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Abstract

This paper describes a method to predict the fire resistance ratings of the wooden floor assemblies using Arti-
ficial Neural Networks. Experimental data collected from the previously published reports were used to train,
validate, and test the proposed ANN model. A series of model configurations were examined using different
popular training algorithms to obtain the optimal structure for the model. It is shown that the proposed ANN
model can successfully predict the fire resistance ratings of the wooden floor assemblies from the input vari-
ables with an average absolute error of four percent. Besides, the sensitivity analysis was conducted to explore
the effects of the separate input parameter on the output. Results from analysis revealed that the fire resistance
ratings are sensitive to the change of Applied Load (ALD) and the number of the Ceiling Finish Layer (CFL)
input variables. On the other hand, the outputs are less sensitive to a variation of the Joist Type (JTY) parameter.

Keywords: artificial neural networks; fire resistance; wooden floor assembly; sensitivity analysis.
https://doi.org/10.31814/stce.nuce2020-14(2)-03 c© 2020 National University of Civil Engineering

1. Introduction

The ability to maintain the structural integrity of wood structures under fire exposure has been
well established. Modern buildings with exposed wood structural members are popular since they have
a pleasing appearance, easy to use, and offer necessary fire resistance [1]. Historically, the height of
the conventional wood buildings in the United States was restricted under four stories due to structural
barriers and fire concern [2]. Thanks to many advanced mechanical properties, the engineered timber
products such as Cross-Laminated Timber and Structural Composite Lumber can be used as primary
structural materials for the construction of medium-height tall buildings [3]. Intensive research has
been conducted to enable engineered wood for high-rise buildings in both structural aspects [4–9], as
well as fire characteristics [1, 2, 10, 11].

Recent research revealed that the fire resistance capacity of the engineered timber, including
Glued Laminated Timber and Cross-Laminated Timber, have been proven to outperform that of the
lightwood frames and even steel and concrete components [2]. Fire performance tests for mass timber
had been carried out in Europe [12–15] and recently, in North America [16–18]. The tests provided a
reliable source to obtain the required minimum fire resistance ratings for structural members. ASTM
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E119 Standard Test Methods for Fire Tests of Building Construction and Materials [19] or 2015 Inter-
national Building Code [20] provides the minimum fire resistance requirements for building systems
using prescriptive and performance-related provisions.

Both tested assemblies and methods for calculating fire resistance are provided in the 2015 Inter-
national Building Codes. A Component Additive Method is applied to the building codes to determine
the fire resistance ratings of assemblies. The method was developed by the National Research Council
of Canada in the 1960s. It was a result of reviewing the Ten Rules of Fire Endurance Rating [21] for
the multiple standard fire test reports. A set of rules in the document offers a method to account for the
contributions of individual layers to the fire resistance ratings of the assembly. Detailed information
of these rules is listed in Appendix A.

The fire endurance ratings of a floor can be estimated either by summing the performance time
contribution of (i) the fire-exposed membrane, (ii) framing members, (iii) and any additional protec-
tion parts, or performing the standard fire tests. For the first method, as stated in the 2015 International
Building Code [20] “The fire resistance rating of a wood frame assembly is equal to the sum of the
time assigned to the membrane on the fire-exposed side, the time assigned to the framing members
and the time assigned for additional contribution by other protective measures such as insulation.
The membrane on the unexposed side shall not be included in determining the fire resistance of the
assembly.”

Performance time was assigned for each component of the floor assemblies. Table 722.6.2(1) and
Table 722.6.2(2) in the 2015 International Building Code presents the time assigned for wallboard
membranes and framing members. Table 1 shows the time assigned for some popular types of finish
materials. The time assigned for other members such as wood studs and joists were calculated from
ASTM E119 fire resistance tests. It worth noting that the fire testing for floor assemblies is normally
performed with fire exposure from below, thus the protective membranes on the exposure side would
require floor assemblies. In addition, the assigned time obtains from membranes for unexposed sides
should stand at least 15 minutes.

Table 1. Time assigned to wall board membranes [20], 1 inch = 2.54 cm

Description of finish Time (minutes)

3/8-inch wood structural panel bonded with exterior glue 5
15/32-inch wood structural panel bonded with exterior glue 10
19/32-inch wood structural panel bonded with exterior glue 15
3/8-inch gypsum wallboard 10
1/2-inch gypsum wallboard 15
5/8-inch gypsum wallboard 30
1/2-inch Type X gypsum wallboard 25
5/8-inch Type X gypsum wallboard 40
Double 3/8-inch gypsum wallboard 25
1/2-inch + 3/8-inch gypsum wallboard 35
Double 1/2-inch gypsum wallboard 40

An alternative method to estimate the fire resistance ratings of the floor assemblies is to apply Ar-
tificial Neural Networks (ANN). The ANN technique can take advantage of the available experimental
data and analytical ability of the Artificial Intelligence. To perform the ANN method, numerical or
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experimental data collected from the previous publications are used to develop, train, validate, and test
ANN models. During these processes, the ANN models establish the non-linear relationship between
the inputs and the outputs; as a result, the successful ANN models are able to predict the outputs from
the unseen input data. The ANN method is presented in detail in section 3 of this study.

Regarding the application of ANN model, a number of research related fire issues are available
in the literature. For example, Cachim [22] applied the ANN model for calculation of temperatures in
timber under fire loading. A multilayer feed forward network with three input variables, namely the
density of timber, the time of fire exposure, and the distance from the exposed side, were used. The
output of the model was the temperature in timber. The model was trained validated and tested with
the numerical data created by numerical simulations. Results from the study revealed that the ANN
model could accurately calculate the temperature in timber members subjected to fire.

The application of the ANN model was also found in the research of Tasdemir et al. [23]. An
ANN with four input parameters was used to evaluate the final cross sections of the wooden samples
remaining from the fire. The experimental tests were also conducted to validate the model. A total of
150 experimental test results were used for training and validation of the proposed ANN model, and
30 test results were used for testing. The conclusion of the study suggested that the ANN model can be
safely used to predict the cross sections of wooden materials remaining from the fire. Recently, Naser
[24] used ANN models to estimate the thermal and structural properties of timbers at the material and
elemental level. The study concluded that the method using artificial intelligence could improve the
current state of fire resistance evaluation.

Besides the application for fire-related in wood structures, the ANN model has become a popular
technique in many engineering fields. For instance, Nguyen and Dinh [25] utilized an ANN model to
predict the bridge deck ratings and develop decay curve for the bridge deck. In that study, data of 2572
bridges from the National Bridge Inventory were used to develop, train, and test the ANN model. The
conclusion from the study indicated that the accuracy of bridge rating prediction was 98.5 percent
within the margin error of ±1, and the ANN model can effectively be used to develop the bridge deck
deterioration curve. The ANN model was also used by other investigators for estimating ultimate
load carrying of nonlinear inelastic steel truss [26] or predicting the concrete compressive strength
[27]. The aim of this research is to develop a supervised learning ANN model for predicting the fire
resistance ratings of the wooden floor assemblies. The proposed ANN model had 11 input variables
with one output. A number of ANN models with different learning algorithms were developed and
evaluated. The performance of each model in training, testing, and validation process were compared
to acquire the best ANN model. Additionally, the selected ANN model was applied to conduct the
sensitivity analysis to examine the influence of the input parameters to the output. Details of the
research are presented in the following sections.

2. Data preparation

Data used in this research were collected from the previous published technical reports [17, 18],
implemented by the National Research Council of Canada. The original document contained fire
resistance tests results on full-scale floor assemblies of total 85 experimental records. Since the ex-
perimental tests were conducted on many floor assemblies with various configurations; as a result,
some specific parameters in the final reports only contained a limited number of data points. In order
to obtain the consistent data set, only samples included full records of all parameters were selected.
In addition, this study focused on wood structures. Thus, the floor assemblies with steel joists were
removed from the database.
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Table 2. Conversion information

Type Original values Values in Table 3

Joist Wood Joist (WJ) 1
Wood-I-Joist (WIJ) 2
Wood Truss (WT) 3
Wood I-Joist flange (WIJ*) 4

Sub-floor Ply 1
Oriented Strand board (OSB) 0

Cavity Insulation Rock Fiber Insulation Batts (R1) 1
Glass Fiber Insulation Batts (G1) 2
Cellulosic Fiber Insulation (C1) 3

Table 3. Fire resistance test results

Joist Ceiling Finish Sub-Floor Cavity Insulation Applied
load

(N/m2)

Fire Resistance
Ratings

(minutes)Type Depth
(mm)

Spacing
(mm)

Thickness
(mm) Layer Type Thickness

(mm) Type Thickness
(mm)

Spacing
(mm)

JTY JDE JSP CFT CFL SFTY SFTH CITY CITH CISP ALD FRR

1 235 406 12.7 2 1 15.9 1 90 406 3830 72
1 235 406 12.7 2 1 15.9 2 90 406 3830 67
1 235 406 12.7 1 1 15.9 2 90 406 3830 36
1 235 406 12.7 1 1 15.9 1 90 406 3830 60
2 240 406 12.7 2 1 15.9 2 90 406 3950 64
2 240 406 12.7 1 1 15.9 1 90 406 4644 46
2 240 406 12.7 2 1 15.9 1 90 406 3950 77
2 240 610 12.7 2 1 19 2 90 406 2969 75
2 240 610 12.7 2 1 19 2 90 406 2490 74
2 240 610 12.7 2 1 19 2 90 610 3112 65
1 235 406 12.7 2 1 15.9 2 90 406 5075 65
1 184 406 12.7 2 1 15.5 2 89 406 3304 67
1 235 406 15.9 1 1 15.5 1 89 203 5075 54
1 235 406 15.9 1 1 15.5 1 178 406 4980 59
3 305 406 12.7 2 1 15.5 2 89 406 5602 66
4 241 406 15.9 1 0 15.5 1 178 406 5315 39
3 305 406 12.7 2 1 15.5 2 89 406 4213 68
3 305 610 12.7 2 1 15.5 2 89 406 3783 68
4 241 610 12.7 2 0 19 2 89 406 3447 61
4 241 610 15.9 1 0 15.5 1 89 305 4118 50
3 330 406 12.7 2 1 15.5 2 89 406 6847 63
3 305 610 12.7 2 1 19 2 89 610 3783 55
3 286 406 12.7 2 1 15.5 2 89 406 3543 64
1 235 406 15.9 1 1 15.5 1 89 406 5219 50
1 235 610 12.7 2 1 19 2 89 610 3256 57
1 235 406 12.7 2 1 15.5 2 89 610 5027 57
1 235 610 12.7 2 1 19 1 89 610 3256 63
1 235 406 12.7 2 1 15.5 3 235 610 4980 87
1 235 610 12.7 2 1 15.5 2 89 610 3783 59
4 241 406 15.9 1 1 15.5 3 241 305 5410 80
4 241 406 15.9 1 1 15.5 1 267 305 5458 60
3 305 610 12.7 2 1 19 2 89 610 3735 56
3 305 610 12.7 2 1 19 1 89 610 3735 60
4 241 406 15.9 2 1 15.5 1 267 305 5363 90
3 305 406 15.9 2 1 15.5 3 305 406 5793 99
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It is worth noting that the original values data in the columns of Joist Type, Sub-floor Type, and
Cavity Insulation Type were not a number. To make a readable input for the ANN model, the values in
these columns were converted into the number. The conversion is listed in detail in Table 2. Data after
refinements and conversions are presented in Table 3. The final data consisted of 36 test samples;
each of them included 12 properties. The contents from column 1 to column 11 in Table 3 were used
as the input data for the ANN model, and data in column 12 were the output.

3. Artificial Neural Network

3.1. Network structure

An Artificial Neural Network is a collection of processing neurons grouped in layers, as depicted
in Fig. 1(a). The function of each neuron is to receive input data from connected neurons of the pre-
vious layer, analysis the data through the weights adjusting procedure, process data (using summation
and sigmoid functions in this case), and transmits output data to the neuron of the subsequent layer.
The analyzing scheme of an individual processing neuron is illustrated in Fig. 1(b). The neurons in
each layer are only connected with neurons from other layers. No link exists between neurons in the
same layer. The ANN is classified as a shallow network; thus, only three layers of neurons are pre-
sented in the ANN structure, namely (i) an input layer, (ii) a hidden layer, and (ii) an output layer. The
number of neurons in each layer is selected depending on the certain requirements of the problems.
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3.2. Performance assessment

Performance of the ANN model was evaluated through two factors: coefficient of determination
(R2) and Mean Squared Error (MSE). The coefficient of determination measures the correlation be-
tween input and output variables using Eq. (1)
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(yi − ŷi)2
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where yi is the ith actual output; ȳ is the mean of the actual outputs; ŷi is the ith predicted outputs; and
n is the total number of samples. MSE is the mean squared difference between predicted outputs and
actual outputs. MSE can be calculated using Eq. (2)

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (2)

3.3. Choice of networks

Eleven properties of the floor assembly, namely Joist Type (JTY), Joist Depth (JDE), Joist Spacing
(JSP), Ceiling Finish Thickness (CFT), Ceiling Finish Layer (CFL), Sub-Floor Type (SFTY), Sub-
Floor Thickness (SFTH), Cavity Insulation Type (CITY), Cavity Insulation Thickness (CITH), Cavity
Insulation Spacing (CISP), and Applied Load (ALD), were selected as the input parameters of the
ANN model, and the Fire Resistance Ratings (FRR) of the floor assembly was assigned as the output.
The dataset was divided randomly into three subsets in which 80%, i.e., 26 test samples, of the entire
dataset was employed for training model, 10%, i.e., 5 test samples, for validation and the remaining
10%, i.e., 5 test samples, was utilized for testing the prediction accuracy of the ANN model.

A sigmoid function was selected as an activation function, and the feed-forward back-propagation
learning method was assigned for the proposed ANN model. The feed-forward back-propagation tech-
nique works by using the errors presented in the network output to adjust the weights in each layer in
two different processes called feed-forward process and back-propagation process. In the feed-forward
process the inputs are used to obtain the outputs with some network errors. The errors are then passed
backwards to the input layers through the back-propagation process, the weights are adjusted during
this process to minimize the network errors to an acceptable level.

To find an optimal training algorithm that works for the available data, eight ANN models were
developed and tested with eight popular training algorithms [28]. The performances of the models
were assessed through MSE values of the four parameters, namely training performance (Train_Perf),
testing performance (Test_Perf), validation performance (Validation_Perf), and the number of epochs
(Num_Epochs). For each model, the performance result of 10 trials were compared. The best per-
formance results from those models are listed in Table 4. It can be seen, the Levenberg-Marquardt
algorithm (trainlm) produces the best performance on training, testing, and validation with a low
number of epochs. For this reason, the Levenberg-Marquardt algorithm was selected for the proposed
ANN model.

Table 4. Performance of the ANN model with different learning algorithms

# Algorithm Details Train_Perf Test_Perf Validation_Perf Num_Epochs

1 trainrp Resilient Backpropagation 27.10 22.20 11.00 6
2 trainlm Levenberg-Marquardt 0.88 1.41 2.46 6
3 traincgp Polak-Ribiére Conjugate Gradient 5.98 6.01 0.54 6
4 traincgb Conjugate Gradient with Beale Restarts 5.58 3.04 3.18 6
5 trainbfg BFGS Quasi-Newton 16.50 6.21 7.89 6
6 trainoss One Step Secant 14.30 2.04 5.54 6
7 traincgf Fletcher-Powell Conjugate Gradient 26.90 6.83 12.49 6
8 traingdx Variable Learning Rate Gradient Descent 25.50 9.80 6.24 10
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To determine the necessary number of nodes in the hidden layer of the proposed ANN model,
20 different ANN models were developed by changing the number of nodes in the hidden layer from
one node to 20 nodes. Each model was performed ten trials to obtain the average performance results.
The performance of the ANN models was evaluated through the MSE value of the training, testing,
and validation stage with the same dataset. Fig. 2 presents the performance results from these ANN
models. The ANN model containing six neurons in the hidden layer generated the best results. Con-
sequently, that ANN model was chosen. Table 5 presents a brief information of the selected ANN
model.

Table 5. Detailed information of the selected ANN model

Parameter Information

# neurons in the input layer 11
# neurons in the hidden layer 6
# neurons in the output layer 1
Training method Feed-forward back-propagation
Training algorithm Levenberg-Marquardt (trainlm)
Activation function Sigmoid

 
Figure 2. Model performance of 20 ANN models 
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4. Prediction of fire resistance ratings

4.1. Applicability of ANN to fire resistance ratings prediction

Performance results of the proposed ANN model are presented in Table 6. It is worth noting that
the overall performance was calculated for the entire data including training dataset, validation dataset
and testing dataset. As can be seen, the ANN model performed well in all stages with the values of R2

were 0.9799, 0.9832, and 0.9778, for training, validation, and testing, respectively. Ideally, if a model
perfectly predicts the output, the value of R2 will be equal to 1. The R2 for the overall was 0.9610
indicated a good prediction ability of the proposed ANN model. Besides R2, MSE is an alternative
indicator that can be used for evaluating the performance of the ANN model. The smaller the MSE
value is, the stronger the relationship between experimental and predicted data. For the training data
set, the value of MSE was 7.69. The MSE values were found higher for unseen data sets, which were
17.7 and 33.1, for testing and validation, respectively.

Table 6. Performance results of ANN model

Training Validation Testing Overall

R2 0.9799 0.9832 0.9778 0.9610
MSE 7.69 33.1 17.7 12.7

The linear regression plot was used in this study to present the results from the proposed ANN
model. The plots for the performance of the proposed ANN model at different stages are shown
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in Fig. 3. In these figures, the linear fitting line presents the relationship between the experimental
results and the predicted values produced from the model. In addition, the “x = y” line shows a perfect
correlation between inputs and outputs.
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Figure 3. Linear regression plot of ANN performance

The experimental data and the predicted values obtained from the ANN model were plotted in
Fig. 4(a). The absolute prediction errors for each sample were also presented in Fig. 4(b). It is clear
that the proposed ANN model can accurately predict the fire resistance ratings of the wooden floor
assemblies from the inputs. The mean absolute prediction error was about four percent. The highest
error of about 17 percent was found in test sample number 24, as shown in Fig. 4(b). This can be
considered as an outliner, and the issue could address if this data point is excluded from the database.

4.2. Sensitivity Analysis

A sensitivity analysis was performed for the selected ANN model to evaluate the effects of the
input parameters on the fire resistance ratings. In order to conduct the sensitivity analysis, each in-
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Figure 4. Performance of ANN model

put parameter was divided into five groups, namely Lowest (Low), Middle Low (Mid-Low), Middle
(Mid), Middle High (Mid-High), and Highest (High) [29]. The Middle is the mean value of the Low-
est and Highest. The Middle Low and Middle High represent halfway from the Lowest to the Middle,
and from the Middle to the Highest, respectively. Detailed values of these input parameters are listed
in Table 7.

Table 7. Input data for sensitivity analysis

Input parameters Low Mid-Low Mid Mid-High High

JTY 1 1.75 2.50 3.25 4
JDE 184 221 257 294 330
JSP 406 457 508 559 610
CFT 12.7 13.5 14.3 15.1 15.9
CFL 1 1.25 1.50 1.75 2

SFTY 0 0.25 0.50 0.75 1
SFTH 15.5 16.4 17.3 18.1 19
CITY 1 1.50 2 2.50 3
CITH 89 143 197 251 305
CISP 203 305 407 508 610
ALD 2490 3579 4668 5757 6847
FRR 36 52 68 83 99

The sensitivity analysis was conducted for each input parameter by changing its value from Low
to High while keeping the other inputs constant at the average values. The results of the sensitivity
analysis for different input parameters are presented in Fig. 5. In this figure, the horizontal axis repre-
sents the five levels of input variables, while the vertical axis represents the fire resistance ratings of
the wooden floor assemblies.

It can be seen clearly that the fire resistance ratings of the wooden floor assemblies were most
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4.2 Sensitivity Analysis 

A sensitivity analysis was performed for the selected ANN model to evaluate the effects of the input parameters on the fire 
resistance ratings. In order to conduct the sensitivity analysis, each input parameter was divided into five groups, namely Lowest 
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Middle to the Highest, respectively. Detailed values of these input parameters are listed in Table 7. 

Table 7. Input data for sensitivity analysis 

Input parameters Low Mid-Low Mid Mid-High High 

JTY 1 1.75 2.50 3.25 4 
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The sensitivity analysis was conducted for each input parameter by changing its value from Low to High while keeping 
the other inputs constant at the average values. The results of the sensitivity analysis for different input parameters are presented in 
Figure 5.  In this figure, the horizontal axis represents the five levels of input variables, while the vertical axis represents the fire 
resistance ratings of the wooden floor assemblies. 
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Figure 5. Fire resistance ratings vs inputs

sensitive to the Applied Load (ALD) and the number of the Ceiling Finish Layer (CFL). To be specific,
for the ALD factor, the fire resistance rating is high when the applied load on the floor is low, and vice
versa. In the case of CFL, an increase in the number of ceiling finish layer would result in an increase
of the floor fire resistance capacity. By contrast, the Joist Type (JTY) was found to have a minimal
effect on the fire resistance ratings of the wooden floors. In other words, within this study context, a
change in the types of joists yielded a limited influence on the fire resistance ratings of the wooden
floor assemblies.

5. Conclusions

In this paper, a method to estimate the fire resistance ratings of the wooden floor assemblies using
Artificial Neural Networks was presented. A number of ANN models were developed and tested with
the experimental data collecting from previous published. The selected ANN model performed well in
predicting the fire resistance ratings with an average absolute prediction error of about four percent.
Regarding the sensitivity analysis results, the Applied Load (ALD) and the number of the Ceiling
Finish Layer (CFL) input variables were found to have significant effects on the outcome of the ANN
model. The Joist Type (JTY) parameter, on the other hand, produced an insignificant influence on
predicting the output of the proposed ANN model.
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Appendix A.

Harmathy’s Ten Rules of Fire Endurance (Resistance) Rating [21]

Rules Contents Explanations

1 The "thermal"fire endurance of a construction con-
sisting of a number of parallel layers is greater than
the sum of the "thermal"fire endurance characteris-
tics of the individual layers when exposed separately
to fire.

Where two layers of panel materials, such as gypsum
wallboard or plywood, are fastened to studs or joists
separately, their combined effect is greater than the
sum of their individual contributions to the fire en-
durance rating of the assembly.

2 The fire endurance of a construction does not de-
crease with the addition of further layers.

This is a corollary to Rule 1. The fire resistance
will not decrease with the addition of layers such
as wallboard or other panel materials, regardless of
how many layers are added or where they are located
within the assembly.

3 The fire endurance of constructions containing con-
tinuous air gaps or cavities is greater than the fire en-
durance of similar constructions of the same weight
but containing no air gaps or cavities.

Wall and ceiling cavities formed by studs and joists
protected and encased by wall coverings adds to the
fire resistance rating of these assemblies.

4 The farther an air gap or cavity is located from the
exposed surface, the more beneficial its effect on the
fire endurance.

In cases where cavities are formed by joists or studs
and protected by 2-inch-thick panel materials against
fire exposure, the beneficial effect of such air cavities
is greater than if the protection is only 1/2 inch thick.

5 The fire endurance of an assembly cannot be in-
creased by increasing the thickness of a completely
enclosed air layer.

An increase in the gap distance between separated
layers does not change the fire resistance of an as-
sembly.

6 Layers of materials of low thermal conductivity are
better utilized on the side of the construction on
which fire is more likely to happen.

A building material having relatively low thermal
conductivity, such as a wood-based material, is more
beneficial to the fire resistance of the assembly if
placed on the fire-exposed side of the framing than
it would be on the opposite side.

7 The fire endurance of asymmetrical constructions de-
pends on the direction of heat flow.

Walls which do not have the same panel materials on
both faces will demonstrate different fire resistance
ratings depending upon which side is exposed to fire.
This rule results as a consequence of Rules 4 and 6,
which point out the importance of location of air gaps
or cavities and of the sequence of different layers of
solids.

8 The presence of moisture, if it does not result in ex-
plosive spalling, increases fire resistance.

Materials having a 15 percent moisture content will
have greater fire resistance than those having 4 per-
cent moisture content at the time of fire exposure.

9 Load-supporting elements, such as beams, girders
and joists, yield higher fire endurance when subject to
fire endurance tests as parts of floor, roof, or ceiling
assemblies than they would when tested separately.

A wood joist performs better when it is incorporated
in a floor/ceiling assembly, than tested by itself under
the same load.

10 The load-supporting elements (beams, girders, joists,
etc.) of a floor, roof, or ceiling assembly can be re-
placed by such other load-supporting elements which,
when tested separately, yielded fire endurance not
less than that of the assembly.

A joist in a floor assembly may be replaced by an-
other type of joist having a fire resistance rating not
less than that of the assembly.
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