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Abstract

An alternative method using Artificial Intelligence (AI) to predict the 28-day strength of concrete from its pri-
mary ingredients is presented in this research. A series of 424 data samples collected from a previous study
were employed for developing, testing, and validation of Adaptive Neuro-Fuzzy Inference System (ANFIS)
models. Seven mix parameters, namely Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse
Aggregate, and Fine Aggregate were used as the inputs of the models while the output was the 28-day com-
pressive strength of concrete. In the first step, different models with various input membership functions were
explored and compared to obtain an optimal ANFIS model. In the second step, that model was utilized to pre-
dict the compressive strength value for each concrete sample, and to compare with those obtained from the
compressive test in laboratory. The results showed that the selected ANFIS model can be used as a reliable
tool for predicting the compressive strength of concrete with Root Mean Squared Error values of 5.97 MPa and
7.73 MPa, respectively, for the training and test sets. In addition, the sensitivity analysis results revealed that
the accuracy of the proposed model improved with an increase in the number of input parameters/variables.
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1. Introduction

Concrete and reinforced concrete are commonly used as building construction materials all over
the world. In the United States, reinforced concrete is a dominant structural material in engineered
construction [1]. The reinforced concrete is widely used for many structures such as skyscrapers,
as well as for the large infrastructures, including bridges, superhighways, and dams. Concrete is a
mixture of cement, aggregate, and water. A proper concrete mixture requires workability for fresh
concrete and durability and strength for the hardened stage. Small coarse aggregate sizes are often
used for the relatively thin buildings, and the larger aggregates, up to 15 cm in diameter, are utilized
for large dam structures [2]. Water is needed for the chemical reaction to form a cement paste and
offers workability for fresh concrete. Typical components of a concrete mixture are depicted in Fig. 1.

Among many concrete characteristics, compression strength is usually considered the most valu-
able hardened property of concrete. It is measured by breaking cylindrical concrete specimens in a
compression-testing machine at 28 days of standard curing. The testing procedure and standard size of
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Water is needed for the chemical reaction to form a cement paste and offers workability 
for fresh concrete. Typical components of a concrete mixture are depicted in Figure 1. 

    
Figure 1. Components of concrete [2] 

Among many concrete characteristics, compression strength is usually considered 
the most valuable hardened property of concrete. It is measured by breaking cylindrical 
concrete specimens in a compression-testing machine at 28 days of standard curing. The 
testing procedure and standard size of test specimens are in accordance with American 
Society for Testing and Materials (ASTM) C39 [3]. To obtain the average strength of 
concrete, the strength test results of at least two specimens are often required [4]. Several 
factors might affect the concrete compressive strength such as age, ingredients, water to 
cement ratio, curing conditions, etc. Typically, the compression test result of concrete at 
28 days is considered as a standard to determine the quality of concrete.  

If the compression test result does not meet the required strength, the mix design 
needs to be replaced, which might be labor-intensive and time-consuming. To minimize 
the risk of a specific concrete mix design falling short of compression strength requirement 
at the age of 28 days, a method to predict the 28-day strength from its primary ingredients 
is essential. Traditionally, the experimental method is broadly used to study the properties 
of materials [5-8]. In recent years, the application of the artificial intelligence-based models 
such as ANFIS and Artificial Neural Networks (ANN) to predict the concrete mechanical 
properties has increased significantly. Those models have an ability to learn from the data 
to establish the non-linear relationship between the inputs and outputs for the complex 
engineering issues.  

Many researchers have used ANFIS model to predict the 28-day compressive 
strength of different concrete types. In their research, the number of the inputs, the number 
of membership functions, and the input ingredients were varied from one to another 
depending on the available experimental data. For example, Khademi et al. [9] used 173 
concrete mix designs to develop, train, and test ANFIS models. Seven input parameters 
and one output were selected in such models. The coefficient of determination was used to 
evaluate the performance of the proposed model. The results from that study indicated that 
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test specimens are in accordance with American Society for Testing and Materials (ASTM) C39 [3].
To obtain the average strength of concrete, the strength test results of at least two specimens are often
required [4]. Several factors might affect the concrete compressive strength such as age, ingredients,
water to cement ratio, curing conditions, etc. Typically, the compression test result of concrete at 28
days is considered as a standard to determine the quality of concrete.

If the compression test result does not meet the required strength, the mix design needs to be
replaced, which might be labor-intensive and time-consuming. To minimize the risk of a specific
concrete mix design falling short of compression strength requirement at the age of 28 days, a method
to predict the 28-day strength from its primary ingredients is essential. Traditionally, the experimental
method is broadly used to study the properties of materials [5–8]. In recent years, the application
of the artificial intelligence-based models such as ANFIS and Artificial Neural Networks (ANN) to
predict the concrete mechanical properties has increased significantly. Those models have an ability
to learn from the data to establish the non-linear relationship between the inputs and outputs for the
complex engineering issues.

Many researchers have used ANFIS model to predict the 28-day compressive strength of different
concrete types. In their research, the number of the inputs, the number of membership functions, and
the input ingredients were varied from one to another depending on the available experimental data.
For example, Khademi et al. [9] used 173 concrete mix designs to develop, train, and test ANFIS
models. Seven input parameters and one output were selected in such models. The coefficient of
determination was used to evaluate the performance of the proposed model. The results from that
study indicated that the ANFIS model could be used for predicting the 28-day concrete compressive
strength. The application of the ANFIS model was also presented in the work for high-performance
concrete [10–12], no-slump concrete [13], and for determining the Bridge Deck Corrosiveness Index
[14].

Another AI-based model, ANN model, is also popular among researchers to estimate the com-
pressive strength of concrete. For instance, Duan et al., [15] applied the ANN method for recycled
aggregate concrete. In that study, an ANN model with 14 input parameters was trained and tested
with 146 data points. Three indicators, namely Root Mean Squared Error, Absolute Fraction of Vari-
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ation, and Mean Absolute Percentage Error, were used for the ANN model evaluation. The study
concluded that the ANN had a fair accuracy in predicting the strength of recycled aggregate con-
crete. Additionally, the ANN model was employed for the prediction of compressive strength of other
concrete types, including light-weight concrete [16, 17], and self-compacting concrete [18–20].

Besides the applications for estimating the compressive strength of various types of concrete
material, the ANFIS and ANN approach have also been utilized by many researchers to deal with
the various engineering problems. As an example, Bingöl et al., [21] applied the ANN approach
to study the effects of the high temperature on the light-weight compression strength. The results
from Bingöl’s study revealed that the ANN model successfully predicted the nonlinear behavior of
the concrete compressive strength after high-temperature effects. Other researchers applied the ANN
model to estimate the slump of concrete [22, 23], to determine the ultimate load factor of nonlinear
inelastic steel truss [24], to forecast the air quality [25], to predict the bridge desk rating [26], or to
optimize the performance in the wastewater treatment plant [27].

In this study, a supervised learning ANFIS model was developed to predict the compressive
strength of concrete at 28 days. Data used in training and testing model were collected from a previ-
ous study [28]. The ANFIS structure was developed in MATLAB R2019a Runtime Environment with
seven input parameters and one output. The performance of various ANFIS models using different
membership functions was evaluated to determine the optimal model for the experimental data. In
addition, the proposed ANFIS model was used to study the sensitivity of the number of inputs to the
model performance.

2. Data preparation

The original data contained the compressive strength of concrete at different ages. Since the cur-
rent study aimed to predict the 28-day compressive strength concrete using the data-driven method,
only the concrete test samples with 28-day compressive strength were extracted from the original
dataset. The data after refinements were stored in a table format of 424 rows and 8 columns. Each row
in the table included both input and output information of each test sample. The input parameters were
stored from column one to column seven, and the output parameter was archived in the last column.

Table 1. Characteristics of input and output

No.

Input Output

CEM
(kg/m3)

BFS
(kg/m3)

FLA
(kg/m3)

WTR
(kg/m3)

SPP
(kg/m3)

COA
(kg/m3)

FIA
(kg/m3)

F28
(MPa)

1 540 0 0 162 2.5 1055 676 62
2 380 95 0 228 0 932 594 36
3 266 114 0 228 0 932 670 46
- - - - - - - - -
- - - - - - - - -

422 148.5 139.4 108.6 192.7 6.1 892.4 780 24
423 159.1 186.7 0 175.6 11.3 989.6 788.9 33
424 260.9 100.5 78.3 200.6 8.6 864.5 761.5 32
Min. 102 0 0 122 0 801 594 9
Max. 540 359 200 247 32 1145 993 82
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Table 2. Number of samples in each specific range of 28 days compressive strength

No. 28-day compressive strength (MPa) Number of samples

1 0 - 15 17
2 15 - 30 129
3 30 - 45 181
4 45 - 60 61
5 60 - 75 33
6 75 - 90 3

Total 424

Seven concrete ingredients namely Cement (CEM), Blast Furnace Slag (BFS), Fly Ash (FLA),
Water (WTR), Superplasticizer (SPP), Coarse Aggregate (COA), and Fine Aggregate (FIA) were
used as the inputs of the model. The model output was the 28-day compressive strength of concrete
(F28). The range of the input and output parameters is shown in Table 1. The classification of the
28-day compression strength of concrete in each specific interval is presented in Table 2.

3. Adaptive Neuro-Fuzzy Inference System

The Adaptive Neuro-Fuzzy Inference System uses Neural Network learning method to fine-tune
the Fuzzy Inference System parameters. The basic ANFIS architecture with two input variables is
illustrated in Fig. 2. In this architecture, two fuzzy IF-THEN rules based on a first-order Sugeno
model are presented

Rule 1: IF x is A1 AND y is B1,THEN f1 = p1x + q1y + r1.

Rule 2: IF x is A2 AND y is B2,THEN f2 = p2x + q2y + r2.

where x and y are the inputs; Ai and Bi are the fuzzy sets; fi are the outputs within the fuzzy region
specified by the fuzzy rule; pi, qi, and ri are the design parameters that are determined during the
training process.

The Adaptive Neuro-Fuzzy Inference System uses Neural Network learning method to 
fine-tune the Fuzzy Inference System parameters. The basic ANFIS architecture with two 
input variables is illustrated in Figure 2. In this architecture, two fuzzy IF-THEN rules 
based on a first-order Sugeno model are presented 

Rule 1: IF x is A1 AND y is B1, THEN f1= p1x + q1y + r1. 
Rule 2: IF x is A2 AND y is B2, THEN f2= p2x + q2y + r2. 

where: x and y are the inputs; Ai and Bi are the fuzzy sets; fi are the outputs within the fuzzy 
region specified by the fuzzy rule; pi, qi, and ri are the design parameters that are determined 
during the training process.

Figure 2. Structure of the ANFIS model
As shown in Figure 2, the ANFIS model includes 5 layers with the fixed nodes 

depicts as circles. The details of each layer are identified in the following [4]. 
(i) Layer 1 consists of all adaptive nodes and the outputs are the fuzzy membership 

grade of the inputs, as given by equation (1)  
𝑂#,% = 𝜇()(𝑥),																																																																																																													(1)	 

where x is the inputs to node i, and Ai is the linguistic labels associated with this node 
function. 

(ii) Layer 2 involves fuzzy operator that related to the firing strength of the rules. 
The output of this layer is given by

𝑂/,% = 𝑤% = 𝜇()(𝑥) 	× 	𝜇2)(𝑦),
𝑦 = 1,2.																																																																																		(2) 

(iii) Layer 3 is related to the normalization of the firing strength for each node in 
this layer using equation (3). The output from this layer is normalized firing strengths. 

𝑂6,% = 𝑤7888 =
𝑤%

𝑤# + 𝑤/
, 𝑦 = 1,2.																																																																																							(3) 
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Figure 2. Structure of the ANFIS model
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As shown in Fig. 2, the ANFIS model includes 5 layers with the fixed nodes depicts as circles.
The details of each layer are identified in the following [4].

(i) Layer 1 consists of all adaptive nodes and the outputs are the fuzzy membership grade of the
inputs, as given by Eq. (1)

O1,i = µAi(x) (1)

where x is the inputs to node i, and Ai is the linguistic labels associated with this node function.
(ii) Layer 2 involves fuzzy operator that related to the firing strength of the rules. The output of

this layer is given by
O2,i = wi = µAi(x) × µBi(y), y = 1, 2 (2)

(iii) Layer 3 is related to the normalization of the firing strength for each node in this layer using
Eq. (3). The output from this layer is normalized firing strengths.

O3,i = wl =
wi

w1 + w2
, y = 1, 2 (3)

(iv) Layer 4 involves in the production between the normalized strength at each node with a first-
order polynomial. For the Sugeno model, the output of this layer is calculated as

O4,i = wl × fi = ωl (pix + qiy + ri) , y = 1, 2 (4)

where wl is the output of Layer 3, and pi, qi, and ri are the design parameters.
(v) Layer 5 includes the summation of all input signals to produce a single output

O5,i =
∑

i

w × fi =
∑

i wi × fi∑
i wi

(5)

3.1. Model construction

The ANFIS model was used to predict the compressive strength of concrete at 28 days (F28).
Inputs for the model were seven parameters of concrete, namely CEM, BFS, FLA, WTR, SPP, COA,
and FIA. Data set used for the ANFIS model was randomly divided into two subsets in which the
training data subset contains about 85% of the entire data, i.e., 360 data samples and a testing data
subset accounts for 15% of the entire data, i.e., 64 data samples. The structure of the ANFIS model
is depicted in Fig. 3. For simplicity, only some connections are presented in the figure. Both hy-
brid and backpropagation optimal methods with different epoch numbers were tested for optimum
performance. To generate the initial ANFIS model, different number and type of input membership
functions were examined to obtain the optimum solution.

Both the linear and constant membership function was used for the output. For each combination,
the performance of the ANFIS model was evaluated by calculating the RMSE for both training and
testing data set. Table 3 presents details of several combinations and the average performance error
for both training and testing data. An ANFIS model was selected based on the optimum performance
and time of computing of all models in the combinations. The selected ANFIS model consisted of two
‘gaussmf’ input membership functions and one ‘linearmf’ output membership function. The optimal
backpropagation method was chosen with an epoch number of 100. More detailed information about
the selected ANFIS model is listed in Table 4.
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(iv) Layer 4 involves in the production between the normalized strength at each 
node with a first-order polynomial. For the Sugeno model, the output of this layer is 
calculated as 

𝑂;,% = 𝑤7888 × 	𝑓% = 𝜔7888(	𝑝%𝑥 +	 	𝑞%𝑦 +	 	𝑟%)	,
𝑦 = 1,2.																																																																										(4) 

where 𝑤7888 - the output of Layer 3, and pi, qi, and ri - the design parameters. 
(v) Layer 5 includes the summation of all input signals to produce a single output 

𝑂B,% = C𝑤 × 	𝑓%
%

=
∑ 	𝑤% × 	𝑓%%

∑ 	𝑤%%
																																																																																													(5) 

3.1 Model construction 
The ANFIS model was used to predict the compressive strength of concrete at 28 days 
(F28). Inputs for the model were seven parameters of concrete, namely CEM, BFS, FLA, 
WTR, SPP, COA, and FIA. Data set used for the ANFIS model was randomly divided into 
two subsets in which the training data subset contains about 85% of the entire data, i.e., 
360 data samples and a testing data subset accounts for 15% of the entire data, i.e., 64 data 
samples. The structure of the ANFIS model is depicted in Figure 3. For simplicity, only 
some connections are presented in the figure. Both hybrid and backpropagation optimal 
methods with different epoch numbers were tested for optimum performance. To generate 
the initial ANFIS model, different number and type of input membership functions were 
examined to obtain the optimum solution. 

Both the linear and constant membership function was used for the output. For each 
combination, the performance of the ANFIS model was evaluated by calculating the RMSE 
for both training and testing data set. Table 3 presents details of several combinations and 
the average performance error for both training and testing data. An ANFIS model was 
selected based on the optimum performance and time of computing of all models in the 
combinations. The selected ANFIS model consisted of two ‘gaussmf’ input membership 
functions and one ‘linearmf’ output membership function. The optimal backpropagation 
method was chosen with an epoch number of 100. More detailed information about the 
selected ANFIS model is listed in Table 4.  
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Figure 3. Structure of the ANFIS model

Table 3. Average performance error of some selected combinations

Input membership
function

Output membership
function

Number
epochs

RMSE

Training data Testing data

trimf linearmf 100 5.80 7.85
trapmf 6.32 7.97
gbellmf 6.12 7.66
gaussmf 5.97 7.73
gauss2mf 6.32 7.99
pimf 6.57 8.23
dsigmf 6.21 7.35
psigmf 6.21 7.35

Table 4. Structure of the ANFIS model

Information Value

Number of nodes 294
Number of nonlinear parameters 1024
Number of nonlinear parameters 42
Total number of parameters 1066
Number of training data pairs 360
Number of fuzzy rules 128

3.2. Model assessment

The root mean squared error indicator (RMSE) was used to evaluate the performance of the model.
RMSE is the root of the average squared difference between predicted outputs and actual outputs.
RMSE can be calculated using Eq. (6)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)2 (6)
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where yi is the ith actual output; yi is the ith predicted outputs; n is the total number of samples.
It is worth mentioning that the lower the value of RMSE is, the better the model would be. The

value of the error size depends on several factors, including the quantity and type of input mem-
bership functions, types of output membership functions, optimization methods, and the number of
epochs/iterations. By adjusting these factors, the effective ANFIS model with the minimum error size
can be achieved.

4. Results and discussion

Fig. 4 shows the results of the training the selected ANFIS model. The values of RMSE were
decreased significantly in the first 30 epochs and reached the minimum value of 5.97 MPa at an
iteration of 100, as shown in Fig. 4(a). The comparison of the concrete compressive strength of 360
samples in the testing data with the compressive strength of the test samples predicted from the ANFIS
model is shown in Fig. 4(b).

It is worth mentioning that the lower the value of RMSE is, the better the model 
would be. The value of the error size depends on several factors, including the quantity and 
type of input membership functions, types of output membership functions, optimization 
methods, and the number of epochs/iterations. By adjusting these factors, the effective 
ANFIS model with the minimum error size can be achieved. 
4. Results and discussion 
Figure 4 shows the results of the training the selected ANFIS model. The values of RMSE 
were decreased significantly in the first 30 epochs and reached the minimum value of 5.97 
MPa at an iteration of 100, as shown in Figure 4a. The comparison of the concrete 
compressive strength of 360 samples in the testing data with the compressive strength of 
the test samples predicted from the ANFIS model is shown in Figure 4b.  

  
(a) Variation of RMSE in training    (b) Original vs prediction value 

Figure 4. ANFIS model in training 
In order to evaluate the performance of the proposed ANFIS model, the trained 

model was tested with the unseen data in the test set. It worth noting again that the test set 
contained 64 samples, which were randomly selected from the original data and not 
included in the training set. The performance of the ANFIS model for the data test set are 
presented in Figure 5.  

As can be seen in Figure 5a, the ANFIS model performed well on the data test set 
with the value of RMSE was 7.73 MPa. Figure 5b presents the prediction errors of the 
entire test set using the proposed model. The prediction errors were calculated by 
subtracting the compression strength of concrete samples in the experimental test data with 
the sample compressive strength predicted by the ANFIS model.  For the most test samples, 
the prediction error of the proposed model varied within an acceptable range of ± 5 MPa. 
Some specimens experienced a huge difference between the predictions and experimental 
data. The reason for the unexpected results might be due to the inherent nature of the 
experimental data. As listed in Table 2, the original data contained very few test samples 
with the compression strength lower than 15 MPa or higher than 75 MPa. Thus, insufficient 
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It is worth mentioning that the lower the value of RMSE is, the better the model 
would be. The value of the error size depends on several factors, including the quantity and 
type of input membership functions, types of output membership functions, optimization 
methods, and the number of epochs/iterations. By adjusting these factors, the effective 
ANFIS model with the minimum error size can be achieved. 
4. Results and discussion 
Figure 4 shows the results of the training the selected ANFIS model. The values of RMSE 
were decreased significantly in the first 30 epochs and reached the minimum value of 5.97 
MPa at an iteration of 100, as shown in Figure 4a. The comparison of the concrete 
compressive strength of 360 samples in the testing data with the compressive strength of 
the test samples predicted from the ANFIS model is shown in Figure 4b.  
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contained 64 samples, which were randomly selected from the original data and not 
included in the training set. The performance of the ANFIS model for the data test set are 
presented in Figure 5.  

As can be seen in Figure 5a, the ANFIS model performed well on the data test set 
with the value of RMSE was 7.73 MPa. Figure 5b presents the prediction errors of the 
entire test set using the proposed model. The prediction errors were calculated by 
subtracting the compression strength of concrete samples in the experimental test data with 
the sample compressive strength predicted by the ANFIS model.  For the most test samples, 
the prediction error of the proposed model varied within an acceptable range of ± 5 MPa. 
Some specimens experienced a huge difference between the predictions and experimental 
data. The reason for the unexpected results might be due to the inherent nature of the 
experimental data. As listed in Table 2, the original data contained very few test samples 
with the compression strength lower than 15 MPa or higher than 75 MPa. Thus, insufficient 
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Figure 4. ANFIS model in training

In order to evaluate the performance of the proposed ANFIS model, the trained model was tested
with the unseen data in the test set. It worth noting again that the test set contained 64 samples, which
were randomly selected from the original data and not included in the training set. The performance
of the ANFIS model for the data test set are presented in Fig. 5.

As can be seen in Fig. 5(a), the ANFIS model performed well on the data test set with the value of
RMSE was 7.73 MPa. Fig. 5(b) presents the prediction errors of the entire test set using the proposed
model. The prediction errors were calculated by subtracting the compression strength of concrete
samples in the experimental test data with the sample compressive strength predicted by the ANFIS
model. For the most test samples, the prediction error of the proposed model varied within an accept-
able range of ±5 MPa. Some specimens experienced a huge difference between the predictions and
experimental data. The reason for the unexpected results might be due to the inherent nature of the
experimental data. As listed in Table 2, the original data contained very few test samples with the com-
pression strength lower than 15 MPa or higher than 75 MPa. Thus, insufficient general characteristics
from limited samples would result in the poor performance of the model.
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general characteristics from limited samples would result in the poor performance of the 
model.  

 

  
(a) Variation of RMSE in testing     (b) Prediction errors 

   
(c) Original vs prediction value    (d) Linear regression 

Figure 5. Performance of ANFIS model 
Figure 5c and 5d show the visualization of the performance of the ANFIS model for 

the test data. While in Figure 5c, the compressive concrete strength from experimental data 
and the value predicted by the model were comparable for each sample, the regression plot 
in Figure 5d provided the visualization of the proposed ANFIS model performance. In the 
figure, the horizontal axis represents the experimental data of the test samples, and the 
vertical axis represents the predictions. The data samples with the compression strength 
values positioned on the diagonal line presented the coincident between experimental data 
and prediction values. 
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Figure 5. Performance of ANFIS model 
Figure 5c and 5d show the visualization of the performance of the ANFIS model for 

the test data. While in Figure 5c, the compressive concrete strength from experimental data 
and the value predicted by the model were comparable for each sample, the regression plot 
in Figure 5d provided the visualization of the proposed ANFIS model performance. In the 
figure, the horizontal axis represents the experimental data of the test samples, and the 
vertical axis represents the predictions. The data samples with the compression strength 
values positioned on the diagonal line presented the coincident between experimental data 
and prediction values. 
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Figure 5. Performance of ANFIS model

Figs. 5(c) and 5(d) show the visualization of the performance of the ANFIS model for the test
data. While in Fig. 5(c), the compressive concrete strength from experimental data and the value
predicted by the model were comparable for each sample, the regression plot in Fig. 5(d) provided the
visualization of the proposed ANFIS model performance. In the figure, the horizontal axis represents
the experimental data of the test samples, and the vertical axis represents the predictions. The data
samples with the compression strength values positioned on the diagonal line presented the coincident
between experimental data and prediction values.

4.1. Inputs and output relationship

The ANFIS model was also used to establish the relationship between the inputs and the output.
Fig. 6 shows the three-dimensional (3D) surface diagram of the relationship between different input
parameters and the 28-day concrete compression strength. The relationships between some major
selected input ingredients and the output of the ANFIS model are presented in Fig. 7.

As can be seen from Fig. 6, the connection between cement and other inputs such as Blast Furnace
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The ANFIS model was also used to establish the relationship between the inputs and the 
output. Figure 6 shows the three-dimensional (3D) surface diagram of the relationship 
between different input parameters and the 28-day concrete compression strength. The 
relationships between some major selected input ingredients and the output of the ANFIS 
model are presented in Figure 7. 
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The ANFIS model was also used to establish the relationship between the inputs and the 
output. Figure 6 shows the three-dimensional (3D) surface diagram of the relationship 
between different input parameters and the 28-day concrete compression strength. The 
relationships between some major selected input ingredients and the output of the ANFIS 
model are presented in Figure 7. 
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The ANFIS model was also used to establish the relationship between the inputs and the 
output. Figure 6 shows the three-dimensional (3D) surface diagram of the relationship 
between different input parameters and the 28-day concrete compression strength. The 
relationships between some major selected input ingredients and the output of the ANFIS 
model are presented in Figure 7. 
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The ANFIS model was also used to establish the relationship between the inputs and the 
output. Figure 6 shows the three-dimensional (3D) surface diagram of the relationship 
between different input parameters and the 28-day concrete compression strength. The 
relationships between some major selected input ingredients and the output of the ANFIS 
model are presented in Figure 7. 
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Figure 6. Surface diagram for the relationship between different inputs and output 
As can be seen from Figure 6, the connection between cement and other inputs such 

as Blast Furnace Slag (Figure 6a), Fly Ash (Figure 6b), Water (Figure 6c), and 
Superplasticizer (Figure 6d) to the 28-day concrete compression strength was almost linear. 
However, the strong non-linear relationship was found between the Coarse Aggregate and 
other inputs to the output, as presented in Figure 6e and 6f. This non-linear relationship 
was also observed clearly in the two-dimensional plot in the following section. 
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Figure 6. Surface diagram for the relationship between different inputs and output

Slag (Fig. 6(a)), Fly Ash (Fig. 6(b)), Water (Fig. 6(c)), and Superplasticizer (Fig. 6(d)) to the 28-
day concrete compression strength was almost linear. However, the strong non-linear relationship
was found between the Coarse Aggregate and other inputs to the output, as presented in Figs.6(e)
and 6(f). This non-linear relationship was also observed clearly in the two-dimensional plot in the
following section.
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Figure 7. Two-dimensional plot for the relationship between different inputs and output 
Within the context of this study, data from the two-dimensional plot in Figure 7a 

indicated that the concrete compressive strength at 28 days increased along with a rise in 
the amount of cement in the mixture. The reversed trend was found true for the amount of 
water in the concrete mixture, as shown in Figure 7b.  With respect to the amount of coarse 
and fine aggregate, the 28-day compressive strength of the concrete specimens decreased 
when the amount of coarse and fine aggregate increased, as presented in Figure 7c and 7d. 
The 28-day concrete compressive strength was reached the maximum when the concrete 
mixture contained approximately 830 kg/m3 and 670 kg/m3 for coarse and fine aggregate, 
respectively. 
4.2. Number of input analysis 
The number of input analysis was also evaluated in this study using the ANFIS model. To 
do that, a basic ANFIS0 model was constructed using four mandatory concrete input 
ingredients, namely (i) Cement (CEM), (ii), Water (WTR), (iii) Coarse Aggregate (COA), 
and (iv) Fine Aggregate (FIA). In order to conduct the sensitivity analysis on the number 
of inputs, different models were developed by adding the input parameter into the basic 
model. A variable of BSF was added into the ANFIS0 to create an ANFIS1 model. 
Similarly, an ANFIS2 model was created by adding FLA to the ANFIS1 model, and a 
parameter SPP was added to the ANFIS2 model to construct an ANFIS3 model. It is worth 
noting that the new variable was added to the ANFIS model without considering the order 
of the parameters. Detailed of these models are listed in Table 5. 

Table 5. ANFIS models for sensitivity analysis of the input numbers 
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Figure 7. Two-dimensional plot for the relationship between different inputs and output

Within the context of this study, data from the two-dimensional plot in Fig. 7(a) indicated that the
concrete compressive strength at 28 days increased along with a rise in the amount of cement in the
mixture. The reversed trend was found true for the amount of water in the concrete mixture, as shown
in Fig. 7(b). With respect to the amount of coarse and fine aggregate, the 28-day compressive strength
of the concrete specimens decreased when the amount of coarse and fine aggregate increased, as
presented in Figs. 7(c) and 7(d). The 28-day concrete compressive strength was reached the maximum
when the concrete mixture contained approximately 830 kg/m3 and 670 kg/m3 for coarse and fine
aggregate, respectively.

4.2. Number of input analysis

The number of input analysis was also evaluated in this study using the ANFIS model. To do that,
a basic ANFIS0 model was constructed using four mandatory concrete input ingredients, namely (i)
Cement (CEM), (ii), Water (WTR), (iii) Coarse Aggregate (COA), and (iv) Fine Aggregate (FIA). In
order to conduct the sensitivity analysis on the number of inputs, different models were developed by
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adding the input parameter into the basic model. A variable of BSF was added into the ANFIS0 to
create an ANFIS1 model. Similarly, an ANFIS2 model was created by adding FLA to the ANFIS1
model, and a parameter SPP was added to the ANFIS2 model to construct an ANFIS3 model. It is
worth noting that the new variable was added to the ANFIS model without considering the order of
the parameters. Detailed of these models are listed in Table 5.

Table 5. ANFIS models for sensitivity analysis of the input numbers

Model Input parameter

ANFIS0 CEM, WTR, COA, FIA
ANFIS1 CEM, WTR, COA, FIA, BFS
ANFIS2 CEM, WTR, COA, FIA, BFS, FLA
ANFIS3 CEM, WTR, COA, FIA, BFS, FLA, SPP

Table 6. Performance results for sensitivity analysis of the number of inputs

Model RMSE for testing Number of inputs

ANFIS0 10.01 4
ANFIS1 8.28 5
ANFIS2 7.74 6
ANFIS3 7.73 7

The performance results of the sensitivity analysis for the number of input parameters are listed
in Table 6. The analysis was started at the ANFIS0 model with four inputs. The last analysis was
performed for the ANFIS3 model with the entire seven input variables. The output of these models
was the compressive strength of concrete at 28 days. The RMSE indication calculated for the data
test set was used to evaluate the performance of each model. The final value of RMSE was evaluated
without considering the reducing rate.
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Figure 8. Performance of two ANFIS models for test set
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As presented in Table 6, the RMSE value decreased with an increase in the number of input
parameters in the model. That means, the prediction accuracy of the ANFIS model increased along
with the rise in the number of input parameters. In other words, the greater the number of inputs is,
the more accuracy of the ANFIS model would be. To have a visualization on the performance of the
model in analyzing the number of inputs, the results from the data test set of two selected ANFIS
models were presented in Fig. 8 to control sequence.

5. Conclusions

In this paper, the 28-day concrete compression strength was predicted from the fresh properties
of concrete with the ANFIS model. Various model configurations with different features such as type
of input and output membership function, number of input membership functions and epochs, type
of optimal methods were thoroughly examined. In addition, different ANFIS models with varying
number of input parameters were evaluated to study the effects of the number of input parameters.

The ANFIS model performed well with the RMSE values of 5.97 MPa and 7.73 MPa for the
training set and test set, respectively. Among the popular input membership functions, the application
of the ‘gaussmf’ function in the ANFIS model produced the best prediction of the 28-day concrete
compression strength. Furthermore, the ANFIS model can be used as an effective tool for analyzing
the relationship between one or more inputs to the output via the two-dimensional plots and the
surface diagrams. Finally, based on the results from the sensitivity input analysis, it was concluded
that the prediction accuracy of the ANFIS model was proportional to the increase in the number of
input parameters.
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