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Abstract

In this paper the smoothed four-node element with in-plane rotations MISQ24 is combined with a C0-type
higher-order shear deformation theory (C0-HSDT) to propose an improved linear quadrilateral plate element
for static and free vibration analyses of laminated composite plates. This improvement results in two additional
degrees of freedom at each node and require no shear correction factors while ensuring the high precision of
numerical solutions. Composite plates with different lay-ups, boundary conditions and various geometries such
as rectangular, skew and triangular plates are analyzed using the proposed element. The obtained numerical
results are compared with those from previous studies in the literature to demonstrate the effectiveness, the
reliability and the accuracy of the present element.
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1. Introduction

In recent years, many building construction not only ensure the working ability of structure but
also require that the architecture must be aesthetic. In practice, plate texture or plate shape are widely
used in lots of building constructions for different objectives such as crediting the cover to protect
construction, enhancing theory of art, increasing the resistance to heat and joined forces. . . Therefore,
finding more efficient calculations method along with high reliability in analysis of plate structures
design is always essential needed. In recent years, structures made of composite materials have been
using intensively in aerospace, marine and civil infrastructure, etc., because they possess many favor-
able mechanical properties such as high stiffness to weight and low density.

Among the plate theories [1–4], the higher-order shear deformation theory (HSDT) is widely
used because it does not need shear correction factors and gives accurate transverse shear stresses.
However, the need of C1-continuous approximation for the displacement fields in the HSDT with
lower-order finite element models cause some obstacles. To overcome these shortcomings, Shankara
and Iyengar [5] develop a revised form of HSDT which only requires C0 continuity for displacement
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fields (C0 -HSDT). In the C0-HSDT, two additional variables have been added, and hence only the
first derivative of transverse displacements is required.

This paper presents a novel numerical procedure based on four-node element MISQ24 with in-
plane rotations [6] associated with the C0-HSDT type for static and free vibration analyses of lami-
nated composite plates. The higher-order shear deformation plate theory is involved in the formulation
in order to avoid using the shear correction factors and to improve the accuracy of transverse shear
stresses. In the present method, the membrane and bending strains are smoothed over sub-quadrilateral
domains of elements. As a result, the membrane and bending stiffness matrices are integrated along
the boundary of the smoothing domains instead of over the element surfaces. And the shear stiffness
matrix is based on reduced-integration technique to remove the shear-locking phenomenon. Compared
with the conventional finite element methods, the present approach requires more computational time
for the gradient matrices of the membrane and bending strains when more than one smoothing domain
are employed. However, the present formulation uses only linear approximations and its implemen-
tation into finite element programs using Matlab programming is quite simple. Several numerical
examples are given to show the performance of the proposed method and results obtained are com-
pared to other published methods in the literature.

2. C0-HSDT and the weak form for plate model

Let Ω be the domain in R2 occupied by the mid-plane of the plate. The displacements of an
arbitrary point in the plate are expressed as [5]

u(x, y, z) = u0 +

(
z −

4z3

3h2

)
θy −

4z3

3h2ϕx

v(x, y, z) = v0 −

(
z −

4z3

3h2

)
θx −

4z3

3h2ϕy

w(x, y, 0) = w0

(
−

h
2
≤ z ≤

h
2

)
(1)

where u0, v0 and w0 are axial and transverse displacements at the mid-surface of the plates, respec-
tively; ϕx, ϕy, θx, θy are rotations due to the bending and shear effects. It can be seen that the present
theory is composed of seven unknowns: three axial and transverse displacements, four rotations with
respect to the y- and x-axis as shown in Fig. 1.
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Figure 1. Composite plate 
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Figure 1. Composite plate

In-plane strains are expressed by the following equation:

εp =
[
εxx εyy γxy

]T
= ε0 + zκ1 −

4
3h2 z3κ2 (2)
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where the membrane strains are obtained from the symmetric displacement gradient

ε0 =



∂u0

∂x
∂v0

∂y
∂u0

∂y
+
∂v0

∂x


(3)

and the bending strains are given by

κ1 =

 θy,x

−θx,y

θy,y − θx,x

 , κ2 =


θy,x + ϕx,x

−θx,y + ϕy,y(
θy,y − θx,x

)
+

(
ϕx,y + ϕy,x

)
 (4)

The transverse shear strain vector is given as

γ =
[
γxz γyz

]T
= εs + z2κs (5)

in which

εs =

[
wx + θy

wy − θx

]
, κs = −

4
h2

[
ϕx + θy

ϕy − θx

]
(6)

The composite plate is usually made of several orthotropic layers in which the stress–strain rela-
tion for the kth orthotropic lamina with the arbitrary fiber orientation maps to the reference as

σxx

σyy

σxy

τxz

τyz



(k)

=


Q11 Q12 Q16 0 0
Q21 Q22 Q26 0 0
Q61 Q62 Q66 0 0
0 0 0 Q55 Q54
0 0 0 Q45 Q44



(k) 

εxx

εyy

εxy

γxz

γyz



(k)

(7)

where Qi j (i, j = 1, 2, 4, 5, 6) are the material constants of kth layer in global coordinate system. Under
weak form, the normal forces, bending moments, higher-order moments, shear forces and higher-order
shear forces can then be computed through the following relations

N
M
P
Q
R


=


A B c1E 0 0
B D c1F 0 0

c1E c1F c2
1H 0 0

0
0

0
0

0
0

G c2S
c2S c2

2T





ε0
κ1
κ2
εs

κs


=

[
Dbm 0

0 Ds

]
ε′′ (8)

with

(A,B,D,E,F,H) =

∫ h/2

−h/2

(
1, z, z2, z3, z4, z6

)
Qi jdzi, j = 1, 2, 6 (9)

(G,S,T) =

∫ h/2

−h/2

(
1, z2, z4

)
Qi jdzi, j = 4, 5 (10)
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and the parameters

c1 = −
4

3h2 , c2 = −
4
h2 (11)

A weak form of the static model for laminated composite plates can be briefiy expressed as:∫
Ω

δεT
p DbmεpdΩ +

∫
Ω

δγT DsγdΩ =

∫
Ω

δwpdΩ (12)

where p is the transverse loading per unit area and strain components εp and γ are expressed by

εp =
{
ε0 κ1 κ2

}T
, γ =

{
εs κs

}T
(13)

For the free vibration analysis, a weak form of composite plates can be derived from the following
dynamic equation ∫

Ω

δεT
p DbmεpdΩ +

∫
Ω

δγT DsγdΩ =

∫
Ω

δuT müdΩ (14)

where m is defined as:

m =



I1 0 0 I2
I1 0 0

I1 0
I3

0 0 c1/3I4 0
I2 0 0 c1/3I4
0 I2 0 0
0 0 c1/3I5 0

sym

I3 0 0 c1/3I5
I3 0 0

c2
1/9I7 0

c2
1/9I7


(15)

with

(I1, I2, I3, I4, I5, I7) =

∫ t/2

−t/2
ρ
(
1, z, z2, z3, z4, z6

)
dz (16)

3. A formulation of four-node quadrilateral plate element

Discretize the bounded domain Ω of plates into Nc finite elements such that Ω = ∪
Nc
c=1Ωc and

Ωi ∩ Ω j = ∅ with i , j. The displacement field u of the standard finite element solution using the
four-node with in-plane rotations can be approximated by

u =

Nn∑
i=1



Ni 0 0 0 0 0 0 0
0 Ni 0 0 0 0 0 0
0 0 Ni 0 0 0 0 0
0 0 0 Ni 0 0 0 0
0 0 0 0 Ni 0 0 0
0 0 0 0 0 Ni 0 0
0 0 0 0 0 0 Ni 0
0 0 0 0 0 0 0 Ni


qi (17)

where Nn is the total number of nodes of the mesh, Ni =
1
4

(1 + ξiξ) (1 + ηiη) is the shape function

of the four-node serendipity element, qT
i =

[
u v w θx θy θz ϕx ϕy

]
is the displacement
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vector of the nodal degrees of freedom of u associated to the ith node, respectively. The membrane,
bending and shear strains can be then expressed in the matrix forms as

ε0 =
∑

i

Bm
i qi; κ1 =

∑
i

Bb
1iqi; κ2 =

∑
i

Bb
2iqi

εs =
∑

i

Bs
0iqi; κs =

∑
i

Bs
1iqi

(18)

where

Bm
i =


Ni,x 0 0 0 0 0 0 0
0 Ni,y 0 0 0 0 0 0

Ni,y Ni,x 0 0 0 0 0 0

 (19)

Bb
1i =

 0 0 0 0 Ni,x 0 0 0
0 0 0 −Ni,y 0 0 0 0
0 0 0 −Ni,x Ni,y 0 0 0

 (20)

Bb
2i =

 0 0 0 0 Ni,x 0 Ni,x 0
0 0 0 −Ni,y 0 0 0 Ni,y

0 0 0 −Ni,x Ni,y 0 Ni,y Ni,x

 (21)

Bs
0i =

[
0 0 Ni,x 0 Ni 0 0 0
0 0 Ni,y −Ni 0 0 0 0

]
(22)

Bs
1i =

[
0 0 0 0 Ni 0 Ni 0
0 0 0 −Ni 0 0 0 Ni

]
(23)

As shown in Fig. 2, a quadrilateral element domain Ωc is further divided into nc smoothing cells.
The generalized strain field is smoothed by a weighted average of the original generalized strains
using the strain smoothing operation for each smoothing cell as follows

ε̃ (xC) =

∫
ΩC

ε(x)Φ (x − xC) dΩ (24)

6 
 

  (19) 

  (20) 

  (21) 

  (22) 

  (23) 
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Figure 2. Subdivision of an element into nc cells and the values of shape functions at nodes [6]
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Introducing the approximation of the linear membrane strain by the quadrilateral finite element
using Allman-type interpolation functions with drilling degrees of freedom [7] and applying the di-
vergence theorem, the smoothed membrane strain can be obtained as

ε̃ =
1
Ac

∫
Γc

n(x)u(x)dΓ =
1
Ac

∫
Γc

4∑
i=1

n(x)Ni(x)qidΓ =

4∑
i=1

B̃m
i qi (25)

where

B̃m
i (xC) =

1
AC

∫
ΓC

 Ninx 0 0 0 0 Nxinx

0 Niny 0 0 0 Nyiny

Niny Ninx 0 0 0 Nxiny + Nyinx

 (26)

In which qi =
[

u v w θx θy θz
]

is the nodal displacement vector; Nxi and Nyi are All-
man’ s incompatible shape functions defined in [7], and nx and ny are the components of the outward
unit vector n normal to the boundary ΓC .

Applying Gauss integration along with four segments of the boundary ΓC of the smoothing do-
main ΩC , the above equation can be rewritten in algebraic form as

B̃m
i (xC) =

1
AC

ns∑
m=1



nG∑
n=1

wnNi (xmn) nx 0 0

0
nG∑
n=1

wnNi (xmn) ny 0

0
nG∑
n=1

wnNi (xmn) ny 0

nG∑
n=1

wnNi (xmn) ny

nG∑
n=1

wnNi (xmn) nx 0



+
1

AC

ns∑
m=1



0 0
nG∑
n=1

wnNxi (xmn) nx

0 0
nG∑
n=1

wnNyi (xmn) ny

0 0
nG∑
n=1

wnNxi (xmn) ny +

nG∑
n=1

wnNyi (xmn) nx



(27)

where nG is the number of Gauss integration points, xmn is the Gauss point and ωn is the correspond-
ing weighting coefficients. The first term in Eq. (27), which relates to the in-plane translations (ap-
proximated by bilinear shape functions), is evaluated by one Gauss point (nG = 1). The second term,
associated with the in-plane rotations (approximated by quadratic shape functions), is computed using
two Gauss points (nG = 2).

The smoothed membrane element stiffness matrix can be obtained as

K̃ = K̃m + Pγ =

∫
Ω

B̃mT
i AB̃m

i dΩ + γ

∫
Ω

bT bdΩ =

nc∑
C=1

B̃mT
iC AB̃m

iCAC + γ

∫
Ω

bT bdΩ (28)

in which nc is the number of smoothing cells. To avoid numerically over-stiffening the membrane, one
smoothing cell (nc = 1) is used in the present formulation. Higher numbers of smoothing cells will
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lead to stiffer solutions and the accuracy may not be enhanced considerably. The penalty matrix Pγ
is integrated using a 1- point Gauss quadrature to suppress a spurious, zero-energy mode associated
with the drilling DOFs. The positive penalty parameter γ is chosen as γ/G12 = 1/1000 in the study.

The smoothed bending element stiffness matrix can be obtained using the similar procedure [6]
and finally, the element tangent stiffness matrix is modified as

K̃ = K̃m + K̃mb + K̃T
mb + K̃b + K̃s (29)

where

K̃m =

∫
Ω

B̃mT
i AB̃m

i dΩ + γ

∫
Ω

bT bdΩ=

nc∑
C=1

B̃mCT
i AB̃mC

i AC + γ

∫
Ω

bT bdΩ (30)

K̃mb =

∫
Ω

(
B̃mT

i BB̃b
1i + c1B̃mT

i EB̃b
2i + B̃bT

1i BB̃m
i + c1B̃bT

2i EB̃m
i

)
dΩ

=

1∑
C=1

(
B̃mCT

i BB̃bC
1i + c1B̃mCT

i EB̃bC
2i + B̃bCT

1i BB̃mC
i + c1B̃bCT

2i EB̃mC
i

)
AC

(31)

K̃b =

∫
Ω

(
B̃bT

1i DB̃b
1i + c1B̃bT

1i FB̃b
2i + c1B̃bT

2i

(
B̃b

1i + c2
1B̃bT

2i HB̃b
2i

)
dΩ

=

2∑
C=1

(
B̃bCT

1i DB̃bC
1i + c1B̃bCT

1i FB̃bC
2i + c1B̃bCT

2i FB̃bC
1i + c2

1B̃bCT
2i HB̃bC

2i

)
AC

(32)

K̃s =

∫
Ω

(
BsT

0i GBs
0i + c2BsT

0i SBs
1i + c2BsT

1i sBs
0i + c2

2BsT
1i TBs

1i

)
dΩ

=

2∑
i=1

2∑
j=1

wiw j
(
BsT

0i GBs
0i + c2BsT

0i SBs
1i + c2BsT

1i SBs
0i + c2

2BsT
1i TBs

1i

)
|J| dξdη

(33)

with
bi =

[
−

1
2

Ni,y
1
2

Ni,x −
1
2

(
Nxi,y + Nyi,x

)
− Ni

]
(34)

B̃b
1i =

1
AC

4∑
b=1

 0 0 0 0 Ninx 0 0 0
0 0 0 −Niny 0 0 0 0
0 0 0 −Ninx Niny 0 0 0

 lb (35)

B̃b
2i =

1
AC

4∑
b=1

 0 0 0 0 Ninx 0 Ninx 0
0 0 0 −Niny 0 0 0 Niny

0 0 0 −Ninx Niny 0 Niny Ninx

 lb (36)

For static analysis:

K̃q = F (37)

where F is the load vector defined as

F =

∫
Ω

pNdΩ (38)
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For free vibration problems, we need to find ω ∈ R+ such that(
K̃ − ω2M

)
q = 0 (39)

where ω is the natural frequency and M is the global mass matrix given by

M =

∫
Ω

NT mNdΩ (40)

4. Numerical results

4.1. Static analysis

We consider a simply supported square laminated plate subjected to a sinusoidal load Pz =

q0 sin (πx/a) sin (πy/b). The material properties of the plate are assumed E1 = 25E2; G12 = G13 =

0.5E2; G23 = 0.2E2; v = 0.25. The geometry data of problem are given as follows: the aspect ra-
tio a/b = 1 and length-to-thickness ratios a/h = 4, 10, 100 for the sinusoidal load case. The non-
dimensional displacements and stresses at the centroid of four layer

(
0◦/90◦/90◦/0◦

)
square plate are

defined as:

w̄ =
100E2h3

qa4 w
(a
2
,

a
2
, 0

)
; σ̄x =

h2

qa2σ1

(
a
2
,

a
2
,

h
2

)
; σ̄y =

h2

qa2σ2

(
a
2
,

a
2
,

h
4

)
;

σ̄xz =
h

qa
σ4

(
0,

b
2
, 0

)
; σ̄yz =

h
qa
σ5

(a
2
, 0, 0

)
; σ̄xy =

h
qa
σ6

(
0, 0,

h
2

)
;

Table 1. Non-dimensional displacement w̄ and stresses σ̄ of a supported simply (0◦/90◦/90◦/0◦)
square laminated plate under sinusoidal load

a/h Methods w̄ σ̄x σ̄y σ̄xz σ̄yz σ̄xy

4

HSA4 [12] 1.9014 0.6973 0.6245 0.2112 0.2439 0.0456
Reddy [8] 1.8937 0.6651 0.6322 0.2064 0.2389 0.0440
NS-DSG3 [11] 1.9266 0.7076 0.6303 0.2084 0.2404 0.0475
ES-DSG3 [10] 1.9046 0.7005 0.6236 0.2071 0.2387 0.0476
Elasticity [9] 1.9540 0.7200 0.6660 0.2700 - 0.0467
MISQ24-HSDT 1.9219 0.7019 0.6268 0.2126 0.2457 0.0458

10

HSA4 [12] 0.7190 0.5547 0.3872 0.2807 0.1580 0.0270
Reddy [8] 0.7147 0.5456 0.3888 0.2640 0.1531 0.0268
NS-DSG3 [11] 0.7246 0.5609 0.3909 0.2812 0.1566 0.0288
ES-DSG3 [10] 0.7179 0.5554 0.3867 0.2793 0.1560 0.0288
Elasticity [9] 0.7430 0.5590 0.4030 0.3010 - 0.0276
MISQ24-HSDT 0.7264 0.5572 0.3889 0.2828 0.1592 0.0271

100

HSA4 [12] 0.4331 0.5333 0.2681 0.3114 0.1142 0.0211
Reddy [8] 0.4343 0.5387 0.2708 0.2897 0.1117 0.0231
NS-DSG3 [11] 0.4345 0.5384 0.2706 0.3183 0.1183 0.0211
ES-DSG3 [10] 0.4310 0.5331 0.2680 0.3222 0.1365 0.0213
Elasticity [9] 0.4347 0.5390 0.2710 0.3390 - 0.0214
MISQ24-HSDT 0.4370 0.5352 0.2690 0.3138 0.1151 0.0212
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The results of the present method are compared with several other methods such as finite element
method (FEM) based on HSDT by Reddy [8], the elasticity solution 3D proposed by Pagano [9], the
C0-type higher order shear deformation theory by Loc et al. [10], finite element method based on
HSDT and node-based smoothed discrete shear gap by Chien et al. [11], the a higher order shear de-
formation theory with assumed strains [12] as shown in Table 1. It is observed that the present results
match very well with the exact solution [9]. The MISQ24-HSDT method gives the most accurate re-
sults for the all thin and thick plates. Figs. 3–6 plot the distribution of stresses through thickness plate
with a/h = 4, 10 based on NS-DSG3 [11], ES-DSG3 [10], MISQ24-HSDT. It can be seen that the
shear stresses vanish at boundary planes and distribute discontinuously through laminas.
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Figure 3. Distribution of stresses 𝜎n through thickness of plate under sinusoidally load 
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Table 2. Non-dimensional displacement  and stresses  of a simply supported 
 square laminated plate under sinusoidal load . 

a/h Methods Mesh  𝜎̄n 𝜎̄o 𝜎̄n» 𝜎̄o» 𝜎̄no 

4 

Reddy [8] 

 

2.6411 1.0356 0.1028 0.2724 0.0348 0.0263 
Pagano [9] 2.8200 1.1000 0.1190 0.3870 0.0334 0.0281 
Chakrabarti [13] 2.6437 1.0650 0.1209 0.2723 0.0320 0.0264 
MISQ24-HSDT 2.6785 1.0765 0.1168 0.2780 0.0324 0.0262 

10 

Reddy [8] 

 

0.8622 0.6924 0.0398 0.2859 0.0170 0.0115 
Panago [9] 0.9190 0.7250 0.0435 0.4200 0.0152 0.0123 
Chakrabarti [13] 0.8649 0.7164 0.0383 0.2851 0.0106 0.0117 
MISQ24-HSDT 0.8770 0.7081 0.0450 0.3056 0.0158 0.0116 

100 

Reddy [8] 

 

0.5070 0.6240 0.0253 0.2886 0.0129 0.0083 
Panago [9] 0.5080 0.6240 0.0253 0.4390 0.0108 0.0083 
Chakrabarti [13] 0.5097 0.6457 0.0253 0.2847 0.0129 0.0084 
MISQ24-HSDT 0.5104 0.6202 0.0283 0.3121 0.0120 0.0082 

4.2 Free vibration analysis  

4.2.1 Skew plate 

In this example, we study the five-layer skew laminated   square 

plates with simply supported and clamped condition boundary as shown in Fig. 7. In this 
problem, various skew angles are considered. The length-to-thickness ratio a/h is taken to 

/ 4, 10a h =

w s

( )0 / 90 / 0o o o ( )/ 3b a =

w

16 16´

16 16´

16 16´

( )45 / 45 / 45 / 45 / 45o o o o- -

Figure 6. Distribution of shear stresses σyz through
thickness of plate under sinusoidally load with

a/h = 4, 10 [10, 11]

Next, we consider a simply supported square
(
0◦/90◦/0◦

)
laminated plate subjecting to a sinu-

soidal load Pz = q0 sin (πx/a) sin (πy/b). The material properties of plate are assumed as E1 = 25E2;
G12 = G13 = 0.5E2; G23 = 0.2E2; v = 0.25. The normalized displacement w̄ = 100wEh3/

(
qa4

)
,

normal in-plane stresses σ̄ = σh2/
(
qa2

)
transverse shear stresses τ̄ = τh2/ (qa) are presented in Ta-

ble 2. The study is made for the aspect ratio (b/a = 3) with various thickness ratio (a/h) such as 4,
10 and 100. In all the cases the analysis is done with three different types of mesh and the deflection
and stress components obtained at the important locations are presented with the analytical solution
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of Reddy [8] in Table 2. The present results agree well with those of [8, 9, 13], especially for thick
plates and compared with the solution finite element method based on HSDT by Reddy [8], the so-
lution of 3D elasticity results [9], the solution of the MISQ24-HSDT is slightly nearer than those of
Chakrabarti [13].

Table 2. Non-dimensional displacement w̄ and stresses σ̄ of a simply supported (0◦/90◦/0◦) square laminated
plate under sinusoidal load (b/a = 3)

a/h Methods Mesh w̄ σ̄x σ̄y σ̄xz σ̄yz σ̄xy

4

Reddy [8]

16 × 16

2.6411 1.0356 0.1028 0.2724 0.0348 0.0263
Pagano [9] 2.8200 1.1000 0.1190 0.3870 0.0334 0.0281
Chakrabarti [13] 2.6437 1.0650 0.1209 0.2723 0.0320 0.0264
MISQ24-HSDT 2.6785 1.0765 0.1168 0.2780 0.0324 0.0262

10

Reddy [8]

16 × 16

0.8622 0.6924 0.0398 0.2859 0.0170 0.0115
Panago [9] 0.9190 0.7250 0.0435 0.4200 0.0152 0.0123
Chakrabarti [13] 0.8649 0.7164 0.0383 0.2851 0.0106 0.0117
MISQ24-HSDT 0.8770 0.7081 0.0450 0.3056 0.0158 0.0116

100

Reddy [8]

16 × 16

0.5070 0.6240 0.0253 0.2886 0.0129 0.0083
Panago [9] 0.5080 0.6240 0.0253 0.4390 0.0108 0.0083
Chakrabarti [13] 0.5097 0.6457 0.0253 0.2847 0.0129 0.0084
MISQ24-HSDT 0.5104 0.6202 0.0283 0.3121 0.0120 0.0082

4.2. Free vibration analysis

a. Skew plate
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In this example, we study the five-layer skew laminated   square 

plates with simply supported and clamped condition boundary as shown in Fig. 5. In this 
problem, various skew angles are considered. The length-to-thickness ratio a/h is taken to 
be 10. The normalized frequencies are defined by  For comparison, 

the plate is modeled with  nodes. The normalized frequencies of the MISQ24-HSDT 
element with various skew angles from  to  are depicted in Tables 3 corresponding 
with  laminated skew plates, respectively. MLSDQ method by 

Liew et al. [17], radial basis approach reported by Ferreira et al. [18] and B-spline method 
by Wang [19]. It is again found that the obtained solutions are in good agreement with other 
existing ones for both cases of cross-ply laminates. 

16 16´

16 16´

( )45 / 45 / 45 / 45 / 45o o o o- -

( )( )1/22 2
2/ /b h Ew w p r=

17 17´

0o 60o

( )45 / 45 / 45 / 45 / 45o o o o- -

Figure 7. Geometry of skew laminated plate

In this example, we study the five-layer skew
laminated

(
45◦/ − 45◦/45◦/ − 45◦/45

)
square

plates with simply supported and clamped con-
dition boundary as shown in Fig. 7. In this
problem, various skew angles are considered.
The length-to-thickness ratio a/h is taken to
be 10. The normalized frequencies are defined
by ω̄ =

(
ωb2/π2h

)
(ρ/E2)1/2 For compari-

son, the plate is modeled with 17 × 17 nodes.
The normalized frequencies of the MISQ24-
HSDT element with various skew angles from
0◦ to 60◦ are depicted in Table 3 corresponding
with

(
45◦/ − 45◦/45◦/ − 45◦/45

)
laminated skew

plates, respectively. MLSDQ method by Liew et al. [14], radial basis approach reported by Ferreira et
al. [15] and B-spline method by Wang [16]. It is again found that the obtained solutions are in good
agreement with other existing ones for both cases of cross-ply laminates.

51



Tai, H. H., et al. / Journal of Science and Technology in Civil Engineering

Table 3. Non-dimensional fundamental frequencies ω̄ =
(
ωb2/π2h

)
(ρ/E2)1/2 of simply supported and

clamped cross-ply (45◦/ − 45◦/45◦/ − 45◦/45) skew plate with various skew angles

Boundary Methods
α

0 15 30 45 60

SSSS

MLSDQ [14] 1.8248 1.8838 2.0074 2.5028 4.0227
RBF [15] 1.8357 1.8586 2.0382 2.4862 3.8619
B-spline [16] 1.8792 - 2.0002 2.4788 -
MISQ24-HSDT 1.8235 1.8550 2.0540 2.5590 3.9715

CCCC

MLSDQ [14] 2.2787 2.3504 2.6636 3.3594 4.8566
RBF [15] 2.3324 2.3962 2.6981 3.3747 4.8548
B-spline [16] 2.2857 - 2.6626 3.3523 -
MISQ24-HSDT 2.2685 2.3052 2.5838 3.2349 4.6987

b. Triangular plate

In this example, we consider a clamped triangular plate. The following material properties are
used in the analysis: E1/E2 = 25; G12 = G13 = 0.5E2; G23 = 0.5E2; v12 = 0.25 and ρ = 1. Table 4
shows a comparison of frequency parameter ω̄ using the present element with the solutions using
LS12 higher-order element of Haldar and Sengupta [17], NS-DSG3 element [11] and Aα-DSG3 ele-
ment [18] based on FSDT. The present results are compared well with those of other methods.

Table 4. Non-dimensional frequency parameter ω̄ =
(
ωa2/h

)
(ρ/E2)1/2 of the (0◦/90◦/0◦) triangle clamped

laminated plate, E1/E2 = 25 and a/h = 100

Methods
Modes

1 2 3 4 5 6

Aα-DSG3 [18] 70.7200 109.7210 147.3460 161.2160 202.2890 221.8850
LS12 [17] 69.2520 106.7300 143.8800 155.0600 193.8400 210.1100
NS-DSG3 [11] 68.9609 107.1361 144.2034 157.7348 198.2622 217.4786
MISQ24-HSDT 69.5628 108.0224 146.0159 158.7462 200.0675 218.4925

5. Conclusions

In this paper, the MISQ24 element is further developed and successfully applied to static and free
vibration analysis of composite plate structures in the framework of the C0-HSDT model. The C0-
HSDT model provided more accurate solutions without shear correct factors. It is also noticed that
the MISQ24 element associated with the C0-HSDT only uses bilinear function approximations and
does not require high computational cost as compared with other finite element models cited here.
Numerical examples have been carried out and the present element is found to be free of shear locking
and to yield satisfactory results in comparison with other published solutions in the literature.
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