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Abstract

The paper analyzes and determines the optimal parameters of tuned mass damper to reduce torsional vibration
for the machine shaft. The research steps are as follows. First, the optimal parameters of tuned mass damper for
the shafts are given by using the maximization of equivalent viscous resistance method. Second, a numerical
simulation is performed for configuration of machine shaft to validate the effectiveness of the obtained analyt-
ical results. The simulation results indicate that the proposed method significantly increases the effectiveness
of torsional vibration reduction. Optimal parameters include the ratio between natural frequency of tuned mass
damper and the machine shaft, the ratio of the viscous coefficient of tuned mass damper. The optimal pa-
rameters found by numerical method only apply to a machine shaft with specific data. However, the optimal
parameters in this paper are found as analytic and explicit to help scientists easily apply to every machine shafts
when the input parameters of the machine shaft change.

Keywords: tuned mass damper; torsional vibration; optimal parameters; random excitation; equivalent viscous
resistance.
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1. Introduction

Under the influence of external forces, the technical constructions, the mechanical devices will
generate vibrations. Vibrations can cause damage to the structure. Therefore, research harmful vibra-
tion is a matter of great concern to many scientists [1–15].

The shaft is used to transmit torque and rotation from a part to another part of the machine. During
operation, the shaft will appear torsional vibration. This vibration is particularly harmful, undesirable.
Reduction of the shaft vibration is an important and timely task [1–10].

A passive vibration control device attached to the shaft to reduce harmful vibration is called a
tuned mass damper (TMD) [10]. Optimal parameters of the TMD to reduce the torsional vibration of
the shaft by using the principle of minimum kinetic energy has been investigated in [10], the results
were given by

αMKE
opt =

1
1 + 2µγ2 ; ξMKE

opt = γ

√
µ

2(1 + 2µγ2)
(1)
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In order to develop and extend the research results in [10]. In this paper, the maximization of
equivalent viscous resistance method in [12] is used for determining the optimal parameters of the
TMD.

2. Shaft modelling and vibration equations

Fig. 1 shows a shaft attached with a pendulum type TMD. The symbols are summarized in Table 1.
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Figure 1. Shaft model with installed TMD

Table 1. Symbols used to describe the vibration of the shaft with TMD

Symbol Description

kt Torsion spring coefficient of shaft
m concentrated mass at the top of TMD
c Damping coefficient of damper

km Torsional stiffness of spring of TMD
L Length of pendulum of TMD
mt Mass of pendulum rod
ρ Radius of gyration of rotor
M Mass of primary system
ϕ Angular displacement of shaft
ϕ1 Angular displacement of rotor
ϕ2 Relative torsional angle between TMD and rotor
θ Torsional vibration of primary system
θ0 Initial condition of the torsional vibration angle

From [10], we have
(Mρ2 +

2
3

mtL2 + 2mL2)θ̈ + 2(
1
3

mtL2 + mL2)ϕ̈2 = M(t) − ktθ

2(
1
3

mtL2 + mL2)θ̈ + 2(
1
3

mtL2 + mL2)ϕ̈2 = −kmϕ2 − 2cL2ϕ̇2

(2)
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where
ϕ1 − ϕ = θ (3)

After short modification the Eqs. (2) we obtained

Mρ2θ̈ + ktθ = kmϕ2 + 2cL2ϕ̇2 + M(t) (4)

Hence the torque equivalent effect on the primary structure was obtained as

Meqv = kmϕ2 + 2cL2ϕ̇2 (5)

Eq. (5) can be used in the design of TMD.

3. Determining optimal parameters of TMD

We introduce

µ =
m + mt/3

M
; ωd =

√
km

2(m + mt/3)L2 ; γ =
L
ρ

(6)

ξMEVR =
c

2(m + mt
3 )ωd

; αMEVR =
ωd

ωD
; ωD =

√
kt

Mρ2 (7)

The symbols are summarized in Table 2.

Table 2. Symbols used to write the non-dimensional equations

Symbol Description

ωD Natural frequency of vibration of shaft
ωd Natural frequency of vibration of TMD

ξMEVR Damping ratio of TMD by using the maximization of equivalent viscous resistance method
ξMKE

opt Optimal damping ratio of TMD by using the minimum kinetic energy method
ξMEVR

opt Optimal damping ratio of TMD by using the maximization of equivalent viscous resistance method
µ Ratio between mass of TMD and mass of rotor

ξMEVR Tuning ratio of TMD by using the maximization of equivalent viscous resistance method
αMEVR

opt Optimal tuning ratio of TMD by using the maximization of equivalent viscous resistance method
αMKE

opt Optimal tuning ratio of TMD by using the minimum kinetic energy method
γ Ratio between length of pendulum and radius of gyration of rotor

Meqv Torque equivalent effect on the primary structure

Substituting Eqs. (6)–(7) into Eqs. (2). The matrix form of Eqs. (2) are expressed as

MMEVRẍ1 + CMEVRẋ1 +KMEVRx1 = FMEVR (8)

where
x1 =

{
θ ϕ2

}T
(9)

The mass matrix, viscous matrix, stiffness matrix and excitation force vector can be derived as

MMEVR =

 1 + 2µγ2 2µγ2

1 1

 ; CMEVR =

 0 0

0 2ξMEVRαMEVRωD

 ;

KMEVR =

 ω2
D 0

0 ω2
D(αMEVR)

2

 ; FMEVR =


M(t)
Mρ2

0


(10)
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The state equations of Eq. (8) are expressed as

ẋ2(t) = Bx2(t) +H f M(t) (11)

where
x2 =

{
θ ϕ2 θ̇ ϕ̇2

}T
(12)

From Eqs. (8)–(12), the matrices B and H f can be defined as

B =


0 0 1 0
0 0 0 1
−ω2

D 2µγ2α2ω2
D 0 4µγ2ξMEVRαMEVRωD

ω2
D −(1 + 2µγ2)(αMEVR)2ω2

D 0 −2(1 + 2µγ2)ξMEVRαMEVRωD

 (13)

H f =

[
0 0

1
Mρ2 −

1
Mρ2

]−1

(14)

The quadratic torque matrix P is solution of the Lyapunov equation [14]

BP + PBT + S f H f HT
f = 0 (15)

where S f is the white noise spectrum of the excitation torque.
The first step of this method is to specify these quadratic torques. Substituting Eqs. (13)–(14)

into Eq. (15) and solving this equation, these quadratic torques for vibration response of shaft were
obtained as

P32 = −
S f

4µγ2M2ω2
Dρ

4
(16)

P33 =
S f [2(αMEVR)4

γ2µ + (αMEVR)4
+ 4(αMEVR)2(ξMEVR)2

− 2(αMEVR)2
+ 1]

8µγ2ξMEVRαMEVRωDM2ρ4 (17)

P34 =
S f [αMEVR)2

− 1]
8µγ2ξMEVRαMEVRωDM2ρ4 (18)

Substituting Eqs. (6)–(7) into Eq. (5), this becomes

Meqv = 2(m + mt/3)(αMEVR)2ω2
Dγ

2ρ2ϕ2 + 4ξMEVR(m + mt/3)αMEVRωDγ
2ρ2ϕ̇2 (19)

Thus the equivalent resistance coefficient of the TMD on the primary structure was obtained as

ctd = −

〈
Meqvθ̇

〉〈
θ̇2

〉 = −
4ξMEVR(m + mt/3)αMEVRωDγ

2ρ2
〈
ϕ̇2θ̇

〉
+ 2(m + mt/3)(αMEVR)2

ω2
Dγ

2ρ2
〈
ϕ2θ̇

〉〈
θ̇2

〉
(20)

If the primary system is excited by random moment with a white noise spectrum S f , then the
average value of Eq. (20) are the components of the matrix P in Eq. (15), Lyapunov equation, this
means

ctd = −
4ξMEVR(m + mt/3)αMEVRωDγ

2ρ2P34 + 2(m + mt/3)(αMEVR)2
ω2

Dγ
2ρ2P32

P33
(21)
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Substituting Eqs. (16)–(18) into Eq. (21), The ctd can be determined as

ctd =
4(3m + mt)γ2ξMEVRαMEVRωDρ

2

3[2(αMEVR)4γ2µ + (αMEVR)4
+ 4(αMEVR)2(ξMEVR)2

− 2(αMEVR)2
+ 1]

(22)

Maximum conditions are expressed as

∂ctd

∂αMEVR

∣∣∣∣∣
αMEVR

opt =αMEVR
= 0 (23)

∂ctd

∂ξMEVR

∣∣∣∣∣∣
ξMEVR

opt =ξMEVR

= 0 (24)

Solving the system of Eqs. (22)–(24) results in optimal solutions of the TMD, as shown in Eq. (25)
and Eq. (26)

αMEVR
opt = αMEVR =

1√
(1 + 2µγ2)

(25)

ξMEVR
opt = ξMEVR =

γ
√

2µ
2

(26)

From Eqs. (25-26), we obtain the optimal parameters of the TMD to reduce the torsional vibration
of the shaft by using the maximization of equivalent viscous resistance method, which is different
from the optimal parameters of the TMD by using the principle of minimum kinetic energy in [10].
This asserts with a shaft model with installed TMD, but applying different methods to find optimal
parameters gives different analytical results.

Table 3 presents the optimal parameters obtained by the two methods according to the various
mass ratios and ratio between the length of pendulum and radius of gyration of the rotor. We see
that the tuning ratio of TMD is approximately 1, indicating that the optimized TMD has the natural
frequency is approximately the natural frequency of the shaft. With the design of this TMD will reduce
the vibration of the shaft in the best way.

Table 3. The optimal parameters of the tuned mass damper for various mass ratios and ratio
between the length of pendulum and radius of gyration of the rotor

µ γ αMKE
opt αMEVR

opt ξMKE
opt ξMEVR

opt

0.01 0.1 0.9998 0.9999 0.0070 0.0071
0.02 0.2 0.9984 0.9992 0.0196 0.0200
0.03 0.3 0.9946 0.9973 0.0352 0.0367
0.04 0.4 0.9874 0.9937 0.0525 0.0566
0.05 0.5 0.9756 0.9877 0.0707 0.0791
0.06 0.6 0.9586 0.9791 0.0891 0.1039
0.07 0.7 0.9358 0.9674 0.1073 0.1310
0.08 0.8 0.9071 0.9524 0.1249 0.1600
0.09 0.9 0.8728 0.9342 0.1419 0.1909
0.10 1.0 0.8333 0.9129 0.1581 0.2236
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From Table 3, we again assert that the same shaft model with installed TMD is the same with
the values of the various mass ratios and ratio between the length of pendulum and radius of gy-
ration of the rotor, the optimal parameter is obtained by two methods of the principle of minimum
kinetic energy and the maximization of equivalent viscous resistance method is different. However,
the difference in number between the two methods of the optimal parameter found is not large.

4. Simulate vibration of the system

Numerical simulation is employed for the system by using the achieved optimal parameters of the
TMD, as shown in Eq. (25) and Eq. (26). To demonstrate the above analysis, computations will be
performed for a system with parameters given in Table 4.

Table 4. The input parameters for shaft and TMD

Parameter M ρ kt mt M L

Value 500 kg 1.0 m 105 Nm/rad 15 kg 10 kg 0.9 m
Parameter µ γ αMEVR

opt ξMEVR
opt c km

Value 0.03 0.9 0.977 0.11 45.67 Ns/m 4634.75 Nm/rad

Plug the parameters from Table 4 into Eqs. (2). Using the Maple software to simulate system
vibration, the graphs are obtained in Figs. 2–7.

8 
 

 
Figure 2. The vibration of the TMD with initial deflection q0 = 1.5´10-9 (rad)  

 

 

Figure 3. The vibration of the shart with initial deflection q0 = 1.5´10-9 (rad)  

Figure 2. The vibration of the TMD with initial deflection θ0 = 1.5 × 10−9 (rad)

The torsional vibration of shaft are shown in Figs. 3, 5 and 7. Figs. 2, 4 and 6 show the vibration of
the TMD. From Figs. 3, 5 and 7, we see that with the same shaft model with installed TMD with two
methods are the minimum kinetic energy method (MKE) and the maximization of equivalent viscous
resistance method (MEVR) finding optimal parameters for different analytical results, but the effect
of reducing the vibration on the graph of the two methods are equivalent when the system is subjected
to random excitation. It can be seen that the mass-spring-shaft torsional type TMD has good effect in
all cases. It realized that the vibration of the shaft torsional installed the TMD has the good efficiency
for damping the vibration of the system.

132



Chinh, N. D. / Journal of Science and Technology in Civil Engineering

8 
 

 
Figure 2. The vibration of the TMD with initial deflection q0 = 1.5´10-9 (rad)  

 

 

Figure 3. The vibration of the shart with initial deflection q0 = 1.5´10-9 (rad)  Figure 3. The vibration of the shart with initial deflection θ0 = 1.5 × 10−9 (rad)

9 
 

 

 

Figure 4. The vibration of the TMD with initial angular velocity .  .

 

Figure 5. The vibration of the shart with initial angular velocity . 
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Figure 4. The vibration of the TMD with initial angular velocity θ̇0 = 3 × 10−8 (rad/s)
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Figure 5. The vibration of the shart with initial angular velocity . 
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0 ( / )-83×10 rad sq =!Figure 5. The vibration of the shart with initial angular velocity θ̇0 = 3 × 10−8 (rad/s)
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10 
 

  

Figure 6. The vibration of the TMD with initial deflection q0 = 1.5´10-9(rad) and 

initial angular velocity . 
 

 

Figure 7. The vibration of the shart with initial deflection q0 = 1.5´10-9(rad) and initial 

angular velocity . 

The torsional vibration of shaft are shown in Figs. 3, 5 and 7. Figs. 2, 4 and 6 
show the vibration of the TMD. From Figs. 3, 5 and 7, we see that with the same shaft 
model with installed TMD with two methods are the minimum kinetic energy method 
(MKE) and the maximization of equivalent viscous resistance method (MEVR) finding 
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Figure 6. The vibration of the TMD with initial deflection θ0 = 1.5 × 10−9 (rad)
and initial angular velocity θ̇0 = 3 × 10−8 (rad/s)
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Figure 7. The vibration of the shart with initial deflection q0 = 1.5´10-9(rad) and initial 

angular velocity . 

The torsional vibration of shaft are shown in Figs. 3, 5 and 7. Figs. 2, 4 and 6 
show the vibration of the TMD. From Figs. 3, 5 and 7, we see that with the same shaft 
model with installed TMD with two methods are the minimum kinetic energy method 
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Figure 7. The vibration of the shart with initial deflection θ0 = 1.5 × 10−9 (rad)
and initial angular velocity θ̇0 = 3 × 10−8 (rad/s)

5. Conclusions

In this paper, maximization of equivalent viscous resistance method has been developed and ex-
amined for shaft model. The same procedure as in the conventional MEVR has been used to derive
the optimum tuning and damping ratios of the device. The optimal parameters were determined in
analytical form and furthermore leads to the simple explicit formulas (25), (26). The analytical results
are verified by numerical simulations with a given configuration of machine shaft in some different
operating conditions.
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