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Abstract

A hybrid analytical-numerical solution is proposed to solve the problem of a laterally loaded pile with a circular
cross-section in multilayered soils. In the pile-soil model, the lateral load is located at the pile head including
both lateral force and bending moment. The single pile is considered as a beam on elastic foundation while
shear beams model the soil column below the pile toe. The differential equations governing pile deflections
are derived based on the energy principles and variational approaches. The differential equations are solved
iteratively by using the finite element method that provides results of pile deflection, rotation angle, shear force,
and bending moment along the pile and equivalent stiffness of the pile-soil system. The modulus reduction
equation is also developed to match the proposed results well to the three-dimensional finite element analyses.
Several examples are conducted to validate the proposed method by comparing the analysis results with those
of existing analytical solutions, the three-dimensional finite element solutions.
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1. Introduction

Pile foundations support super-structures like high-rise buildings, bridge abutments, and piers,
earth-retaining structures, offshore structures. Horizontal forces caused by lateral loads such as wind,
wave, traffic and seismic applying on the structures transmit to the piles in terms of lateral forces
and bending moments located at the pile head. The piles subjected to lateral forces and bending
moments at the pile head are analyzed in practice using beam on elastic foundation method, the
three-dimensional (3D) finite element method, and finite difference method. In the beam on elas-
tic foundation method, the pile is divided into small segments, and the surrounding soil is modeled
by a series of independent springs [1–5]. In this approach, no interaction between these springs is
considered, called the one-parameter approach [6]. Pasternak [7] and Georgiadis and Butterfield [8]
proposed a spring model to improve the shortcoming of the one-parameter approach by considering
shear interaction between these springs, called the two-parameter approach [9]. The pile deflection
is determined by solving a four-order differential equation by using the method of initial parameter
[9–11] (MIP). Recently, a continuum-based approach is developed [6, 12–14] based on the energy
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principles and variational approach initially proposed by Sun [15]. In this approach, the soil displace-
ment is approximated by a product of the pile displacement and a dimensionless function representing
the variation of the soil displacement in the radial direction. Basu and Salgado [6] modify the existing
MIP to account for changes in soil properties due to soil layering and obtain analytical solutions.

The finite element method [16–19], finite elements coupled with Fourier series [20], the finite
difference method [21], and the boundary element method [22] have been applied to analyze laterally
loaded piles. If the finite element or finite difference methods are used, the number of discretized pile
elements will have to be very large, resulting in increased computation time. Higgins [23] conducted
laterally loaded pile analyses using the Fourier finite-element (FE) code developed by Smith and Grif-
fiths [24]. The model is represented by a two-dimensional (2D) rectangular plane, which calculates
the response of axisymmetric solids subject to non-axisymmetric loads. Three-dimensional finite el-
ement and finite difference methods are more accurate since it covers all effects without any major
assumption but they are not appropriate for design purpose because of the time-consuming process.

Simplicity and acceptable accuracy are keys of any solution method among practicing engineers.
The existing methods presented so far in predicting pile behavior under lateral load still experience
difficulties in practice because of solution complexity and time-consuming process. The author pro-
posed a simple and efficient solution in analyzing the performance of a single pile with circular
cross-section under lateral load in multilayered soils based on the iterative solution scheme initially
developed by Nghiem [19] and Nghiem and Chang [25, 26]. The differential equations are developed
based on the method proposed by Sun [15] and solved by the finite element method.

2. Pile-soil model

A circular pile of length Lp and Young’s modulus Ep with circular cross-section of radius rp

shows in Figs. 1a and 1b. The pile is under axial load P applied at the center of the cross-section and
embedded in multi-layered soil medium with a total of n horizontal soil layers. The pile penetrates
through m soil layers, and the pile toe is assumed to locate at the bottom of the mth layer then underlain
by n − m soil layers. Properties of the ith soil layer include Young’s modulus, Ei Poisson’s ratio νi,
shear modulus, Gi and thickness Hi. The pile and soil column (below the pile toe) are modeled by
M beam and (N-M) bar elements, respectively, as shown in Fig. 1. If soil modulus varies with depth

modulus varies with depth in each layer, the pile and soil segments are divided into 
several sub-elements, and the modulus is approximated as a constant in each sub-
element. The soil layer surrounds the  pile element of length  (Fig. 2). The 

model uses a cylindrical coordinate system with its origin located at the center of the 
pile cross-section at the pile head and positive z-axis pointing downward, coinciding 
with the pile axis. The pile and soil elements and soil properties are assumed to be 
isotropic, homogeneous, and linear elastic, and the displacements at pile-soil interface 
compatible. 
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in each layer, the pile and soil segments are divided into several sub-elements, and the modulus is
approximated as a constant in each sub-element. The ith soil layer surrounds the jth pile element of
length L j (Fig. 2). The model uses a cylindrical coordinate system with its origin located at the center
of the pile cross-section at the pile head and positive z-axis pointing downward, coinciding with the
pile axis. The pile and soil elements and soil properties are assumed to be isotropic, homogeneous,
and linear elastic, and the displacements at pile-soil interface compatible.

3. Displacement-strain-stress relationships

The assumption of the displacement field is proposed by Sun [15] for a pile under lateral load.
Strains in the vertical direction are very small compared to the strains in the horizontal direction and
can be assumed negligible. Since the lateral displacement in radial direction decreases with increases
in radial distance from the pile, the lateral displacement field in the soil can be approximated by a
product of separable variables as [6, 15]:

ur (r, z) = wφ cos θ (1a)

uθ (r, z) = −wφ sin θ (1b)

where w is the lateral displacement of the pile at a depth of z; φ is the dimensionless function describ-
ing the reduction of the displacement in radial direction from the pile center. It is assumed that φ = 1
at r = rp and φ = 0 at r = ∞.

With the above assumptions, the strain-displacement relationship is given by:



εr

εθ
εz

γrθ
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γzθ


=


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=
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

(2)

The relationships between stress and strain in soil can be written in general form based on Hooke’s
law as follows: 

σr
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
=
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λ + 2G λ λ 0 0 0
λ λ + 2G λ 0 0 0
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0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G




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
(3)

where G and λ are Lamé’s constants of soil.
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4. Governing equilibrium equations

Potential energy Π of the soil-pile system defined as the sum of internal energy and external
energy can be expressed by [6, 15]:

Π =

M∑
j=1

1
2

L j∫
0

Ep jIp j

(
d2w j

dz2

)2

dz+
1
2

N∑
j=M+1

L j∫
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dw j

dz

)2

dz+

N∑
j=1

1
2

L j∫
0

2π∫
0

∞∫
rp

σmnεmnrdrdθdz−Ftwt +Mtψt (4)

where Ep j is Young’s modulus of the jth pile element; Ip j is moment of inertia of the jth pile cross-
section; G j is shear modulus of the ith soil layer; A is area of the pile cross-section; w j is displacement
of the jth element; Ft and Mt are lateral load and bending moment, respectively, applied on the pile
head at the depth z = z0; wt and ψt are displacement and rotation angle, respectively, of the pile at the
depth z = z0.

Strain energy obtained by:

1
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1
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dr
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+
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w

(
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2

G
(
dw
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φ

)2

(5)

where σmn and εmn are the stress and the strain tensors.

Π =
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0

∞∫
rp

Gi

(
dw j

dz
φ

)2
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(6)

Minimizing the potential energy of the soil-pile system by equaling the first variation of the po-
tential energy to zero, yields:

For the pile element:
δΠ = A1

(
ψ j

)
δψ j + B (φ) δφ = 0 (7a)

For the soil element:
δΠ = A2

(
ψ j

)
δψ j + B (φ) δφ = 0 (7b)

where:

A1
(
ψ j

)
=
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= EpIp

d4w j

dz4 − 2π

∞∫
rp

Gi(φ)2rdr
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rdrw j (8a)

A2
(
ψ j

)
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∂Π

∂w j
= −GiA
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B (φ) =
∂Π
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= −π
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(9)
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Because the functions A1
(
ψ j

)
, A2

(
ψ j

)
and B (φ) are unknown while δψ j and δφ are not zero, solu-

tions for Eq. (7) can be obtained by assigning A1
(
ψ j

)
, A2

(
ψ j

)
and B (φ) equal to zero. The following

differential equations for the elements are obtained from A1
(
ψ j

)
= 0, and A2

(
ψ j

)
= 0:

EpIp
d4w j

dz4 −

2π
∞∫

rp

Giφ
2rdr

 d2w j

dz2 +

π
∞∫

rp

(λi + 3Gi)
(
dφ
dr

)2

rdr

 w j = 0 (10a)

GiA + 2π

∞∫
rp

Giφ
2rdr

 d2w j

dz2 −

2πGi

∞∫
rp

(
dφ
dr

)2

rdr

 w j = 0 (10b)

Eq. (10) can be written in short form as:

Ep jIp j
d4w j

dz4 − h j
d2w j

dz2 + k jw j = 0 (11a)(
GiA + t j

) d2w j

dz2 − k jw j = 0 (11b)

where k j, h j and t j are subgrade reactions for shearing and axial resistances, respectively, and deter-
mined by:

h j = 2πGi

∞∫
rp

φ2rdr (12a)

k j = π

∞∫
rp

(λi + 3Gi)
(
dφ
dr

)2

rdr (12b)

t j = 2πĒi

∞∫
rp

φ2rdr (12c)

According to the finite element method, lateral displacement in a bar element is approximated by
nodal displacements as (Fig. 1):

For the pile element:
w j = N1w j,1 + N2ψ j,1 + N3w j,2 + N4ψ j,2 (13)

For the soil element:
w j = N5w j,1 + N6w j,2 (14)

where w j,1 and w j,2 are lateral displacements at the first node and the second node of jth element,
respectively; ψ j,1 and ψ j,2 are rotation angles at the first node and the second node of jth pile element,
respectively, ψ j,1 = dw j/dz at the first node and ψ j,2 = dw j/dz at the second node; N1 to N6 are shape
functions. The shape functions can be obtained by using the following functions [24]:

N1 =
1
L3

j

(
L3

j − 3L jz2 + 2z3
)

; N2 =
1
L2

j

(
L2

jz − 2L jz2 + z3
)

; N3 =
1
L3

j

(
3L jz2 − 2z3

)
; (15a)
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N4 =
1
L2

j

(
−L jz2 + z3

)
; N5 = 1 −

z
L j

; N6 =
z

L j
(15b)

Substituting Eq. (15) into Eq. (11) gives the following equations:

Ep jIp j
d4

dz4

[
N1 N2 N3 N4

] 
w1, j
ψ1, j
w2, j
ψ2, j

 − h j
d2

dz2

[
N1 N2 N3 N4

] 
w1, j
ψ1, j
w2, j
ψ2, j


+ k j

[
N1 N2 N3 N4

] 
w1, j
ψ1, j
w2, j
ψ2, j

 = 0

(16a)

s j
d2

dz2

[
N5 N6

] { w j,1
w j,2

}
− k j

[
N5 N6

] { w j,1
w j,2

}
= 0 (16b)

where s j = GiA + t j.
Integrating Eq. (16) by Galerkin method and Green theory [24] will lead to stiffness matrices of

pile and soil spring as presented in Appendix A.

5. Solution of differential equations

By assigning B (φ) = 0 in Eq. (9), the governing differential equation for the soil surrounding the
pile and soil elements is given by:

d2φ

dr2 +
1
r

dφ
dr
− κ2φ = 0 (17)

where:

κ2 =

2
N∑

j=1

L j∫
0

Gi
(dw j

dz

)2
dz

N∑
j=1

L j∫
0

(λi + 3Gi)
(
w j

)2
dz

(18)

Using displacement approximation in Eq. (14), Eq. (19) leads to:

κ2 =

2
N∑

j=1
Gi

{
w j

}T
[m2]

{
w j

}
N∑

j=1
(λi + 3Gi)

{
w j

}T
[m1]

{
w j

} (19)

where m1 and m2 are matrices (see in the Appendix A).
The differential Eq. (17) is a form of the modified Bessel differential equation and its solution is

given by:
φ = c1I0 (κr) + c2K0 (κr) (20)
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where I0 is a modified zero-order Bessel function of the first kind, and K0 is a modified zero-order
Bessel function of the second kind. Apply the boundary conditions φ = 1 at r = rp, and φ = 0 at
r = ∞ to Eq. (20), solution of Eq. (17) leads to:

φ =
K0 (κr)

K0
(
κrp

) (21)

By introducing Eq. (21) into Eqs. (12a), (12b) and (12c), the subgrade reaction moduli can be
obtained as:

h j = 2π

∞∫
rp

Giφ
2rdr =

πGir2
p

K2
0

(
κrp

) [
K2

1

(
κrp

)
− K2

0

(
κrp

)]
(22a)

k j = π

∞∫
rp

(λi + 3Gi)
(
dφ
dr

)2

rdr =
π (λi + 3Gi) r2

pκ
2

2K2
0

(
κrp

) [
K0

(
κrp

)
K2

(
κrp

)
− K2

1

(
κrp

)]
(22b)

t j = 2π

∞∫
rp

Ēiφ
2rdr =

πĒir2
p

K2
0

(
κrp

) [
K2

1

(
κrp

)
− K2

0

(
κrp

)]
(22c)

6. Equivalent stiffness

The equivalent stiffness of the soil-pile system is the ratio of the applied load and displacement
at the pile head. Consider a finite element model of the pile-soil system in Fig. 3, where a spring rep-
resented by equivalent stiffness can model an element. The equivalent stiffness of the below element
becomes the base stiffness of the above element. The following procedure is used to determine the
equivalent of the pile and soil elements and also the pile-soil system.

 
Figure 3: Equivalent stiffness of the pile-soil system 

Stiffness matrix of the pile element is given in general form as follows: 

   (23) 

Solving the following equations gives stiffness components of the equivalent 
stiffness matrix of the pile element in Eq. (24) as: 
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Figure 3. Equivalent stiffness of the pile-soil system

Stiffness matrix of the pile element is given in general form as follows:

[
Kp

]
j
=


k11 k12 k13 k14

k22 k23 k24
sym. k33 k34

k44

 (23)
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Solving the following equations gives stiffness components of the equivalent stiffness matrix of
the pile element in Eq. (24) as: k11 k13 k14

k33 k34
sym. k44




w1
w2
ψ2

 =


1
0
0

 ; K11, j =
1

w1
; K12, j =

k12w1 + k23w2 + k24ψ2

w1
(24)

 k22 k23 k24
k33 k34

sym. k44



ψ1
w2
ψ2

 =


1
0
0

 ; K22, j =
1
ψ1

; K21, j =
k12ψ1 + k13w2 + k14ψ2

ψ1
(25)

where:

K11, j =
k2

14k33 − 2k13k14k34 + k11k2
34 + k2

13k44 − k11k33k44

k2
34 − k33k44

(26a)

K22, j =
k2

24k33 − 2k23k24k34 + k22k2
34 + k2

23k44 − k22k33k44

k2
34 − k33k44

(26b)

K12, j = K21, j =
−k14k23k34 + k12k2

34 + k14k24k33 − k13k24k34 − k12k33k44 + k13k23k44

k2
34 − k33k44

(26c)

Equivalent stiffness matrix of the jth pile element is obtained in the following matrix form:[
Keq

]
j
=

[
K11, j K12, j
K21, j K22, j

]
(27)

To determine the equivalent stiffness for the jth soil element, the following equilibrium equation
is formulated:  s j

L j

[
1 −1
−1 1

]
+ k jL j


1
3

1
6

1
6

1
3

 +

[
0 0
0 Keq, j+1

]
{

w1
w2

}
=

{
1
0

}
(28)

The equivalent stiffness of the jth soil element is then calculated as Keq, j = 1/w1 or:

Keq, j =

(
12s j + 4k jL2

j

)
Keq, j+1 + 12s jk jL j + k2

j L
3
j

4
(
3s j + 3Keq, j+1L j + k jL2

j

) (29)

7. Iterative solution for the soil-pile system

The iterative solution for the pile-soil system is originally developed by Nghiem and Chang [25,
26] and extends to solve the problem of the pile under lateral load. The method is based on the
equivalent stiffness approach as presented in section 6.

The solution scheme is given in the following steps:
Step 1: Assumption was made that initial values of lateral displacements and rotations, w j = 0

and ψ j = 0 for all elements.
Step 2: Calculate equivalent stiffness:
- Loop from element to element: j = N → 1: At the base of the soil column: Keq,N+1 = ∞

8
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+ Calculate stiffnesses of springs by using Eqs. (22a), (22b), and (22c)
+ Calculate equivalent stiffness of each element Keq, j from Eq. (29) if j > M, and Eq. (27) if

j ≤ M. The stiffnesses of soil springs in all elements are tangential and equivalent stiffness Keq,1 of
the 1st element is equal to the equivalent stiffness of the whole pile and soil system.

Step 3: Calculate the displacements and rotations:
- The displacement and rotation at the first end of the jth element:
+ If j = 1 then: [

K11,1 K12,1
K21,1 K22,1

] {
w1,1
ψ1,1

}
=

{
Ft

Mt

}
(30)

Solving Eq. (30) gives the displacement and rotation angle as follows:

w1,1 =
−K12,1Mt + K22,1Ft

K11,1K22,1 − K2
12,1

and ψ1,1 =
K11,1Mt − K12,1Ft

K11,1K22,1 − K2
12,1

(31)

+ If 1 < j ≤ M then: {
w1, j = w2, j−1
ψ1, j = ψ2, j−1

(32)

+ If j > M then:
w1, j = w2, j−1 (33)

- The displacements and rotations at the second end of the jth element:
+ If 1 ≤ j < M then the displacement and rotations at the second end are obtained by solving the

following equations:[
k33, j + K11, j+1 k34, j + K12, j+1
k43, j + K21, j+1 k44, j + K22, j+1

] {
w2, j
ψ2, j

}
=

{
−k31w1, j − k32ψ1, j
−k41w1, j − k42ψ1, j

}
(34)

+ If M < j ≤ N then

w2, j =
K11, jw1, j − k11, jw1, j

k12, j
(35)

- The forces at the first end of the jth element:
+ If j = 1 then: {

F1, j
M1, j

}
=

[
K11, j K12, j
K21, j K22, j

] {
w1, j
ψ1, j

}
(36)

- The forces at the second end of the jth element:
+ If 1 ≤ j < M then

{
F2, j
M2, j

}
=

[
k31, j k32, j k33, j k34, j
k41, j k42, j k43, j k44, j

] 
w1, j
ψ1, j
w2, j
ψ2, j

 (37)

+ If M ≤ j ≤ N then:
F2, j = k12, jw1, j + k22, jw2, j (38)
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8. Modulus reduction

If Poisson’s ratio, ν → 0.5 or λ = νE/(1 − 2ν) (1 + ν) → ∞, the subgrade reaction in the
Eqs. (22b) and (22c) reaches an extremely large number and the pile response becomes increasingly
stiffer. Guo and Lee [12] first observed this problem from unrealistic results of the solution proposed
by Sun [15] for the Poisson’s ratio greater than 0.3. Guo and Lee [12] further pointed out the equations
Ḡ = 0.75 (1 + 0.75ν) G and λ̄ = 0 can be used to produce reliable results in comparison to those of the
3D finite element analyses. Basu and Salgado [6] verified the modulus reduction equations proposed
by Guo and Lee [12] for the pile embedded in multi-layered soil media and the stiff pile response still
observed. The stiff pile response arises from the fact that the assumed displacement field (Eq. (1))
produces zero displacement in the soil mass perpendicular to the direction of the applied force. To
reduce the artificial stiffness, Basu and Salgado [6] reduce the shear modulus of the soil as shown in
the following equation to match the finite element results closely:

G∗ = 0.75 (1 + 0.75ν) G and λ∗ = 0 (39)

9. Comparison with previous and 3D finite element analyses

Consider a single pile with rp = 0.5 m, Lp = 20 m, and Ep = 27.5 × 106 kPa, embedded in a
homogeneous soil with Es = 10000 kPa, and Poisson’s ratio varies from 0.001 to 0.499. The pile
response also obtained from three sets of analyses using the proposed solution method. The first set
of analyses is conducted without changing shear and constraint moduli. The second set of analyses
are conducted that the moduli are reduced based on Eq. (39) proposed by Guo and Lee [12]. In the
third set, new equations for modification of soil moduli are developed and applied in the analyses and
given as follows:

G∗s = 0.8
[
(1 − 2ν) (1 + ν)

1 − ν

]0.1

(1 + 0.75ν) Gs and λ∗s = 0 (40)

3D finite element analyses using SSI3D program [19] are performed to verify the accuracy of the
proposed solution method. Fig. 4 depicts the 3D finite element model where both pile and soil are
modelled by 8-node hexagonal element. In the 3D finite element model, pile and soil are considered
as linear elastic material and a free head pile is subjected to lateral load. The boundaries of the model
are extended to a horizontal distance of 40rp from center of the pile to avoid spurious reaction into the
system. Soil only can move in the vertical direction at the vertical boundary and is fixed at the bottom
boundary. Pile deflection has been used as benchmark for the proposed solution. Ratios between
pile head displacements of the proposed solution and the 3D finite element solution are presented
in Fig. 5. It is evident from Fig. 5 that the pile head deflection ratios obtained from the first set of
analyses progressively deviate from the 3D finite element analysis results as the Poisson’s ratio of
soil increases from 0.3. With the Poisson’s ratio less than 0.3, the proposed method produces the pile
head deflection ratios approximately 80% of those predicted by the 3D finite element analyses. The
better approximation of the pile head deflection obtained in the second set of analyses with differences
from the 3D finite element analyses less than 10% for the Poisson’s ratios lower than 0.4 while using
the simple modification equations of the soil moduli (Eq. (39)) by Guo and Lee [12]. The results
of the pile head deflection are not in good agreement for the Poisson’s ratios greater than 0.4. To
reduce differences of the pile head deflection shown in the above analyses, the third set of analyses
are conducted using Eq. (40). As also shows in Fig. 3, the pile head deflections are in good match
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with those from the 3D finite element analyses. Fig. 6 shows the pile deflection profiles obtained
from the proposed method and the 3D finite element analyses with a very good match between the
two methods.
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Figure 5. Pile head displacement ratios

A comparison of pile deflections between the proposed method and the 3D finite element method
has been made to verify the accuracy of the proposed method for a pile under lateral load in nonho-
mogeneous soil. The circular pile with rp = 0.5 m, Lp = 15 m, and Ep = 24 × 103 MPa, embedded
in four-layer soil media with Young’s modulus of Es1 = 20 MPa, Es2 = 35 MPa, Es3 = 50 MPa, and
Es4 = 80 MPa, Poisson’s ratios of νs1 = 0.35, νs2 = 0.25, νs3 = 0.2, and νs4 = 0.15, and soil layer
thicknesses of H1 = 2 m, H2 = 5 m, H3 = 8 m. A force P = 300 kN is applied at the pile head.
Fig. 7 shows the pile deflection for three cases of analyses: no modulus reduction, modulus reduction
using Eq. (40), and the 3D finite element analysis. The pile deflections obtained from the proposed
method with modulus reduction matches better than that from the proposed method without modulus
reduction in comparison to the result obtained from the 3D finite element analysis.
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10. Conclusion

This paper presents a simple, efficient and accurate method for performance analysis of a sin-
gle pile embedded in multiple layers of different soils under a lateral load applied at the pile head.
The governing equations were derived based on continuum mechanics, strain energy and variational
calculus from the literature. A new equation for soil modulus reduction was developed by matching
the displacement along the pile of the proposed method to those of the 3D finite element method.
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The analysis results using the new solution scheme compared quite well with the results from another
analytical method with the same theoretical basis studied by previous researchers and the 3D finite
element analyses.
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Appendix A.

[K1] =
2Ep jIp j

L3
j


6 3L −6 3L

3L 2L2 −3L L2

−6 −3L 6 −3L
3L L2 −3L 2L2

 (A.1)

[K2] =
k j

30L j


36 3L j −36 3L j

3L j 4L2
j −3L j −L2

j
−36 −3L j 36 −3L j

3L j −L2
j −3L j 4L2

j

 (A.2)

[K3] =
h jL j

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (A.3)

[K4] =
s j

L j

[
1 −1
−1 1

]
(A.4)

[K5] = k jL j


1
3

1
6

1
6

1
3

 (A.5)

For the pile element:

[m1] =
L

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (A.6)

[m2] =
1

30L


36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L
3L −L2 −3L 4L2

 (A.7)

For the soil element:

[m1] =
L
6

[
2 1
1 2

]
(A.8)

[m2] =
1
L

[
1 −1
−1 1

]
(A.9)
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