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Abstract

The most rigorous effective medium approximations for elastic moduli are elaborated for matrix composites
made from an isotropic continuous matrix and isotropic inclusions associated with simple shapes such as circles
or spheres. In this paper, we focus specially on the effective elastic moduli of the heterogeneous composites with
arbitrary inclusion shapes. The main idea of this paper is to replace those inhomogeneities by simple equivalent
circular (spherical) isotropic inclusions with modified elastic moduli. Available simple approximations for the
equivalent circular (spherical) inclusion media then can be used to estimate the effective properties of the
original medium. The data driven technique is employed to estimate the properties of equivalent inclusions and
the Extended Finite Element Method is introduced to modeling complex inclusion shapes. Robustness of the
proposed approach is demonstrated through numerical examples with arbitrary inclusion shapes.

Keywords: data driven approach; equivalent inclusion, effective elastic moduli; heterogeneous media; artificial
neural network.
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1. Introduction

Composite materials often have complex microstructures with arbitrary inclusion shapes and a
high-volume fraction of inclusion. Predicting their effective properties from a microscopic description
represents a considerable industrial interest. Analytical results are limited due to the complexity of
microstructure. Upper and lower bounds on the possible values of the effective properties [1–4] show
a large deviation in the case of high contrast matrix-inclusion properties. Numerical homogenization
techniques [5–8] determining the effective properties give reliable results but challenge engineers by
computational costs, especially in the case of complex three-dimensional microstructure. Engineers
prefer practical formulas due to its simplicity [9–13] but practical ones are built from isotropic inclu-
sions of certain simple shapes such as circular or spherical inclusions. In our previous works [14–16]
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proposed an equivalent-inclusion approach that permits to substitute elliptic inhomogeneities by cir-
cular inclusions with equivalent properties.

Aiming to reduce the cost of computational homogenization, various methods such as reduced-
order models [17], hyper reduction [18], self-consistent clustering analysis [19] have been proposed
in the literature. Apart from the mentioned methods, surrogate models have been shown their pro-
ductivity in many studies such as response surface methodology (RSM) [20] or Kriging [21]. In
recent years, data sciences have grown exponentially in the context of artificial intelligence, machine
learning, image recognition among many others. Application to mechanical modeling is more recent.
Initial applications of the machine learning technique for modeling material can be traced back to the
1990s in the work of [22]. It has pointed out in [22] that the feed-forward artificial neural network can
be used to replace a mechanical constitutive model. Various studies have utilized fitting techniques
including the artificial neural network (ANN) to build material laws, such as in [23, 24].

In this work, we first attempt to build a model to estimate the effective stiffness matrix of materials
for some types of inclusion whose analytical formula maybe not available in the literature, with a small
volume fraction using ANNs. Then, we try to define a model to estimate the elastic properties of
equivalent circle inclusion. The data in this work is generated by the unit cell method using Extended
Finite Element Method (XFEM) which is flexible for the case of complex geometry inclusions. The
organization of this paper is as follows. Section 2 briefly reviews the periodic unit cell problem.
Section 3 presents the construction of ANN models. Numerical examples are presented in Section 4
and the conclusion is in Section 5.

2. Periodic unit cell problem

In this section, we briefly summarize the unit cell method to estimate the effective elastic moduli
of a homogeneous medium with a Representative Volume Element (RVE). The inside domain and its
boundary are denoted sequentially as Ω and ∂Ω. The problem defined on the unit cell is as follows:
find the displacement field u(x) in Ω (with no dynamics and body forces) such that:

∇ · σ (u(x)) = 0 ∀x in Ω (1)

σ = C : ε (2)

where
ε = ∇ · u + ∇ · uT (3)

and verifying
〈ε〉 = ε̄ (4)

which means that macroscale field equals to the average strain field of the heterogeneous medium.
Eq. (1) defines the mechanical equilibrium while Eq. (2) is the Hooke’s law. Two cases of boundary
condition can be applied to solve Eq. (1) satisfying the equation Eq. (4), which are called as kinematic
uniform boundary conditions and periodic boundary condition. The periodic boundary condition,
which can generate a converge result with one unit cell, will be used in this work. The boundary
conditions can be written as:

u(x) = ε̄x + ũ (5)

where the fluctuation ũ is periodic on Ω.
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The effective elastic tensor is computed according to

Ce f f = 〈C(x) : A(x)〉 (6)

where A(x) is the fourth order localization tensor relating micro and macroscopic strains such that:

Ai jkl = 〈εkl
i j(x)〉 (7)

where εkl
i j(x) is the strain solution obtained by solving the elastic problem (1) when prescribing a

macroscopic strain ε using the boundary conditions with

ε̄ =
1
2

(
ei ⊗ e j + e j ⊗ ei

)
(8)

In 2D problem, to solve this problem, we solve (1) by prescribing strain as in the following:

ε̄11 =

[
1 0
0 0

]
; ε̄12 =

[
1/2 0
0 1/2

]
; ε̄22 =

[
0 0
0 1

]
(9)

3. The computation of effective properties and equivalent inclusion coefficients using ANN

Artificial Neural Networks have been inspired from human brain structure. In such model, each
neuron is defined as a simple mathematical function. Though some concepts have appeared earlier,
the origin of the modern neural network traces back to the work of Warren McCulloch and Walter
Pitts [25] who have shown that theoretically, ANN can reproduce any arithmetic and logical function.
The idea to determine the equivalent circle inclusions in this work can be seen in Fig. 1.
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The first step, the input fields and output fields of a network are specified. Follow [11], 
by mapping two formula of an unit cell with a very small volume fraction of inclusion,
we first attempt to build an ANN surrogate based on a square unit cell whose inclusion 
has a volume fraction (f ) of 1% to 5%. To simplify problem, in this work, we keep a 
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Figure 1. Computation of equivalent inclusion using ANN

Note that, the two networks in Fig. 1 are utilized for the same volume fraction of inclusion. The
details of the construction of the two networks will be discussed in the following. The first step,
the input fields and output fields of a network are specified. Follow [11], by mapping two formula
of an unit cell with a very small volume fraction of inclusion, we first attempt to build an ANN
surrogate based on a square unit cell whose inclusion has a volume fraction (f) of 1% to 5%. To
simplify problem, in this work, we keep a constant small f which is arbitrary chosen. In the two
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cases, an ellipse-inclusion (I2) unit cell or a flower-inclusion unit cell (I3), we attempt to extract two
components the effective stiffness matrix including Ce f f

11 and Ce f f
33 by the ANN model from the Lamé

constants of the matrix λM, µM and those of inclusions µI , λI (see ANN2 and ANN4 in Table 1). For
the purpose of finding equivalent parameters, with the circle - inclusion unit cell (I1), the outputs of
network are Lamé constants of the inclusion while the input are those of the matrix and the expected
Ce f f

11 and Ce f f
33 of the stiffness matrix. (see ANN1 and ANN3 in Table 1).

Table 1. Information of ANN model

Case Volume fraction f Input Output Hidden layers MSE

ANN1 I1 0.0346 λM, µM,C
e f f
11 ,Ce f f

33 λI , µI 15-15 2.2E-3
ANN2 I2 0.0346 λM, µM, λI , µI Ce f f

11 ,Ce f f
12 Ce f f

33 15-15 1.0E-6
ANN3 I1 0.0409 λM, µM,C

e f f
11 ,Ce f f

33 λI , µI 15-15 3.3E-3
ANN4 I3 0.0409 λM, µM, λI , µI Ce f f

11 ,Ce f f
21 ,Ce f f

33 10-10 1.0E-6

The second step aims to collect data. The calculations are carried out on the unit cell using XFEM.
The geometry of these inclusions is described thanks to the following level-set function [26], writ-
ten as

φ =

(
x − xc

rx

)2p

+

(
y − yc

ry

)2p

(10)

where rx = ry = r0 + a cos(bθ); x = xc + rx cos(bθ); y = yc + ry cos(θ). For inclusion I3 in Fig. 2(c)),
we fixed r0 = 0.1, p = 6, a = 8, b = 8. For each case, 5000 data sets were generated using quasi
random distribution (Halton-set). The data is divided into 3 parts including 70% for training, 15%
for validation and 15% for validating. Note that, the surrogate model just works for interpolation
problem, so the input must be in a range of value. In this work, the bound is selected randomly. The
upper bound of inputs (see Fig. 1) are [20.4984 2.0000 50.4937 20.4975] and the lower bound of
inputs are [0.5017 0.0001 0.5027 0.5011].
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The third step works on the architecture of the surrogate model. This step includes determining the
number of layers and neurons, the activation function, the lost function. In the following, we employ
the Mean square error (MSE) as the lost function. For the activation function, tang-sigmoid, which is
popular and effective for many regression problems, will be utilized:

f (x) =
ex − ex

ex + ex − 1 (11)
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The input data was then normalized using Max-min-scaler, written as:

x = 2
x − xmin

xmin + xmax
− 1 (12)

The fourth step selects a training algorithm. Various algorithm is available in literature, however,
the most effective one is unknown before the training process is conducted. Some are available in
Matlab are Lavenberg-Marquardt, Bayesian Regularization, Genetic Algorithm. One may combine
several algorithms to obtain the expected model. Evaluating each algorithm or network architecture is
out of scope of this work. All ANN networks here in were trained by the popular Lavenberg-Marquardt
algorithm.

The fifth step is to train the network: use the constructed data to fit the different parameters and
weighting functions in the ANN. Various factors can affect the training time which can be defined
by the trainer. In case the expected performance is obtained, the training process is stopped, and the
result will be employed. In contrast, when the performance does not reach the expectation, another
training process may be conducted with a change in the parameters (e.g. the number of echoes, the
minimum gradient, the learning rate in gradient-based training algorithm ...).

After the sixth step, which aims to analyze the performance, we use the network. Note that the
application of network is limited by the input range which has been chosen before training.

4. Numerical results

4.1. Computation of the effective stiffness matrix Ce f f using surrogate models for periodic unit cell
problem
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Fig. 2: A multilayer perceptron. The details for each ANN models are depicted in Table 1 

Table 1. Information of ANN model 

 Case Volume 
fraction f 

Input Output Hidden 
layers 

MSE 

ANN1 I1 0.0346  lM, µM, ,  lI, µI 15-15 2.2E-3 

ANN2 I2 0.0346  lM, µM, lI, µI   15-15 1 E-6 
11
effC 33

effC

11
effC 12

effC 33
effC

Figure 3. A multilayer perceptron. The details for each ANN models are depicted in Table 1

This section shows some information of the trained networks which will be used for the prob-
lem in Section 4.2 and 4.3. We compare the results generated by trained ANNs and XFEM method.
Specifically, we used ANN2 and ANN4 for I2 and I3, respectively. As discussed in Section 3.4, we fix
f and vary the elastic constant. The agreement of ANN models and the unit cell method using XFEM
is depicted in Fig. 4 and Fig. 5, which show that the surrogate models are reliable. Note that, we don’t
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attempt to use any type of realistic materials and the problem is plain strain. In the relation with the
two Lamé constants, the material stiffness matrix is written as:

C =

 λ + 2µ 2λ 0
2λ 2µ 0
0 0 µ

 (13)

 

 

  

a)  b)  

  

c)  d)  
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0.4870 simonteneously and respectively, (lI, µI) are constant at (0.5058, 0.5023) ;  In (c), (d): 
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Figure 4. Comparison of results (Ce f f
11 components) of ANN2 and XFEM

(periodic unit cell problem) for case I2

In Figs. 4(a) and 4(b): λM decreases from 16 to 7 while µM decrease from 1.3870 to 0.4870
simonteneously and respectively, (λI , µI) are constant at (0.5058, 0.5023); In Figs. 4(c) and 4(d):
λM decreases from 14 to 5 while µM increase from 0.3971 to 0.5771. (λI , µI) are fixed at (44.1500,
14.9600) for all the cases.

In Figs. 5(a) and 5(b): λM increases from 17.3918 to 8.3918 while µM increases from 1.4670 to
1.2870 simonteneously and respectively. In Figs. 5(c) and 5(d): λM decreases from 16 to 7 while νM
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at (0.5058, 0.5023). 
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We aim to find  lequ, µequ of the circle equivalent inclusion (I1), which has the same 
volume fraction with other type of inclusion (case I2, I3 in this work). To compute these 
coefficients, we combine two networks as shown in Fig. 1:  ANN1 for Network1 and 
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Three tests will be computed to validate the surrogate models: In Test 1 (Fig. 5), the 
sample has the size of 1 x 1mm2 and contains 4 halves of an ellipse inclusion; in Test 2 
(Fig.6), the sample has the size of 1x1.73mm2 in which inclusions distribute hexagonally 
and Test 3 (Fig. 7) which contains 100 random inclusions  
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Figure 5. Comparison of results (Ce f f
11 and Ce f f

33 components) of ANN4 and XFEM for case I3

decreases from 1.3870 to 0.4870 simonteneously and respectively. In both all the cases, (λI , µI) are
fixed at (0.5058, 0.5023).

4.2. Computation of C equivalent inclusion of I2 (ellipse inclusion)

We aim to find λequ, µequ of the circle equivalent inclusion (I1), which has the same volume
fraction with other type of inclusion (case I2, I3 in this work). To compute these coefficients, we
combine two networks as shown in Fig. 1: ANN1 for Network1 and the ANN2 for Network 2.

Three tests will be computed to validate the surrogate models: In Test 1 (Fig. 6), the sample has
the size of 1 × 1mm2 and contains 4 halves of an ellipse inclusion; in Test 2 (Fig. 7), the sample has
the size of 1 × 1.73 mm2 in which inclusions distribute hexagonally and Test 3 (Fig. 8) which contains
100 random inclusions

In these tests, we consider two sets of data. Assuming that λM, µM, λI , µI are known, we choose a
small volume fraction and using ANN1 to generate the input for ANN2. Two data sets are examined:
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Figure 6. Test 1: The sample in (a) has the size of 1 × 1 mm2 and the ratio between radius of a/b = 1.5
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Fig. 6. Test 2: a  rectangular sample has the size of 1x1.73mm2 (a) and its equivalent 
medium (b) 
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Fig. 7. Test 3: A sample with 100 random ellipse inclusions (a) and its equivalent medium  with 
100 circular inclusions (b).  

 
In these tests, we consider two sets of data. Assuming that lM, µM, lI, µI are known, we 
choose a small volume fraction and using ANN1 to generate the input for ANN2. Two 
data sets are examined: 
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16.4163N/mm2, and  lequ = 39.9912 N/mm2, µequ = 16.2965 N/mm2. 

Figs. 8-10 compare the effective properties of the two media in Test 1, Test 2, Test 3 
respectively. We can see that with the equivalent properties of inclusions, equivalent 
media reflect very well  it referenced media. 
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Figure 7. Test 2: a rectangular sample has the size of 1 × 1.73 mm2 (a) and its equivalent medium (b)
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Fig. 7. Test 3: A sample with 100 random ellipse inclusions (a) and its equivalent medium  with 
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In these tests, we consider two sets of data. Assuming that lM, µM, lI, µI are known, we 
choose a small volume fraction and using ANN1 to generate the input for ANN2. Two 
data sets are examined: 

• Dataset 1: lM = 17.3918 N/mm2 ; lI =0.5058 N/mm2, µM = 1.4870 N/mm2,  µI = 
0.5023N/mm2, and  lequ = 0.3822 N/mm2, µequ = 1.4528 N/mm2. 

• Dataset 2: lM = 18.7749 N/mm2 ; lI =40.2908 N/mm2, µM = 0.4822 N/mm2,  µI = 
16.4163N/mm2, and  lequ = 39.9912 N/mm2, µequ = 16.2965 N/mm2. 

Figs. 8-10 compare the effective properties of the two media in Test 1, Test 2, Test 3 
respectively. We can see that with the equivalent properties of inclusions, equivalent 
media reflect very well  it referenced media. 
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Fig. 7. Test 3: A sample with 100 random ellipse inclusions (a) and its equivalent medium  with 
100 circular inclusions (b).  

 
In these tests, we consider two sets of data. Assuming that lM, µM, lI, µI are known, we 
choose a small volume fraction and using ANN1 to generate the input for ANN2. Two 
data sets are examined: 

• Dataset 1: lM = 17.3918 N/mm2 ; lI =0.5058 N/mm2, µM = 1.4870 N/mm2,  µI = 
0.5023N/mm2, and  lequ = 0.3822 N/mm2, µequ = 1.4528 N/mm2. 

• Dataset 2: lM = 18.7749 N/mm2 ; lI =40.2908 N/mm2, µM = 0.4822 N/mm2,  µI = 
16.4163N/mm2, and  lequ = 39.9912 N/mm2, µequ = 16.2965 N/mm2. 

Figs. 8-10 compare the effective properties of the two media in Test 1, Test 2, Test 3 
respectively. We can see that with the equivalent properties of inclusions, equivalent 
media reflect very well  it referenced media. 
 

 

(b) The equivalent medium of the sample in Fig. 8(a)

Figure 8. Test 3: A sample with 100 random ellipse inclusions (a) and its equivalent medium
with 100 circular inclusions (b)

- Dataset 1: λM = 17.3918 N/mm2 ; λI = 0.5058 N/mm2, µM = 1.4870 N/mm2, µI = 0.5023
N/mm2, and λequ = 0.3822 N/mm2, µequ = 1.4528 N/mm2.

- Dataset 2: λM = 18.7749 N/mm2 ; λI = 40.2908 N/mm2, µM = 0.4822 N/mm2, µI = 16.4163N/mm2,
and λequ = 39.9912 N/mm2, µequ = 16.2965 N/mm2.

Figs. 9–11 compare the effective properties of the two media in Test 1, Test 2, Test 3 respectively.
We can see that with the equivalent properties of inclusions, equivalent media reflect very well it
referenced media.
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Fig. 8: Comparison of and  in Test 1 (Fig. 5): using Data set 1 (a, b) and Data set 2 (c, 
d). 
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Fig. 8: Comparison of and  in Test 1 (Fig. 5): using Data set 1 (a, b) and Data set 2 (c, 
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Fig. 8: Comparison of and  in Test 1 (Fig. 5): using Data set 1 (a, b) and Data set 2 (c, 
d). 

a) 

 

b) 

 

c) 

 

d) 

 
 

11
effC 33

effC

0 0.05 0.1 0.15 0.2 
 
f 

0.25 0.3 0.35 0.4 0 

5 

10 

15 

20 

25 
XFEM -ref 
XFEM - equ 

  

0 0.05 0.1 0.15 0.2 
 
f 

0.25 0.3 0.35 0.4 0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

2 
XFEM -ref 
XFEM - equ 

  

0 0.05 0.1 0.15 0.2 
 
f 

0.25 0.3 0.35 0.4 0 

5 

10 

15 

20 

25 

XFEM -ref 
XFEM - equ 

  

0 0.05 0.1 0.15 0.2 
 
f 

0.25 0.3 0.35 0.4 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

XFEM -ref 
XFEM - equ   

0 0.05 0.1 0.15 0.2 0.25 0.3 0 

5 

10 

15 

20 

25 

  

f 

XFEM -ref 
XFEM - equ 

0 0.01 0.20 0.30 0 
0.2 

0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

2 
XFEM -ref 
XFEM - equ 

C 

f 

0 0.05 0.1 0.15 0.2 0.25 0.3 0 
5 

10 
15 
20 
25 
30 

  
XFEM -ref 
XFEM - equ 

f 
0 0.05 0.1 0.15 0.2 0.25 0.3 0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

  

XFEM -ref 
XFEM - equ 

f 

(c) Ce f f
11

 

a) 

 

b) 

 

 

c) 

 

d) 
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Fig. 9: Comparison of and in Test 2 (Fig. 6): using Data set 1 (a, b) and Data set 2 (c, 
d) 
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Fig. 10: Comparison of and in Test 3 (Fig. 7): using Data set 1 (a,b) and Data set 2 (c, 
d). 

4.3 Computation of C equivalent inclusion of I3 (flower inclusion) 

Similar to the case I2, we employ ANN3 and ANN4 (for Network 1 and Network 2 in 
Fig. 1, respectively) to generate the equivalent parameter for circle inclusion. As the 
geometry of flower inclusion is quite complicated, we reduce the input dimension by 
exclude the properties of matrix. Specifically, the network is for the case lM = 17.3918 
N/mm2, µM = 1.4870 N/mm2. The data of inclusion lI =0.5058 N/mm2, µI = 0.5023 N/ 
mm2 and the equivalent inclusion computed by ANNs includes lequ = 0.3872 N/ mm2, 
µequ = 0.4547 N/ mm2. These results are then validated in the two following tests which 
have the same size of 1x1 mm2 (see Fig. 11 a, b). 

11
effC 33

effC

11
effC 33

effC

0.15 0.2 0.25 0.3 0.35 0.4 0 

0.5 

1 

1.5 

XFEM -ref 
XFEM - equ 

f 

   

0.15 0.2 0.25 0.3 0.35 0.4 
f 

0 
5 

10 
15 
20 
25 
30 

XFEM -ref 
XFEM - equ 

  

0.15 0.2 0.25 0.3 0.35 0.4 
f 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
XFEM -ref 
XFEM - equ 

   

0.15 0.2 0.25 0.3 0.35 0.4 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

f 

XFEM -ref 
XFEM - equ 

 

(a) Ce f f
11

 

Fig. 9: Comparison of and in Test 2 (Fig. 6): using Data set 1 (a, b) and Data set 2 (c, 
d) 
 
 

a)  b) 

 

c) 

 

d) 

 
 
Fig. 10: Comparison of and in Test 3 (Fig. 7): using Data set 1 (a,b) and Data set 2 (c, 
d). 

4.3 Computation of C equivalent inclusion of I3 (flower inclusion) 

Similar to the case I2, we employ ANN3 and ANN4 (for Network 1 and Network 2 in 
Fig. 1, respectively) to generate the equivalent parameter for circle inclusion. As the 
geometry of flower inclusion is quite complicated, we reduce the input dimension by 
exclude the properties of matrix. Specifically, the network is for the case lM = 17.3918 
N/mm2, µM = 1.4870 N/mm2. The data of inclusion lI =0.5058 N/mm2, µI = 0.5023 N/ 
mm2 and the equivalent inclusion computed by ANNs includes lequ = 0.3872 N/ mm2, 
µequ = 0.4547 N/ mm2. These results are then validated in the two following tests which 
have the same size of 1x1 mm2 (see Fig. 11 a, b). 

11
effC 33

effC

11
effC 33

effC

0.15 0.2 0.25 0.3 0.35 0.4 0 

0.5 

1 

1.5 

XFEM -ref 
XFEM - equ 

f 

   

0.15 0.2 0.25 0.3 0.35 0.4 
f 

0 
5 

10 
15 
20 
25 
30 

XFEM -ref 
XFEM - equ 

  

0.15 0.2 0.25 0.3 0.35 0.4 
f 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
XFEM -ref 
XFEM - equ 

   

0.15 0.2 0.25 0.3 0.35 0.4 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

f 

XFEM -ref 
XFEM - equ 

 

(b) Ce f f
33

 

Fig. 9: Comparison of and in Test 2 (Fig. 6): using Data set 1 (a, b) and Data set 2 (c, 
d) 
 
 

a)  b) 

 

c) 

 

d) 

 
 
Fig. 10: Comparison of and in Test 3 (Fig. 7): using Data set 1 (a,b) and Data set 2 (c, 
d). 

4.3 Computation of C equivalent inclusion of I3 (flower inclusion) 

Similar to the case I2, we employ ANN3 and ANN4 (for Network 1 and Network 2 in 
Fig. 1, respectively) to generate the equivalent parameter for circle inclusion. As the 
geometry of flower inclusion is quite complicated, we reduce the input dimension by 
exclude the properties of matrix. Specifically, the network is for the case lM = 17.3918 
N/mm2, µM = 1.4870 N/mm2. The data of inclusion lI =0.5058 N/mm2, µI = 0.5023 N/ 
mm2 and the equivalent inclusion computed by ANNs includes lequ = 0.3872 N/ mm2, 
µequ = 0.4547 N/ mm2. These results are then validated in the two following tests which 
have the same size of 1x1 mm2 (see Fig. 11 a, b). 

11
effC 33

effC

11
effC 33

effC

0.15 0.2 0.25 0.3 0.35 0.4 0 

0.5 

1 

1.5 

XFEM -ref 
XFEM - equ 

f 

   

0.15 0.2 0.25 0.3 0.35 0.4 
f 

0 
5 

10 
15 
20 
25 
30 

XFEM -ref 
XFEM - equ 

  

0.15 0.2 0.25 0.3 0.35 0.4 
f 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
XFEM -ref 
XFEM - equ 

   

0.15 0.2 0.25 0.3 0.35 0.4 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

f 

XFEM -ref 
XFEM - equ 

 

(c) Ce f f
11

 

Fig. 9: Comparison of and in Test 2 (Fig. 6): using Data set 1 (a, b) and Data set 2 (c, 
d) 
 
 

a)  b) 

 

c) 

 

d) 

 
 
Fig. 10: Comparison of and in Test 3 (Fig. 7): using Data set 1 (a,b) and Data set 2 (c, 
d). 

4.3 Computation of C equivalent inclusion of I3 (flower inclusion) 

Similar to the case I2, we employ ANN3 and ANN4 (for Network 1 and Network 2 in 
Fig. 1, respectively) to generate the equivalent parameter for circle inclusion. As the 
geometry of flower inclusion is quite complicated, we reduce the input dimension by 
exclude the properties of matrix. Specifically, the network is for the case lM = 17.3918 
N/mm2, µM = 1.4870 N/mm2. The data of inclusion lI =0.5058 N/mm2, µI = 0.5023 N/ 
mm2 and the equivalent inclusion computed by ANNs includes lequ = 0.3872 N/ mm2, 
µequ = 0.4547 N/ mm2. These results are then validated in the two following tests which 
have the same size of 1x1 mm2 (see Fig. 11 a, b). 

11
effC 33

effC

11
effC 33

effC

0.15 0.2 0.25 0.3 0.35 0.4 0 

0.5 

1 

1.5 

XFEM -ref 
XFEM - equ 

f 

   

0.15 0.2 0.25 0.3 0.35 0.4 
f 

0 
5 

10 
15 
20 
25 
30 

XFEM -ref 
XFEM - equ 

  

0.15 0.2 0.25 0.3 0.35 0.4 
f 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
XFEM -ref 
XFEM - equ 

   

0.15 0.2 0.25 0.3 0.35 0.4 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

f 

XFEM -ref 
XFEM - equ 

 

(d) Ce f f
33

Figure 11. Comparison of Ce f f
11 and Ce f f

33 in Test 3 (Fig. 8): using Data set 1 (a, b) and Data set 2 (c, d).

4.3. Computation of C equivalent inclusion of I3 (flower inclusion)

Similar to the case I2, we employ ANN3 and ANN4 (for Network 1 and Network 2 in Fig. 1,
respectively) to generate the equivalent parameter for circle inclusion. As the geometry of flower
inclusion is quite complicated, we reduce the input dimension by exclude the properties of matrix.
Specifically, the network is for the case λM = 17.3918 N/mm2, µM = 1.4870 N/mm2. The data of
inclusion λI = 0.5058 N/mm2, µI = 0.5023 N/ mm2 and the equivalent inclusion computed by ANNs
includes λequ = 0.3872 N/ mm2, µequ = 0.4547 N/ mm2. These results are then validated in the two
following tests which have the same size of 1 × 1 mm2 (see Figs. 12(a) and 12(b)).

 

 

 

 

 
(a) An unit cell with 4 halves of I3 inclusions      (b) An unit cell with 40 random I3 inclusions 

Fig. 11: Two unit cells of the size 1x1mm2 

a) 

 

b) 

 
 
Fig. 12: Comparison of (a) and (b) for Test 4 (Fig. 11 a): the result computed using 
equivalent inclusion (XFEM-equ) shows a good match with the reference result (XFEM-ref) 
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Fig. 13: Comparison of (a) and (b) for Test 4 (Fig. 11 b): the result computed using 
equivalent inclusion (XFEM-equ) shows a good match with the reference result (XFEM-ref). 
The results compared in Fig. 12 and Fig. 13 again show a good match between the two 
media, which suggests the reliability of the proposed approach. 

5. Conclusion 

In this paper, we have presented a novel approach for estimating the equivalent circular 
inclusion. We’ve shown the capacity of the ANN surrogate for the unit cell method to 
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Figure 12. Two unit cells of the size 1 × 1 mm2
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Figure 14. Comparison of Ce f f
11 (a) and Ce f f

33 (b) for Test 4 (Fig. 12(b)): the result computed using equivalent
inclusion (XFEM-equ) shows a good match with the reference result (XFEM-ref)

The results compared in Figs. 13 and 14 again show a good match between the two media, which
suggests the reliability of the proposed approach.

5. Conclusions

In this paper, we have presented a novel approach for estimating the equivalent circular inclusion.
We’ve shown the capacity of the ANN surrogate for the unit cell method to compute the effective
stiffness matrix in some cases of inclusion with a small specified volume fraction. Using a second
network, which interpolates properties of the circular inclusion from the expected effective stiffness
matrix, we have proposed a new approach to deal with the equivalent inclusion problem by combining
two ANN models. The proposed approach allows us to apply for the case when an analytic formula
to compute effective elastic moduli is not available, eg. I3 in this work. The results in section 4 show
a good agreement between the equivalent medium and the referenced medium, which reveals the
potential of data driven approach for this problem. For future works, we’ll try to improve the quality
of the network and apply for various types of inclusions.
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