and
heterogeneous Cauchy bi-phase structure will be performed. Two types of RVE (unit cell) in Fig. 3
can be used to represent this periodic structure. To compare the behaviour of two second gradient
models (built from RVE type 1 an 2), a double shear problem is considered as described in Fig. 4.
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Figure 3. Two types of RVE: Type 1,2 is respectively on the left, right. Bright color represents
the soft material, remains are hard one

Figure 4. Reference structure (left) where the double shear loading is applied as described
in the problem illustration (right)

All computation is realized in the framework of plane stress simulation. Third order elements are
used. The reference structure is described on the left of Fig. 4. It is composed of 6 × 8 unit cells of
RVE type 1 in Fig. 3, and supports a double shear loading through two Dirichlet boundary conditions
as follow:

u =
−δ

2
e

2
(x = −4 mm)

u =
δ

2
e

2
(x = 4 mm)

(17)

The substitution homogeneous (second-gradient) structure has the same dimension, and supports the
same loading as the reference one. The double shear problem of homogeneous second gradient con-
tinuum is described on the right of Fig. 4. Analytical solution of later problem can be found in [12]
which was inspired from same loading problem for orthotropic homogeneous second gradient model
in [15]. This solution is recalled here for an easy observation:

u(x) =
C1

ω2 cosh(ωx) +
C2

ω2 sinh (ωx) + C3x + C4 (18)
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where C1 = C4 = 0, ω2 =
C1212

A122122
and

C2 =
δ

2
[
sinh (ωh)

ω2 −
h
ω

cosh (ωh)
]

C3 =
−C2

ω
cosh (ωh)

(19)

with 2h is length of structure along horizontal direction as in Fig. 4; h takes the value of 4 mm in
this case; origin of coordinate system coincide with the rectangular centre. Ones can see that in this
double shear problem, only shear modulus C1212 and A122122 influences the result. For the brief of
paper, only two later modulus will be presented.

Section 2 provides a homogenization scheme that will be used in this section to obtain the effective
properties of second gradient substitution model for a highly contrast bi-phase structure as in Fig. 4.
In this paper, the prescribed displacement magnitude δ = 0.5 is taken. The reference structure is
composed of two isotropic materials whose mechanical properties are listed in the Table 1.

Table 1. Mechanical properties of isotropic materials in bi-phase structure

Isotropic Properties
Materials

Hard phase Soft phase

Young modulus (MPa) 200000 5
Poisson coefficient 0.3 0.3

Effective properties of substitution model are computed according to cluster problem described
in Eq. (13); based on two types of RVE in Fig. 3. These properties are listed in the Table 2. FEM
analysis of two problems are carried out: one with the bi-phase (reference) structure, other with the
homogeneous Cauchy one whose Ce

i jkl is computed from RVE type 1; both structures support double
shear loading. Deformed shape as well as the shear stress of these two simulations are performed in
Fig. 5 where ones can see the non-smooth displacement of reference structure, in particular on hori-
zontal edges, where reference displacement has the wave form while the corresponding displacement
of homogeneous Cauchy model is linear. The zoom-in figure of liberal edges of reference structure is
shown in Fig. 6. In particular, shear stress field is largely different between two analysis.

Table 2. Mechanical properties of substitution model

Types of RVE
Effective properties

Cauchy homogeneous C1212 (MPa) Second gradient homogeneous A122122 (MPa.mm2)

RVE type 1 7471 −4879300
RVE type 2 7480 1556900

Above displacement fields are compared to corresponding displacement of substitution models
in Fig. 7. Their effective properties, shown in Table 2, are computed respectively from RVE type 1
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Figure 5. Deformed shape and shear stress (in MPa) of bi-phase structure (on the left)
and Cauchy substitution model (on the right)

Figure 6. Zoom in on the boundary edges of reference structure
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Figure 7. Comparison of displacement on liberal edge of bi-phase (reference) structure, homogeneous Cauchy
model, and two substitution (homogeneous second gradient) models (built from RVE 1 and RVE 2)
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and RVE type 2. Shape of displacement profile provided by Cauchy substitution model, is very differ-
ent from one of reference structure. Although closer approximation of Cauchy displacement profile
to reference one is detected in Fig. 7, in comparison to second gradient one, it cannot be used for
engineering design; because safety conservation always be required in practical standards. Using of
Cauchy model can lead to underestimation of structure displacement that is unacceptable. On the con-
trary, displacement profile provided by second gradient model can cover one of reference structure
and give better imagination of actual displacement by means of its curved form.

An extended study should be realized in the future, in order to investigate the stress and strain field
in second-gradient model. This can be carried out by using either a special element implemented in
the FEM software, or a general solver of partial differential equation (PDE) solver that can solve weak
form directly. For the second possibility, COMSOL software is a good choice; and works in [16],
where a weak form of second gradient continuum is constructed for implementing FEM elements in
Code_Aster software, rise as candidate for next study.

4. Summary and conclusions

Works and results in this paper are summarized:
- Two RVEs of a bi-phase material are considered to compute effective properties of substitution

(second gradient) models by a higher-order homogenization scheme (described in Section 2).
- Displacement of these two substitution models, who both are under action of double shear load-

ing, are formulated in Eq. (18).
- A double shear loading problem is computed by COMSOL software on reference structure and

homogeneous Cauchy model derived from classical homogenization in Section 1.
- Displacement from above four models are compared in the Fig. 7.
Ones can see that the Cauchy substitution model cannot describe the reference displacement (lin-

ear form versus wave one). Displacement of second gradient substitution models, which has the hy-
perbolic sine form, describe better the reference one. At least, they can be considered as the bound of
displacement field, and can be used to predict the displacement of reference structure with a reduced
coefficient, which can be object of other studies.

Both substitution (second gradient) continua give a great consistency, while the second gradient
properties (in the Table 2) are considerably different. It shows that second-gradient properties have
limited contribution in the value of displacement. It is not the case in the form of displacement.

Prediction quality of substitution model can be improved in future study. Other generalized models
(Cosserat or micromorphic models) can be used on the one hand, homogenization can be improved
on the other hand, thanks to recent discoveries, for example in [17, 18].
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