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Abstract

This paper develops a constant friction coefficient model that best represents a velocity-dependent friction
model for predicting structural response of buildings isolated with concave friction bearings. To achieve this
goal, the effect of friction model on structural response of three hypothetical isolated buildings with different
number of stories subjected to different earthquake scenarios was numerically investigated. The structural nu-
merical models of the isolated buildings were developed in OpenSees with superstructure is represented by a
shear frame model and isolation system using single friction pendulum bearings is modeled by a 3-D friction
pendulum bearing element which accepts different friction models. The numerical models were subjected to
30 pairs of ground motions, representing service earthquake level, design basic earthquake level and maximum
considered earthquake level at a strong seismic activity area in the world. The investigation reveals that friction
coefficient models significantly affect the structural response and there is no constant friction coefficient model
that simultaneously best predicts isolation system response and superstructure response. The constant friction
coefficient that best predicts isolation system response produces a large error on prediction of superstructure
response and vice versa. Based on the numerical results, a constant friction coefficient model for different
criteria was developed.

Keywords: friction coefficient model; friction bearing; isolation system; earthquake response; time-history
analysis.
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1. Introduction

Concave friction bearings are among the most effective devices to protect buildings during earth-
quakes. This type of bearing consists of two outermost concave plates connected by intermediate
slider(s) (Fig. 1). The sliding between sliders and concave plates provides flexibility to the bearing in
horizontal directions and lengthens the horizontal vibrating period of the isolated structure therefore
reduces the earthquake demand. Beside lengthening the vibrating period, sliding friction between
sliders and the concave plates also provides damping to the system thus further reduces structural
response. This effect is demonstrated in Fig. 2, which shows a typical design spectrum.

The parameters defining the behavior of a concave friction bearing are curvature of the sliding
surfaces and friction coefficient between these surfaces. The curvature of the surfaces can be pre-
cisely determined from the geometry of the bearing. However, the friction coefficient between sliding
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concave plates provides flexibility to the bearing in horizontal directions and lengthens 
the horizontal vibrating period of the isolated structure therefore reduces the earthquake 
demand. Beside lengthening the vibrating period, sliding friction between sliders and 
the concave plates also provides damping to the system thus further reduces structural 
response. This effect is demonstrated in Fig. 2, which shows a typical design spectrum. 

 

  
 The parameters defining the behavior of a concave friction bearing are curvature 
of the sliding surfaces and friction coefficient between these surfaces. The curvature of 
the surfaces can be precisely determined from the geometry of the bearing. However, 
the friction coefficient between sliding surfaces is complicated. Past studies revealed 
that friction coefficient between surfaces is dependent on sliding velocity, contact 
pressure and temperature [1-3]. The dependence of friction coefficient on these 
parameters is schematically shown in Fig. 3. Among the parameters affecting friction 
coefficient, sliding velocity appears to have the most influence when the systems are 
subjected to earthquake ground motions. Because of that, many researchers employed 
the velocity-dependent friction coefficient model in their studies [4-7]. 

Figure 1. A concave friction bearing with multiple intermediate sliders 

Figure 2. Typical design spectrum 
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Figure 1. A concave friction bearing with multiple
intermediate sliders
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Figure 2. Typical design spectrum

surfaces is complicated. Past studies revealed that friction coefficient between surfaces is dependent
on sliding velocity, contact pressure and temperature [1–3]. The dependence of friction coefficient
on these parameters is schematically shown in Fig. 3. Among the parameters affecting friction coef-
ficient, sliding velocity appears to have the most influence when the systems are subjected to earth-
quake ground motions. Because of that, many researchers employed the velocity-dependent friction
coefficient model in their studies [4–7].
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 Although proper friction coefficient models are important to obtain reliable 
predicted response of an isolated building during earthquakes, many researchers used 
constant friction coefficient model for investigation [8-10] for its convenience. This 
simple friction model is also introduced to many design codes [11, 12]. Despite that the 
constant friction coefficient model is widely used both in research and design, few 
studies have ever investigated its validity and the instruction for selecting a proper 
friction coefficient for a certain purpose has not been recommended. This study aims to 
investigate the effect of constant friction model on the response of the computational 
models of three hypothetical buildings seismically isolated by single friction pendulum 
bearings subjected to different earthquake levels. Based on the investigation, constant 
friction models for different purposes shall be proposed. 

2. Hysteresis loop of single friction bearings and friction coefficient model in 
consideration 

 Concave friction bearings in current practice can be single friction pendulum 
bearings or multiple friction pendulum bearings, depending on the number of pendulum 
mechanism they can produce. For investigating the effect of friction models on the 
response of the isolated buildings, this study only concentrates on single friction 
pendulum bearings. 

 The normalized unidirectional hysteresis loop, which shows the relationship 
between displacement and force, of a single friction pendulum bearing (Figure 4A) with 
a constant friction model is presented in Fig. 4B. In this figure, the horizontal axis 
represents displacement 𝐷 of the bearing and the vertical axis represents the normalized 
force 𝑓, which is the ratio between the horizontal force 𝐹 and the vertical force 𝑊 in 
the bearing. 𝑅 and 𝜇 are respectively radius and friction coefficient of the bearing as 
demonstrated in Fig. 4A. The developing of this normalized hysteresis loop can be 
easily found in literature [13]. 

Figure 3. Dependency of friction coefficient on velocity, contact pressure and 
temperature 
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Figure 3. Dependency of friction coefficient on velocity, contact pressure and temperature

Although proper friction coefficient models are important to obtain reliable predicted response of
an isolated building during earthquakes, many researchers used constant friction coefficient model for
investigation [8–10] for its convenience. This simple friction model is also introduced to many design
codes [11, 12]. Despite that the constant friction coefficient model is widely used both in research
and design, few studies have ever investigated its validity and the instruction for selecting a proper
friction coefficient for a certain purpose has not been recommended. This study aims to investigate
the effect of constant friction model on the response of the computational models of three hypothetical
buildings seismically isolated by single friction pendulum bearings subjected to different earthquake
levels. Based on the investigation, constant friction models for different purposes shall be proposed.

2. Hysteresis loop of single friction bearings and friction coefficient model in consideration

Concave friction bearings in current practice can be single friction pendulum bearings or multiple
friction pendulum bearings, depending on the number of pendulum mechanism they can produce. For
investigating the effect of friction models on the response of the isolated buildings, this study only
concentrates on single friction pendulum bearings.

The normalized unidirectional hysteresis loop, which shows the relationship between displace-
ment and force, of a single friction pendulum bearing (Fig. 4(a)) with a constant friction model is
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presented in Fig. 4(b). In this figure, the horizontal axis represents displacement D of the bearing and
the vertical axis represents the normalized force f , which is the ratio between the horizontal force F
and the vertical force W in the bearing. R and µ are respectively radius and friction coefficient of the
bearing as demonstrated in Fig. 4(a). The developing of this normalized hysteresis loop can be easily
found in literature [13].
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 If friction coefficient is not a constant, then the upper and lower bounds of the 
normalized hysteresis loop are not straight. The shape of the loop in this case is 
dependent on sliding velocity, contact pressure and temperature of the bearing. As 
explained earlier, effect of contact pressure and temperature on friction coefficient is 
neglected in this study. This assumption is consistent with many past studies [4-7]. The 
friction coefficient 𝜇 then can be expressed by Eq. 1 [14], which is widely used for 
friction bearings [2-7]. 

𝜇 = 𝜇+,-. − 0𝜇+,-. − 𝜇-1234𝑒678 (1) 

where 𝜇+,-. and 𝜇-123 are friction coefficients at fast and slow velocities, respectively; 
𝑣 is sliding velocity; and 𝑟 is a rate parameter. 

 Friction coefficients 𝜇+,-. and 𝜇-123 depends on the vertical load and maximum 
load capacity of the bearing. From experimental data, [6] proposed that the ratio 
𝜇+,-./𝜇-123 	= 2.5 can be used. 

 Rate parameter 𝑟 is a function of contact pressure and air temperature [1-3, 14]. 
This parameter for a certain friction model can be evaluated by assuming a reference 
sliding velocity and the correspondent reference friction coefficient. [6] used a reference 
sliding velocity 𝑣7@+ = 	200	𝑚𝑚/𝑠, which is compatible with maximum sliding 
velocity expected during earthquakes, and reference friction coefficient 𝜇7@+ =
0.8𝜇+,-.. These reference values are adopted in this investigation. Accordingly, 𝑟 can 
be determined by Eq. 2. 

𝑟 =
1
𝑣7@+

ln
𝜇+,-. − 𝜇-123
𝜇+,-. − 𝜇7@+

= 0.0055	(𝑠/𝑚𝑚) (2) 

 Given that the velocity-dependent friction coefficient model represented by Eq. 1 
is widely accepted to account for the effect of sliding velocity on friction coefficient of 
friction pendulum bearings [2-7], this study considers it as the “exact” model for 
evaluating and optimizing constant friction models. 

Figure 4. Single friction pendulum bearing and its normalized hysteresis 
loop.  
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Figure 4. Single friction pendulum bearing and its normalized hysteresis loop

If friction coefficient is not a constant, then the upper and lower bounds of the normalized hys-
teresis loop are not straight. The shape of the loop in this case is dependent on sliding velocity, contact
pressure and temperature of the bearing. As explained earlier, effect of contact pressure and temper-
ature on friction coefficient is neglected in this study. This assumption is consistent with many past
studies [4–7]. The friction coefficient µ then can be expressed by Eq. (1) [14], which is widely used
for friction bearings [2–7].

µ = µ f ast −
(
µ f ast − µslow

)
e−rv (1)

where µ f ast and µslow are friction coefficients at fast and slow velocities, respectively; v is sliding
velocity; and r is a rate parameter.

Friction coefficients µ f ast and µslow depends on the vertical load and maximum load capacity
of the bearing. From experimental data, [6] proposed that the ratio µ f ast/µslow = 2.5 can be used.
Rate parameter r is a function of contact pressure and air temperature [1–3, 14]. This parameter for
a certain friction model can be evaluated by assuming a reference sliding velocity and the correspon-
dent reference friction coefficient. [6] used a reference sliding velocity vre f = 200 mm/s, which is
compatible with maximum sliding velocity expected during earthquakes, and reference friction coef-
ficient µre f = 0.8µ f ast. These reference values are adopted in this investigation. Accordingly, r can be
determined by Eq. (2).

r =
1

vre f
ln
µ f ast − µslow

µ f ast − µre f
= 0.0055 (s/mm) (2)

Given that the velocity-dependent friction coefficient model represented by Eq. (1) is widely
accepted to account for the effect of sliding velocity on friction coefficient of friction pendulum
bearings [2–7], this study considers it as the “exact” model for evaluating and optimizing constant
friction models.

3. Numerical investigation

3.1. Hypothetical buildings and isolation systems

Three hypothetical buildings were selected for numerical investigation. These buildings are 5 bays
by 5 bays in plan, with a span of 6 m for each bay. The number of stories of the investigated buildings
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were three, six and nine, with story height of 3.5 m. The selected number of stories are in the range
where base isolation system is effective (i.e, between 1 to 10 stories as discussed by [14]). The seismic
weight of 10 kN/m2 were assumed for all buildings.

For investigation purpose, the structural system of the buildings was not designed in detail. In-
stead, their lateral stiffness was derived base on their assumed fundamental mode, which shall be
presented in Section 3.2.

The buildings were assumed to locate in a strong seismic activity area of Los Angeles, California,
USA with site class D (stiff-soil). From these data, short period spectral acceleration S as and 1-s
period spectral acceleration S a1 of the site at maximum consider earthquake (MCE) event and design
basic earthquake (DBE) event were calculated per ASCE 7-16 [11] and presented in Table 1.

Table 1. Spectral acceleration at short period and
1 s-period for the site

MCE event DBE event

S as (g) 2.432 1.622
S a1 (g) 1.279 0.853

Base isolation system for these buildings was
designed according to the equivalent linear static
procedure of ASCE 7-16 [11] such that its ex-
pected peak displacement in the DBE event is
30 cm and the 90-percentile-exceedance residual
displacement is 5 cm. The residual displacement
of the isolation system was estimated following
[6]. To apply the equivalent linear static procedure,
the constant friction coefficient model was used. This constant friction coefficient was taken as the
reference friction coefficient described in Section 2.

Friction bearings with friction coefficient µ = 0.11 and pendulum period Td = 4.8 s (correspond-
ing to a concave radius of R = 5.73 m) satisfy the design objectives and produce the smallest base
shear coefficient, which is 0.162. This isolation system will generate an expected peak displacement
of 61.4 cm and 90-percentile-exceedance residual displacement of 7 cm at MCE event. The expected
base shear coefficient at MCE event is 0.217.

3.2. Computational model

Computational models of the isolated buildings were developed in OpenSees software [15]. The
superstructure was modelled as a bidirectional shear frame structure whose story stiffness was com-
puted from the fundamental mode of the fixed base configuration following a procedure developed
in [16]. This type of superstructure model has been widely used in past studies of isolated buildings
[17–22]. The mode shapes of the fundamental modes in both horizontal directions are assumed to be
linear distribution with respect to height. The fundamental periods T1 of the structures were predicted
from Eq. (3), which conforms to [23].

T1 = 0.15 N (3)

where N is number of stories of the building.
Story stiffness and seismic mass of the computational models are presented in Table 2. The seis-

mic mass of the models was computed from the floor area (which is 30 m by 30 m) and seismic
weight of 10 kN/m2 as mentioned earlier. Note that the weight of base, which is twice of typical floor
weight, was included in the model but not listed in the table.

The buildings are expected to be damage-free during considered earthquakes, which is reason-
able for isolated buildings, such that the superstructures are assumed to possess linear behavior. This
assumption is widely used in research.

In computational modelling technique, a bidirectional shear frame structure can be modelled as
a stick model where a floor is lumped into one node. This node carries the whole mass of the floor.
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Table 2. Story stiffness and floor mass of the buildings

Stiffness (MN/m) Mass (tons)

3-story
building

6-story
building

9-story
building

3-story
building

6-story
building

9-story
building

Story 1 1053 3685 7896 900 900 900
Story 2 877 3509 7720 900 900 900
Story 3 526 3158 7369 900 900 900
Story 4 - 2632 6843 - 900 900
Story 5 - 1930 6141 - 900 900
Story 6 - 1053 5264 - 900 900
Story 7 - - 4211 - - 900
Story 8 - - 2983 - - 900
Story 9 - - 1579 - - 900

Rotational degree of freedom of these nodes are restrained. The two adjacent nodes (representing the
two adjacent floors) are connected by a bidirectional shear spring whose stiffness equals the shear
stiffness of the story.

The bearings in the isolation system were lumped to the center of the base and modeled by a triple
friction pendulum bearing element [24]. This element can be used to model friction bearings with sin-
gle, double and triple pendulum mechanisms. This study uses the element to model the single friction
pendulum bearings. Both constant friction model and velocity dependent friction model were used to
investigate the effect of friction model on the response of the isolated buildings. Rate parameters of
velocity-dependent friction model were determined from Eq. (2).

Energy dissipated mechanism in the computational model was captured through Rayleigh damp-
ing model [25] calibrated to 1.0 percentage of critical viscous damping at 4.8 s period and T2 period.
4.8 s is the pendulum period of the isolation system and T2 is the period of the second mode of the
isolated configuration, which depends on the buildings and are computed through an eigen analysis of
the isolated model. Effective period of 2.72 s for the isolation system, which is correspondent to the
target peak displacement of 30 cm at DBE event, mentioned earlier, was used for the eigen analysis.

3.3. Input ground motions

This study employs the ground motions from [26] as the input for dynamic analysis of the isolated
models. Accordingly, three sets of ground motions representing MCE event, DBE event and service
earthquake (SE) event of the site, i.e. Los Angles city and site class D, were proposed. Each set
contains ten pairs of ground motion. Each pair consists of two horizontal components of the ground
shaking. Detail information of the selected motion is presented in [26]. It is noted that five in ten
ground motions for MCE event are simulated motions. For the purpose of this study, only two of the
simulated motions was used. Thus, the number of seven ground motions for MCE event was adopted.
This number of ground motions is sufficient for using average value to evaluate response of structures,
as required by [11]. Fig. 5 shows the square-root-of-sum-square (SRSS) of the pseudo acceleration
spectra of individual motions along with the average spectrum over all motions for the three events.
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3.4. Results and discussions 

 Nonlinear time-history dynamic response of the numerical models to the selected 
ground motions was analyzed using Newmark method in combination with Newton-
Raphson iteration. Fig. 6 shows the hysteresis loop of the isolation system in the fault-
parallel direction of the 6-story model subjected to a ground motion recorded from 1994 
Northridge earthquake. This motion is among the seven motions representing MCE 
earthquakes. Both hysteresis loops for the model using isolation system with general 
friction model (Gen. Fric.) and the model using isolation system with reference friction 
model (Ref. Fric.) are presented in this figure. It can be observed that the peak 
displacements of the two models are similar but the hysteresis loops are significantly 
different. Hysteresis loop for Gen. Fric. is smoother, i.e. the change of the base shear is 
smoother, than the hysteresis loop for Ref. Fric. at reversal movements. This comes 
from the fact that friction coefficient gradually decreases with the decreasing of sliding 
velocity in Gen. Fric., while maintains a constant value in Ref. Fric. Note that the 
hysteresis loop for Ref. Fric. is much smoother than expected due to the bi-directional 
movement effect. 

Figure 5. Spectral acceleration of selected ground motions.  

(a) SE event (b) DBE event (c) MCE event 
(a) SE event
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Figure 5. Spectral acceleration of selected ground motions

3.4. Results and discussions

Nonlinear time-history dynamic response of the numerical models to the selected ground motions
was analyzed using Newmark method in combination with Newton-Raphson iteration. Fig. 6 shows
the hysteresis loop of the isolation system in the fault-parallel direction of the 6-story model subjected
to a ground motion recorded from 1994 Northridge earthquake. This motion is among the seven
motions representing MCE earthquakes. Both hysteresis loops for the model using isolation system
with general friction model (Gen. Fric.) and the model using isolation system with reference friction
model (Ref. Fric.) are presented in this figure. It can be observed that the peak displacements of the
two models are similar but the hysteresis loops are significantly different. Hysteresis loop for Gen.
Fric. is smoother, i.e. the change of the base shear is smoother, than the hysteresis loop for Ref. Fric.
at reversal movements. This comes from the fact that friction coefficient gradually decreases with the
decreasing of sliding velocity in Gen. Fric., while maintains a constant value in Ref. Fric. Note that
the hysteresis loop for Ref. Fric. is much smoother than expected due to the bi-directional movement
effect.
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A, SE event; B, DBE event; C, MCE event 

Figure 6. Hysteresis loop of the isolation system in the 6-story building Figure 6. Hysteresis loop of the isolation system in the 6-story building

The difference in friction model also affects the superstructure response as shown in Fig. 7, which
presents the acceleration history during the first 10 seconds at roof in the considered direction. Peak
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acceleration in Ref. Fric. is much larger than that in Gen. Fric. although the peak displacements in the
two models are similar as mentioned. This comes from the sudden change in the base shear at reversal
movements in Ref. Fric. as explained earlier.
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The difference in friction model also affects the superstructure response as shown 
in Fig.7, which presents the acceleration history during the first 10 seconds at roof in 
the considered direction. Peak acceleration in Ref. Fric. is much larger than that in Gen. 
Fric. although the peak displacements in the two models are similar as mentioned. This 
comes from the sudden change in the base shear at reversal movements in Ref. Fric. as 
explained earlier. 

 
 To further investigate the effect of friction model on the structural response, 
average of the peak response was computed for comparison. The average of the peak 
response for an earthquake event, 𝑅, is evaluated as: 
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To further investigate the effect of friction model on the structural response, average of the peak
response was computed for comparison. The average of the peak response for an earthquake event, R,
is evaluated as:

R =
1
N

N∑
i=1

Ri (4)

where Ri is the peak response subjected to ground motion i in an earthquake event and N is the number
of ground motions in the event.

Fig. 8 presents the average of peak displacement of isolation system, Dmax, for all computational
models in all earthquake events. The figure shows that Dmax generated by Gen. Fric. model and Ref.
Fric. model are comparable. This result indicates that Ref. Fric. model is a good representation of
Gen. Fric. model in predicting average peak displacement of the isolation system.
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Fig. 9 shows the average of peak story drift dmax, which is the ratio between relative displacement
of adjacent floors of a story and story height, of the investigated models at different earthquake events.
The result shows significant difference between the friction models. This large difference can also be
observed in the average of peak floor acceleration amax (Fig. 10).
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 To quantify the difference between the responses of the computational models 
with Gen. Fric. and Ref. Fric., the average error ,  and  of the averages of 
the peak displacement of isolation system, peak story drift and peak floor acceleration  
defined by Eqs. 5-7 was evaluated. Note that these errors are computed for individual 
computational model at each earthquake level. 
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To quantify the difference between the responses of the computational models with Gen. Fric. and
Ref. Fric., the average error EmD, Emd and Ema of the averages of the peak displacement of isolation
system, peak story drift and peak floor acceleration defined by Eqs. (5)–(7) was evaluated. Note that
these errors are computed for individual computational model at each earthquake level.

EmD =

∣∣∣∣∣∣Dmax,Re f − Dmax,Gen

Dmax,Gen

∣∣∣∣∣∣ (5)

Emd =
1

Nst

Nst∑
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∣∣∣∣∣∣ (6)

Ema =
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N f l

N f l∑
i=1

∣∣∣∣∣∣amax,i,Re f − amax,i,Gen

amax,i,Gen

∣∣∣∣∣∣ (7)

where Dmax, Re f and Dmax, Gen are the average of the peak displacement of isolation system of the
computational models using Ref. Fric. and Gen. Fric., respectively; dmax,i,Re f is the average of peak
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story drift at story i of the computational model using Ref. Fric.; dmax,i,Gen is the average of peak
story drift at story i of the computational model using Gen. Fric; amax,i,Re f is the average of peak floor
acceleration at floor i of the computational model using Ref. Fric.; amax,i,Gen is the average of peak
floor acceleration at floor i of the computational model using Gen. Fric; Nst is the number of stories;
and N f l is the number of floors.

The average errors EmD, Emd and Ema are plotted in Figs. 11(a), 11(b) and 11(c), respectively.
The results in these figures shows that the numerical model using Ref. Fric. can capture the peak
displacement of the isolation system of the computational model using Gen. Fric. well, with the error
of less than 10%. However, the error is quite large for peak story drift and peak floor acceleration,
with the error can be larger than 50% for peak floor acceleration response. This observation suggests
that the Ref. Fric. model is not good for predicting story drift and floor acceleration.
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To derive an optimal constant friction model that can be used to best predict the response of
computational model using Gen. Fric. model, normalized errors EnD, End and Ena of the averages
of peak displacement of isolation system, peak story drift and peak floor acceleration are defined by
Eqs. (8)–(10). Similar to the average errors, the normalized errors were also computed for individual
computational model in an earthquake event.

EnD =

∣∣∣∣∣∣Dmax,Re f − Dmax,Gen

Dmax,Gen

∣∣∣∣∣∣ (8)

End =
1

Nst

√√√ Nst∑
i=1

(
dmax,i,Re f − dmax,i,Gen

dmax,i,Gen

)2

(9)

Ena =
1

N f l

√√√ N f l∑
i=1

(
amax,i,Re f − amax,i,Gen

amax,i,Gen

)2

(10)

The optimal constant friction coefficient will minimize these normalized errors. Note that the
average errors defined by Eqs. (5)–(7) are used to evaluate the average errors of the computational
model using constant friction coefficient whereas the normalized errors defined by Eqs. (8)–(10),
which consider not only the average error but also the dispersion of the error, are used as objective
functions to find the optimal constant friction coefficient. This approach is common in practice.
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For convenience, a normalized friction coefficient cn correspondent to a constant friction coeffi-
cient µ̂ is defined as:

cn =
µ̂ − µslow

µ f ast − µslow
(11)

The optimal constant friction coefficient, µopt, is expected to be in the range of (µslow, µ f ast) so
that only µslow ≤ µ̂ ≤ µ f ast is considered. In that range, cn is bounded between 0 and 1 and is linearly
dependent on µ̂. The cn corresponding to µopt hereafter is referred to as optimal normalized friction
coefficient copt. Depending on the type of response in consideration (i.e. displacement of isolation
system, story drift and floor acceleration), the subscript of “D”, “d” and “a”, respectively, will be
added to copt (and thus µopt).

Table 3. Optimal normalized friction coefficient
for peak displacement of isolation system

Building
Earthquake events

MCE DBE SE

3-story 0.85 0.70 0.95
6-story 0.85 0.75 0.90
9-story 0.85 0.75 0.80

The variation of EnD for the investigated build-
ings at different earthquake event on cn are plot-
ted in Fig. 12. The figure shows that copt,D, which
minimize EnD, is slightly dependent on building
models and earthquake event. These optimal val-
ues are presented in Table 3. The results show that
Gen. Fric., which use µ = 0.8µ f ast, produces a
cn = 0.667, which is slightly smaller than copt,D

for all building at all earthquake events.
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The variation of End and Ena on cn is plotted in Figs. 13 and 14. The optimal normalized friction
coefficient is presented in Tables 4 and 5. These results show that the optimal constant friction coef-

Table 4. Optimal normalized friction coefficient for
peak story drift

Building
Earthquake events

MCE DBE SE

3-story 0.40 0.35 0.20
6-story 0.40 0.25 0.20
9-story 0.35 0.30 0.15

Table 5. Optimal normalized friction coefficient for
peak floor acceleration

Building
Earthquake events

MCE DBE SE

3-story 0.35 0.25 0.15
6-story 0.20 0.10 0.05
9-story 0.10 0.15 0.05
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ficient depends on not only the type of response in consideration, but also the building model as well
as earthquake event. There is no constant friction coefficient that minimizes all normalized errors.
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To develop a “best-fit” constant friction coefficient model that takes all responses in to consider-
ation, a combined normalized error function Et is defined as:

Et =
∑

Event

∑
Model

wDEnD +
∑

Event

∑
Model

wdEnd +
∑

Event

∑
Model

waEna (12)

where wD, wd and wa are weighting factors for EnD, End and Ena, respectively, which satisfy Eq. (13):∑
Event

∑
Model

wD +
∑

Event

∑
Model

wd +
∑

Event

∑
Model

wa = 1 (13)

Assume that wa = wd = ws, i.e. story drift and floor acceleration take the same important order.
Assume also that all building models and all earthquake events are equal in optimization, Eq. (12)
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becomes:

Et = wD

∑
Event

∑
Model

EnD + ws

 ∑
Event

∑
Model

End +
∑

Event

∑
Model

Ena

 (14)

For each ratio of ws/wD, the combined normalized error Et at different normalized friction coef-
ficient cn can be determined. From the variation of Et on cn, the optimal copt can be identified. This
is the optimal normalized friction coefficient corresponding to a certain value of ws/wD. Different
ws/wD produces different copt. The dependency of copt on ws/wD is shown in Fig. 15. The figure sug-
gests that optimal normalized friction coefficient for analyzing peak displacement of isolation system
(ws/wD = 0) is cn ' 0.8. The optimal normalized friction coefficient for analyzing peak structural
response, including story drift and floor acceleration, (ws/wD → ∞) is cn ' 0.2. Table 6 summarizes
the optimal normalized friction coefficient and correspondent constant friction coefficient for special
cases.
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Criteria 𝑐567 𝜇567 
Best predict displacement of isolation system (𝑎./𝑎8 = 0) 0.8 0.88𝜇<-.7 
Best predict structural response (𝑎./𝑎8 → ∞) 0.2 0.52𝜇<-.7 
Best predict overall response (𝑎./𝑎8 = 2) 0.3 0.58𝜇<-.7 
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Table 6. Optimal constant friction coefficient for
different criteria

Criteria copt µopt

Best predict displacement of
isolation system (as/aD = 0)

0.8 0.88µfast

Best predict structural re-
sponse (as/aD → ∞)

0.2 0.52µfast

Best predict overall response
(as/aD = 2)

0.3 0.58µfast

Fig. 16 shows average error of the predicted peak responses for the numerical model using friction
model for best predicting displacement of isolation system (i.e. µ = 0.88µ f ast). The figure shows that
the average error of the peak displacement is smaller than 5%. However, the prediction of story drift
and floor acceleration is low accurate, with the average error goes up to about 50% and 60% for story
drift and floor acceleration, respectively.
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The average error for predicted response of the numerical model using the constant friction model
that best predicts structural responses is plotted in Fig. 17. The result shows that the average error of
story drift and floor acceleration is low, but the average error of predicted isolation system’s displace-
ment is high, with the average error can be up to 40%.
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Figure 17. Average error of predicted responses of models using best superstructure
response friction coefficient

The comparison between results in Figs. 16 and 17 shows that peak displacement of the isolation
system is easier to predict than the peak story drift or peak floor acceleration. The largest error of
the best predicted isolation system’s displacement is less than 5% while the largest error of the best
predicted story drift and floor acceleration is around 15%.

Fig. 18 shows the average error of the predicted response of the numerical model using constant
friction model that best predicts overall response. The error is less than 30% for all response of all
models. The error for peak story drift, which is smaller than 15%, is the smallest.
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4. Conclusions

The investigation of the responses of the numerical models of three-, six- and nine-story build-
ings isolated by single friction pendulum bearings subjected to different earthquake levels in this
paper shows that friction model strongly affects the response of the isolated buildings and there is no
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best constant friction model that can simultaneously minimize the error of all predicted responses.
The constant friction model that produces the best prediction of peak displacement of isolation sys-
tems generates very large error on predicted peak story drift and peak floor acceleration. Likewise,
the constant friction model that best predicts peak story drift and peak floor acceleration cannot
accurately predict peak displacement of isolation system. The investigation shows that the constant
friction model with µ = 0.88µ f ast best predicts the peak displacement of isolation systems, the con-
stant friction model with µ = 0.52µ f ast best predicts peak story drift and peak floor acceleration. For
predicting overall responses, including isolation system’s displacement, story drift and floor acceler-
ation, the constant friction model with µ = 0.58µ f ast should be used. The best constant friction model
corresponding to different criteria are given in Fig. 15. These best-fit constant friction coefficients
were derived base on common value of parameters defining velocity-dependent friction coefficient
model. Further investigation may be needed to derive a more general result.
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