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Abstract

Multidisciplinary Design Optimization (MDO) has received a considerable attention in aerospace industry.
The article develops a novel framework for Multidisciplinary Design Optimization of aircraft wing. Practically,
the study implements a high-fidelity fluid/structure analyses and accurate optimization codes to obtain the
wing with best performance. The Computational Fluid Dynamics (CFD) grid is automatically generated using
Gridgen (Pointwise) and Catia. The fluid flow analysis is carried out with Ansys Fluent. The Computational
Structural Mechanics (CSM) mesh is automatically created by Patran Command Language. The structural
analysis is done by Nastran. Aerodynamic pressure is transferred to finite element analysis model using Volume
Spline Interpolation. In terms of optimization algorithms, Response Surface Method, Genetic Algorithm, and
Simulated Annealing are utilized to get global optimum. The optimization objective functions are minimizing
weight and maximizing lift/drag. The design variables are aspect ratio, tapper ratio, sweepback angle. The
optimization results demonstrate successful and desiable construction of MDO framework.

Keywords: Multidisciplinary Design Optimization; fluid/structure analyses; global optimum; Genetic Algo-
rithm; Response Surface Method.
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1. Introduction

Multidisciplinary Design Optimization (MDO) [1-13] has received considerable attention in the
aircraft industry. MDO encompasses an extensive research area that includes the implementation of
high-fidelity analysis tools in both aerodynamic and structural fields, investigations of robust inter-
facing algorithms for coupling these tools and improvement of the optimization algorithms quickly
predict the best performances . Scientists in this area have focused attention on three main categories,
embracing the accuracy, robustness and expensiveness of the proposed algorithms for application to
realistic design problems effectively. For instance, Sobieski and Haftka [1] found that sound cou-
pling and optimization methods were shown to be extremely important since some techniques, such
as sequential discipline optimization, were unable to converge to the true optimum of a coupled sys-
tem. On the other hand, Wakayama [2] showed that in order to obtain realistic wing planform shapes
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with aircraft design optimization, it is necessary to include multiple disciplines in conjunction with a
complete set of real-world constraints.

To develop the analysis tools, the aerospace researchers have incessantly enhanced the quality
as well as the fidelity of the applied codes to predict the system responses. Walsh et al. [3], for
example, investigated the progresses of High-Speed Civil Transport (HSCT) design in detail. Origi-
nally, the HSCT2.1 design was realized by using low-fidelity analysis tools. A panel code with a low
number of grid points was combined with an equivalent laminated plate analysis code to progress
with design optimization. Meanwhile, HSCT3.5 was a multidisciplinary application that integrated
medium-fidelity analysis tools, including a marching Euler code and a finite element analysis code
with a limited number of mesh points. In the HSCT4.0 design, high-fidelity tools, incorporating the
CFL3D Navier-Stokes flow solver and the GENESIS structural analysis package, were utilized in the
design process. Alternatively, Martins [4] utilized SYN107-MB Euler/Navier-Stokes Computational
Fluid Dynamics (CFD) module and FESMEH Computational Structural Mechanics (CSM) module
in his research of small business jet design. The high-fidelity Euler/Navier-Stokes CFD and CSM
packages have correspondingly become the state-of-the-art analysis modules in MDO field. Besides,
the flexible aerodynamic grid can be handled by using a grid generation package (Kim et al. [5]), or
grid deformation algorithm WARPMB (Martins [4]).

In addition, Kamakoti [14] and Guruswamy [15] conducted a statistical analysis of Fluid/Structure
Interaction algorithms. A remarkable amount of interfacing techniques was enumerated correlative to
their grades in application. Those were the Infinite Plate Spline (IPS), the Thin Plate Spline (TPS), the
Multi-Quadratic biharmonic (MQ), the Finite Plate Spline (FPS), the Non-Uniform Rational B-Spline
(NURBS) and Bilinear Interpolation (BI). The first technique is appropriate for linear analytical fluid
models and modal approach structure models, while the last technique is highly suitable for the full
Navier-Stokes flow solver and the three-dimensional (3D) finite element structural solver. On the other
hand, Martins [4] also suggested his extrapolative techniques to transfer the interactive data during the
process of aeroelastic analysis. Particularly, Hounjet and Meijer [16] evaluated elastomechanical and
aerodynamic transfer methods, comprising of Surface Spline Interpolation (SSI) and Volume Spline
Interpolation (VSI), for non-planar configurations. In general, these SSI and VSI methods are rela-
tively simple, efficient and simultaneously adaptive to the conservation of virtual work. Consequently,
they are widely used and become very popular interfacing algorithms in the field of aeroelasticity.

The improvement of optimization algorithms is also an active research area in aerospace design.
The researchers in this area initially considered various traditional optimization methods, such as
gradient-based optimization [4, 8—10], as effective tools to enhance their designs. The efficiency of
gradient-based optimizer can significantly be enhanced by using Adjoint Method [4, 8—10]. Never-
theless, gradient-based is only a local optimizer hence can not determine the global optimum. Fur-
thermore, the application of a global optimization algorithm for MDO system is a time-consuming
activity and is nearly impossible to carry out in reality. Many scientists have considered imitating
the design problem as a virtual problem in order to overcome the above difficulties. Imitating the
design problem as a virtual problem implies approximating the problem to be designed by a set of
basic equations that can accurately simulate the system responses. Thus far, there have been several
efficient approximation methods, such as the Response Surface Method (RSM) [5-7, 17], the Arti-
ficial Neural Networks (ANN) [18-20], the Multivariate Adaptive Regression Splines (MARS) [21],
the Non-Uniform Rational B-Spline (NURBS) [22], the Extended Radial Basis Function (ERBF)
[23, 24], the Kriging Method (KM) [25-31], the Support Vector Regression (SVR) [32], etc, that
can successfully be applied for design optimization. According to our experience, KM, ERBF and
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SVR are the state-of-the-art metamodelings due to their high efficiency and accuracy. After being
approximated by metamodelings, the design system needs to be improved and optimized by using
several famous global optimization algorithms, such as Genetic Algorithm (GA) [33-38], Simulated
Annealing (SA) [38-42], Evolutionary Multiobjective Optimization Algorithms (EMOA) [43-45],
etc.

In general, MDO has become an increasingly interesting research area in aerospace science. The
development of computational design methods reduces the overall design costs and turn-around time
for the development of aerospace technology. The use of high-fidelity tools also brings more confi-
dence to the design. On the scope of this paper, high-fidelity analysis tools were employed to validate
and improve the MDO system. The commercial CFD code FLUENT [46] and the 3D Finite Ele-
ment Analysis (FEA) code NASTRAN were coupled to execute the fluid flow/structural analyses and
optimization process. High-fidelity interfacing algorithms were also investigated. VSI [16], defined
relying on the 3D biharmonic equation which adapts to the conservation of virtual work, is used
as a load transfer module that maps the aerodynamic pressure onto structural mesh. The CFD grid
can be generated by using Gridgen (Pointwise) and Catia. The CSM mesh can be managed by using
Patran Command Language. Moreover, the research has utilized Response Surface Method as an ap-
proximation model to imitate the system responses precisely. The global optimization codes Genetic
Algorithm and Simulated Annealing are employed to obtain global optimum.

2. Fluid flow analysis and structural analysis

In this article, the simple flow diagram is implemented and is shown in detail in Fig. 1.

Map pressure to

CFD »{ Pressure |—> CSM mesh —> Force CSM

Y

Figure 1. Fluid/Structure analyses

This is a process that connects five principal modules together, involving CFD, CSM, CFD grid
generation, CSM mesh generator and data transfer (implying load transfer) modules. For each of it-
eration, it is necessary to map the surface loads from the CFD grid system onto the structural grid to
obtain the forces on the CSM mesh system, which are then used to obtain the stresses and displace-
ments on the CSM mesh.

2.1. Aerodynamics analysis

The aerodynamic analysis package used in this paper is the commercial CFD code FLUENT [46].
FLUENT is a high-fidelity and relatively-automatic flow solver, based on Finite Volume Method [47—
51], that integrates many viscous and turbulence modelings while resolving Navier-Stokes equation. It
can be completely considered as an effective fluid flow analysis module for executing coupled Aero-
Structural Design Optimization. In this paper, the Spalart-Allmaras viscous modeling is integrated
in the design process in order to precisely predict the aerodynamic performance. The CFD grid is
generated by using Gridgen (Pointwise) [52] and Catia [53].
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2.2. Structural analysis

The process of structural analysis can be executed by a high-fidelity, fully-automatic and robust
structural analysis code NASTRAN [54]. The CSM mesh is automatically created using the Patran
Command Language [55].

2.3. Data transfer

In coupled aero-structural analyses, the information has to be exchanged between elastomechan-
ical and unsteady aerodynamic simulation programs. The information concerns the structural defor-
mation connected to the elastomechanical grid and aerodynamic forces connected to the aerodynamic
grid. As aerodynamic and elastomechanical models are based on grids with different structures, in-
terpolation procedures which transfer aerodynamic and elastomechanical data between the elastome-
chanical and aerodynamic surface grids must be developed. It is of fundamental importance that no
energy is lost in this transfer. Consequently, the forces on the structural grid and the deflections on
the aerodynamic grid are restricted by [16]

(£} = [Gas)" (1)

1
() = [Gus] ('] M

which adapts to the conservation of virtual work. {f*}, {f*} and {*}, {u”} are in turn forces and deflec-
tions on structural and aerodynamic mesh, while [G;] is the interpolation matrix. This matrix clearly
depends on the shapes of both grids and must be calculated by a reliable interpolation algorithm. In
keeping with the scope of this paper, a simple, effective and robust technique, termed VSI [16], is
implemented. The VSI is a very simple method which does not require any additional logic and can
be applied straightforwardly to any 3D data set, without drifting so far away from the original data
even the original data is non-smooth. The volume spline function can be essentially defined by relying
on the 3D bi-harmonic equation [16]

N.Pr
h=do+ Z dnE,, 2)

m=1

where E,, = \/ (x¢ — x5)% + O+ - ys)2 +(z% = %)%, N** is the number of structural points together
with one additional constraint, (x“,y%,z%) denotes the coordinates of the aerodynamic points, and
(x*,y*,z%) denotes the coordinates of the structural points.

The coefficients d,, can be determined from the equations of equilibrium [16]

NS+
Z dy =0
m=1

N.Y+ (3)
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To utilize this algorithm, a prolongation matrix [G™] has to be constructed [16]
[G*] = [a11CT™ )
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Finally, the interpolation matrix [G,] is obtained from [G*| by deleting the first column [16]
G 1= 0 Gu )

3. Optimization algorithms

3.1. Response surface method

Many scientists have been very familiar with efficient Response Surface Method (RSM) [5-7,
17], a second-order Polynomial Regression method. The RSM is basically composed of three main
elements, involving Design of Experiment (DOE), Analysis of Regression (AOR) and ANalysis of
VAriance (ANOVA). RSM employs these statistical processes producing approximate functions to
model the response of a numerical experiment of several independent variables. A sample quadratic
response surface has the form of

P
Z Cjkx]'xk (10)

k=1

$(x) =co+

J

P P
CjXj +
=1 i=1
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where § is the response; x; is the design variable number j, 1 < j < p; co, ¢; and c j; are the unknown
polynomial coefficients. It is easy to realize that there are total m = (p + 1) (p + 2) /2 coefficients
in this quadratic polynomial; and at least n response values, n > m, must be available to be able to
estimate these coefficients. Under such conditions, the problem may be rebuilt in the form of matrix
notation as ¥ =~ Xc, where Y is a [n X 1] vector of observed responses, X is a [n X m] matrix of
constants assumed to have rank » and c is a [m X 1] vector of unknown coefficients to be estimated.
The least square solution of matrix problem Y ~ Xc¢ may be defined as ¢ = (XTX)_IXTy, this is the
first step of regression. Besides retrieving the polynomial coefficients, the regression analysis also
provides a method, called #-statistic, to measure the uncertainty of these coefficients. The ¢-statistic of
a coefficient is the ratio of that coefficient value to its standard deviation. Consequently, coefficients
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with low values of #-statistic are not accurately estimated. Allowing poorly estimated terms to remain
in the experimental model may reduce the predicted accuracy. Common measurement of the utility of
removing coefficients for improving the accuracy of the response surface is called adjusted ANOVA

SSE/DOFssg

Ry=1- o
SYY/DOFsyy

adj = (1)
where SSE is error sum of squares, SYY is total sum of squares and DOF (degree of freedom) is
the number of numerical experiments. DOFgssg and DOFgyy are obtained from ANOVA calculations.
Typical values of R(zl 4j are from 0.9 to 1.0 when observed responses are accurately predicted.

3.2. Design of experiments

The article utilizes Central Composite Experimental Design (CCD) [56]. The central composite
design sampling method is widely used in response surface applications. By selecting corner, axial,
and centerpoints, it is an ideal solution for fitting a second-order response surface model. However, as
it requires a relatively large number of sample points, the CCD method should only be chosen in a later
stage of the RSM application when the total number of important variables is reduced to an acceptable
figure. For example, a type III second-order model is proposed for a two-random-variable response
surface problem and the CCD method is chosen to select the sample points. In terms of the coded
variables, the design will have four runs at the corners of the square (-1,-1),(1,-1),(-1,1),(1, 1);
one run at the center point (0, 0); and another four axial runs at (-2, 0), (2, 0), (0, —2), (0, 2). The total
number of sample points selected for fitting such a type III model is 9 (determined by the equation
2k + 2k + 1),10 while the minimum number of runs for fitting such model, in a saturated sampling
method, is 5 (determined by the equation 2k + 1). Thus when £ is relatively large, the computational
cost of running a finite element program using the CCD method is considerably higher.

3.3. Genetic algorithm

Genetic Algorithm (GA) [33-38] is a search algorithm based on the mechanics of natural selection
and natural genetics, known as Darwinian’s principle. A traditional GA may be essentially composed
of three basic operators:

(1) Reproduction or selection: The reproduction is a process in which individual strings are copied
according to their objective function values (“fitness”). Copying strings according to their fitness
means that strings with higher value have a higher probability of contributing one or more offspring
in the next generation. This operator is very similar to natural selection, survival of the fittest among
string creatures. The reproduction may be done in a number of ways, but the easiest one is spinning a
typical roulette wheel.

(2) Crossover: Members of the newly reproduced strings in the mating pool are mated at ran-
dom and cross over their chromosomes together. For instance, the parents “abcde” and “ABCDE” can
create an offspring with a possible chromosome “abcDE”. The position between “c” and “D” is deter-
mined as crossover point where the chromosome set of the second parent overwrites the chromosome
set of the first parent.

(3) Mutation: The mutation operator helps changing the state of some linking points on the par-
ent’s chromosome in order to prevent from loosing potentially useful genetic material (1’s or 0’s at
particular locations).

Generally, a GA with an initial n-population chosen from a random selection of parameters in
the parametric space. Each parameter set presents the individual’s chromosome. Each individual is
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assigned a fitness based on how well each individual’s chromosome allows it to perform in its en-
vironment. Naturally, only fit individuals are selected for mating, while weak ones die off. Mated
parents create their children with chromosome sets are mix of the parent’s chromosomes. The process
of mating and children creation is continued so as to create a fitter generation of n children; practically,
this is well presented by the increase or decrease of average fitness of the population. The process of
reproduction-crossover-mutation is repeated until entire population size is replenished with children.
The successive generations are created until very fit individuals are obtained.

3.4. Simulated annealing

Simulated Annealing (SA) [38—42] is a robust global optimization algorithm that has been ap-
plied widely in many engineering areas. It was originally developed for optimizing discrete global
optimization problems and has been modified recently so as to analyze the continuous problems. The
method is reported to perform well in the presence of a large number of design variables and local
optima. Based on the idea of cooling molten metal, SA particularly has the ability to discriminate
between functional “gross behavior” and “finer wrinkles” by reaching an area in the function domain
where a global optimum should be present. Moreover, the inherent random fluctuations in energy
allow the annealing system to escape local energy optimum to achieve the global one by moving in
both uphill and downhill directions. The review of traditional SA may be described as follows:

Let f (x) be the function to be minimized and x be a set of n design variables x; (i = 1, ..., n) with
lower bound a; and upper bound b;.

- Step 1: Initializing the parameters.

The required parameters may be regarded as the starting point X, the initial temperature T and
the original function values f*, in which k is set as 0.

- Step 2: Generating the new candidate points.

These new coordinate values are uniformly distributed in intervals centered on the corresponding
coordinate x; using a typical neighborhood analysis. This phase will finish as soon as the points
belonging to the definite domain are successfully created.

- Step 3: Accepting or rejecting the fresh candidate points relying on the Metropolis criterion.

The new state is naturally accepted if the energy of the new state is no greater than that of the

current state; otherwise, it will be only accepted with probability [37-40]

p(Af) =exp(=Af/T) (12)

in which Af = f (xk“) - f (xk), 1 is the new generated point and xF is the original point.

In practice, a pseudo random number p € [0, 1] is created to check the regularity of the high
energy point. This point is only accepted if p» < p, x is updated with x and the algorithm moves
uphill. Otherwise, the point will be rejected. In case of rejection, the process returns to Step 2 to find
a better candidate.

- Step 4: Reducing the temperature 7.

The SA algorithm usually starts at high temperature 7 and maintains the tendency of slowly
decreasing this parameter to reach to a low energy state. After annealing, it is necessary return Step 2
to continue reaching the optimum point.

- Step 5: Verifying the convergent condition.

The optimization process is stopped at a temperature low enough that no more useful improve-
ments can be expected. If the convergent condition is not satisfied, it is again necessary to return to
Step 2 to perform a new optimization system.

- Step 6: Exporting the optimum results.
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3.5. Integrated Multiobjective Optimization algorithm

In this article, a general Multiobjective Optimization algorithm, known as weighted global crite-
rion [37, 45], is utilized. This is a scalar method that combines all objective functions to form a single
function U. The most common weighted global criterion for k objectives f; (x) may be defined as

follows [37, 45]: 1/
k p
U= {Z [ (00 - f?)]”} (42

i=1
k
where w; is a vector of weights typically set by the decision maker such that Z w; = 1 withw; > 0 and
p is an adjusted coefficient which is proportional to the amount of empha:sils placed on minimizing
the above function with the largest difference between f; (x) and the utopia point fio = min {f; (x)}.
Practically, the set of utopia points of multiple objectives is unique and explicit for each multiobjective
optimization problem. The idea of U was developed from the concept of the Pareto optimal. The
Pareto optimal is a compromise solution which is retrieved by minimizing the Euclidian distance

1/2

d o2 L o

D(x) = Z [ fix) = f; ] from the utopia point in the criterion space.
i=1

In practice, the major difficulty with Multi- Start
objective Optimization algorithm is to determine
the appropriate weighting factors. The final deci- l
sion for these factors is normally depends on the Specify the set of utopia points
experience of the designer; thus, it can not yield T
even increases in the performance at all design ¥
points reliably. In order to overcome this difficulty, Vary weighting factors <
an automatic design method that determines ap- i,
propriate weighting factors by relying on an inte- Optimize function U with SA;
grated optimizer was developed. It is shown that Compute performance losses
the different sets of weighting factors can yield ¢
different design results of multiple objectives op-
timization; these factors, therefore, have to be con- Improve objective  with GA

sidered as additional design variables. In the pro-
posed method, the weighting factors are integrated

No
in a new objective function which is defined as fol- Converge
lows Int ted Yes
. . . ntegrate
Minimize: £
N2
k  k [ Optimal results ]
F, = Z Z |lossi - lossj|
=1 j>i (14) Figure 2. Design procedure of the weighting
in — fi(x°P") factors
loss; = .
Ji

The superscript opt shows the optimum point of the multiobjective function U. It is clear that
X is considered as a set of design variables of multiobjective function U. w is treated as a set of
design variables of the integrated objective function F,. Practically, the loss; function indicates the
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performance loss of each optimized objective in comparison with its ideal point and the F, objective
function states the total mutual differences in the performance loss ratio between all optimal objec-
tives. The set of weighting factors that minimizes the objective function F, can improve the design
evenly at all points and disciplines. The procedure for these weighting factors is summarized in the
flow chart as shown in Fig. 2.

The entire process is an integration of the two optimization cycles. Firstly, the weighting factors
are arbitrarily and continuously set by the integrated optimizer with the progress of the optimization
process. The multiobjective function U is formed in according with each set of these factors. The
optimum wing is then designed using the Simulated Annealing optimizer. After executing the wing
optimization, the performance losses of all objectives, which involve the multiobjective function, are
computed and used to estimate the function value of F), to be optimized. The above process will be
enhanced by the Genetic Algorithm optimizer until the convergent condition is satisfied. In general,
the authors simply suggest a reasonable mode to retrieve a unique set of weighting factors relying on
non-dominated solution for all objectives. No objective can dominate the others. Therefore, the design
system will be improved evenly for all disciplines. However, the final decision in selection of this set
of weighting factors for weighted-global-criterion objective function might depends on designer’s
preference in making trade-off without applying the above integrated algorithm.

4. Case study

In Vietnam, there are several optimization problems for composite cellular beam as shown in [57]
and water supply system as shown in [58]. But in this article, we will do case study of design optimiza-
tion problem for an aircraft wing. Wing design optimization was carried out using the proposed MDO
framework. The multiobjective optimization problem was weight minimization and lift-to-drag max-
imization with constraint of maximum wing tip deflection. More specifically, we can see in Tables 1
and 2.

Table 1. Design variables Table 2. Material properties
Design variables Lower bound Upper bound Properties Al 2024-T3
Aspect ratio 3.5 4.2 Elastic modulus (N/mmz) 73100
Poisson ratio 0.33
T: i 2 .
apper ratio 0 033 Shear modulus (N/mm?) 28000
Sweep angle (degrees) 31 41 Density (kg/mm?) 2.78 x 107°

The airfoil of the wing is ONERA. Angle of attack is 3°. The cruising speed is 500 km/h (Mach
number equals 0.4). Air density is 1.17667 kg/m?, cruising altitude is 417 m. Fifteen experimental
points were generated for 3 design variables using the CCD method. CFD and CSM analyses were
performed for each of the experimental points (see Figs. 3, 4 and 5).

The response model for generating a response surface is a second-order polynomial, and 15 exper-
imental points were generated for 3 design variables using the CCD method (see Table 3). Response
surfaces were generated for the objective functions and the constraints. The generated response sur-
faces are optimized using the proposed integrated Multiobjective Optimization algorithm (see Table
4).
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983404
9.74e+404
9.6de404
9.55e+04
9.45e+04
9.37e404
9280404
9.18e+404

9.09e+04
9.00e+04 N

Contours of Static Pressure (pascal) Sep 18, 2019
ANSYS Fluent Release 16.0 (3d, dp, dbns imp, S-4)

Figure 3. CFD grid generation Figure 4. CFD analysis

Figure 5. CSM grid generation

Table 3. Design of experiments results

Test points  Aspect ratio Tapper ratio Sweep angle (°C) Cp Cp Mass (kg) Deflection Lift/Drag
1 3.85 0.265 36 0.0025008 0.14725 9.257 7.658 58.881
2 3.5 0.265 36 0.0025209 0.12947 8.530 4.638 51.359
3 3.85 0.33 36 0.0025239 0.16353  10.078 9.135 64.793
4 3.85 0.265 31 0.0025665 0.15036 9.179 5.451 58.586
5 3.85 0.265 41 0.0024960 0.14244 9.340 10.465 57.067
6 4.2 0.265 36 0.0024722 0.16506 9.986 11.904 66.766
7 3.85 0.2 36 0.0026929 0.13082 8.475 5.837 48.580
8 3.5 0.2 31 0.0027646 0.11647 7.753 2.668 42.129
9 4.2 0.2 41 0.0026939 0.14161 9.221 13.106 52.567
10 3.5 0.2 41 0.0025971 0.11218 7.877 5.269 43.194
11 4.2 0.33 31 0.0024862 0.18831 10.776 10.283 75.742
12 4.2 0.33 41 0.0025378 0.17591 10.977 19.214 69.316
13 4.2 0.2 31 0.0028076 0.14996 9.061 6.540 53.412
14 3.5 0.33 41 0.0025676 0.13949 9.364 7.653 54.327
15 3.5 0.33 31 0.0026351 0.14668 9.204 4.213 55.664
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Table 4. Optimum results

Parameters Optimized wing Original wing
Aspect Ratio 3.78503 3.850
Tapper ratio 0.27245 0.265
Sweep angle (degrees) 34.51323 36.000
Mass (kg) 9.18909 9.257
Lift/Drag 58.51032 58.881
Lift coefficient 0.14689 0.14725

Optimized wing . .
Original wing

Figure 6. Optimized wing and Original wing

5. Conclusions

This research is motivated by our interest in developing and improving computational capability
of MDO system. Considerable MDO work was successfully performed for a tested wing to validate
several suggested algorithms that can be easily applied for more complex and practical problems.
The high-fidelity structural analysis commercial code was coupled with the commercial CFD code
and robust Fluid/Structure coupling algorithm to realize the analyses. The aerodynamic and structural
meshes were well-managed by using Gridgen (Pointwise) and Patran Command Language. The design
system was subsequently approximated by utilizing Response Surface Method. Efficient optimization
algorithms (Genetic algorithm and Simulated Annealing) were used. The use of equal weighting fac-
tors does not yield even increases of performances at all design points. Thus, an automatic design
method that relies on an integrated optimizer for determining appropriate weighting factors was pro-
posed. Through the use of this method, the aerodynamic and structural performances can be improved
evenly. The Multidisciplinary Aero-Structural Design is, therefore, desirable and practical.

Acknowledgement
The authors acknowledge the support of Ho Chi Minh City University of Technology and Educa-

tion for major theme of the university.

References

[1] Sobieszczanski-Sobieski, J., Haftka, R. T. (1997). Multidisciplinary aerospace design optimization: sur-
vey of recent developments. Structural Optimization, 14(1):1-23.

38


https://doi.org/10.1007/BF01197554
https://doi.org/10.1007/BF01197554

(2]
(3]

(4]
(5]

(6]
(7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]
(15]

[16]

(17]

(18]
(19]

(20]

(21]
(22]

(23]

Xuan-Binh, L. / Journal of Science and Technology in Civil Engineering

Wakayama, S. R. (1995). Lifting surface design using multidisciplinary optimization. PhD thesis, Stan-
ford University.

Walsh, J. L., Townsend, J. C., Salas, A. O., Samareh, J. A., Mukhopadhyay, V., Barthelemy, J.-F. (2000).
Multidisciplinary high-fidelity analysis and optimization of aerospace vehicles. Part 1: Formulation. ATAA
Journal, ATAA-2000-0418.

Martins, J. R. (2002). A coupled-adjoint method for high-fidelity aero-structural optimization. PhD
thesis, Stanford University.

Kim, Y., Kim, J., Jeon, Y., Bang, J., Lee, D.-H., Kim, Y., Park, C. (2002). Multidisciplinary aerodynamic-
structural design optimization of supersonic fighter wing using response surface methodology. In 40th
AIAA Aerospace Sciences Meeting & Exhibit, AIAA-2002-0322.

Guinta, A. A. (1997). Aircraft multidisciplinary design optimization using design of experimental theory
and response surface modeling methods. PhD thesis, University of Virginia.

Giunta, A. A., Balabanov, V., Haim, D., Grossman, B., Mason, W. H., Watson, L. T., Haftka, R. T. (1996).
Wing design for a high-speed civil transport using a design of experiments methodology. AIAA Journal,
ATAA-96-4001.

Joaquim, R. R., Alonso, J. J., Reuther, J. (2001). Aero-structural wing design optimization using high-
fidelity sensitivity analysis. In Proceeding to CEAS Conference on Multidisciplinary Aircraft Design
Optimization, Confederation of European Societies.

Chittick, I. R., Martins, J. R. R. A. (2008). Aero-structural optimization using adjoint coupled post-
optimality sensitivities. Structural and Multidisciplinary Optimization, 36(1):59-70.

Gumbert, C. R., Hou, G. J.-W,, Newman, P. A. (2005). High-fidelity computational optimization for 3-
D flexible wings: Part [-Simultaneous aero-structural design optimization (SASDO). Optimization and
Engineering, 6(1):117-138.

Kumano, T., Jeong, S., Obayashi, S., Ito, Y., Hatanaka, K., Morino, H. (2006). Multidisciplinary design
optimization of wing shape with nacelle and pylon. In European Conference on Computational Fluid
Dynamics ECCOMAS CFD, TU Delft, The Netherlands.

de Weck, O., Agte, J., Sobieszczanski-Sobieski, J., Arendsen, P., Morris, A., Spieck, M. (2007). State-of-
the-art and future trends in multidisciplinary design optimization. In 48th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Hawaii, USA, AIAA-2007-1905.

Martins, J. R. R. A., Marriage, C. (2007). An objective-oriented framework for multidisciplinary de-
sign optimization. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Hawaii, USA, ATAA-2007-1906.

Kamakoti, R., Shyy, W. (2004). Fluid-structure interaction for aeroelastic applications. Progress in
Aerospace Sciences, 40(8):535-558.

Guruswamy, G. P. (2002). A review of numerical fluids/structures interface methods for computations
using high-fidelity equations. Computers & Structures, 80(1):31-41.

Hounjet, M. H. L., Meijer, J. J. (1995). Evaluation of elastomechanical and aerodynamic data trans-
fer methods for non-planar configurations in computational aeroelastic analysis. National Aerospace
Laboratory NLR.

Bhadra, S., Ganguli, R. (2006). Aeroelastic optimization of a helicopter rotor using orthogonal array-
based metamodels. AIAA Journal, 44(9):1941-1951.

Bishop, C. M. (1996). Neural networks for pattern recognition. Oxford University Press.

Haykin, S. (1999). Neural networks: a comprehensive foundation. Prentice-Hall International Inc, New
Jersey, USA.

Demuth, H. B., Beale, M. H., De Jess, O., Hagan, M. T. (1996). Neural network design. Massachusetts,
USA.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1-67.
Turner, C. J., Crawford, R. H., Campbell, M. I. (2007). Multidimensional sequential sampling for NURBs-
based metamodel development. Engineering with Computers, 23(3):155-174.

Mullur, A. A., Messac, A. (2005). Extended radial basis functions: more flexible and effective metamod-
eling. AIAA Journal, 43(6):1306-1315.

39


https://doi.org/10.2514/6.2002-322
https://doi.org/10.2514/6.2002-322
https://doi.org/10.1007/s00158-007-0200-9
https://doi.org/10.1007/s00158-007-0200-9
https://doi.org/10.1023/B:OPTE.0000048539.37526.e3
https://doi.org/10.1023/B:OPTE.0000048539.37526.e3
https://doi.org/10.2514/6.2007-1905
https://doi.org/10.2514/6.2007-1905
https://doi.org/10.1016/j.paerosci.2005.01.001
https://doi.org/10.1016/S0045-7949(01)00164-X
https://doi.org/10.1016/S0045-7949(01)00164-X
https://doi.org/10.2514/1.11776
https://doi.org/10.2514/1.11776
https://doi.org/10.1007/s00366-006-0051-9
https://doi.org/10.1007/s00366-006-0051-9
https://doi.org/10.2514/1.11292
https://doi.org/10.2514/1.11292

(24]
[25]
[26]
(27]
(28]
(29]

(30]

(31]
(32]
(33]
(34]
[35]
(36]
(37]
(38]
(39]
[40]

(41]

(42]
[43]
[44]
[45]
[46]
[47]
(48]

[49]
(50]

Xuan-Binh, L. / Journal of Science and Technology in Civil Engineering

Mullur, A. A., Messac, A. (2006). Metamodeling using extended radial basis functions: a comparative
approach. Engineering with Computers, 21(3):203.

Koehler, J. R., Owen, A. B. (1996). Computer experiments, Handbook of statistics 13: Design and anal-
ysis of experiments. Elsevier Science.

Giunta, A., Watson, L. (1998). A comparison of approximation modeling techniques-Polynomial versus
interpolating models. AIAA Journal, AIAA-98-4758.

Sacks, J., Welch, W. J., Mitchell, T. J., Wynn, H. P. (1989). Design and analysis of computer experiments.
Statistical Science, 409-423.

Jeong, S., Murayama, M., Yamamoto, K. (2005). Efficient optimization design method using Kriging
model. Journal of Aircraft, 42(2):413—-420.

Simpson, T. W., Lin, D. K. J., Chen, W. (2001). Sampling strategies for computer experiments: design
and analysis. International Journal of Reliability and Applications, 2(3):209-240.

Simpson, T. W., Booker, A. J., Ghosh, D., Giunta, A. A., Koch, P. N., Yang, R. J. (2004). Approximation
methods in multidisciplinary analysis and optimization: a panel discussion. Structural and Multidisci-
plinary Optimization, 27(5):302-313.

Martin, J. D., Simpson, T. W. (2005). Use of kriging models to approximate deterministic computer
models. AIAA Journal, 43(4):853-863.

Clarke, S. M., Griebsch, J. H., Simpson, T. W. (2004). Analysis of support vector regression for approxi-
mation of complex engineering analyses. Journal of Mechanical Design, 127(6):1077-1087.

Goldberg, D. E. (1989). Genetic algorithms and machine learning. Addison Wesley Longman Inc,
Massachusetts, USA.

Michalewicz, Z. (1996). Genetic algorithms+ data structures = evolution programs. Springer-Verlag
Berlin Heidelberg, New York, USA.

Yang, G., Reinstein, L. E., Pai, S., Xu, Z., Carroll, D. L. (1998). A new genetic algorithm technique in
optimization of permanent prostate implants. Medical Physics, 25(12):2308-2315.

Carroll, D. L. (1996). Chemical laser modeling with genetic algorithms. AIAA Journal, 34(2):338-346.
Arora, J. S. (2004). Introduction to optimum design. Elsevier.

Arora, J. S., Elwakeil, O. A., Chahande, A. 1., Hsieh, C. C. (1995). Global optimization methods for
engineering applications: A review. Structural Optimization, 9(3-4):137-159.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220
(4598):671-680.

Goffe, W. L., Ferrier, G. D., Rogers, J. (1994). Global optimization of statistical functions with simulated
annealing. Journal of Econometrics, 60(1-2):65-99.

Corana, A., Marchesi, M., Martini, C., Ridella, S. (1987). Minimizing multimodal functions of continuous
variables with the “simulated annealing” algorithm Corrigenda for this article is available here. ACM
Transactions on Mathematical Software (TOMS), 13(3):262-280.

Yao, X. (1991). Simulated annealing with extended neighbourhood. Infernational Journal of Computer
Mathematics, 40(3-4):169-189.

Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A. et al. (2007). Evolutionary algorithms for solving
multi-objective problems, volume 5. Springer.

Deb, K. (2007). Current trends in evolutionary multi-objective optimization. International Journal for
Simulation and Multidisciplinary Design Optimization, 1(1):1-8.

Marler, R. T. (2005). A study of multi-objective optimization methods for engineering applications. PhD
thesis, The University of lowa.

Fluent Inc (2005). Fluent user’s manual. Fluent Inc, New Hampshire, USA.

Hirsch, C. (2007). Numerical computation of internal and external flows. Oxford, England.

Blazek, J. (2001). Computational fluid dynamics: principles and applications. Elsevier Science Ltd,
Oxford, England.

Chung, T. J. (2002). Computational fluid dynamics. Cambridge University Press, Cambridge, England.
Ferziger, J. H., Peri¢, M. (2002). Computational methods for fluid dynamics, volume 3. Springer-Verlag
Berlin Heidelberg, New York, USA.

40


https://doi.org/10.1007/s00366-005-0005-7
https://doi.org/10.1007/s00366-005-0005-7
https://doi.org/10.2514/6.1998-4758
https://doi.org/10.2514/6.1998-4758
https://doi.org/10.2514/1.6386
https://doi.org/10.2514/1.6386
https://doi.org/10.1007/s00158-004-0389-9
https://doi.org/10.1007/s00158-004-0389-9
https://doi.org/10.2514/1.8650
https://doi.org/10.2514/1.8650
https://doi.org/10.1115/1.1897403
https://doi.org/10.1115/1.1897403
https://doi.org/10.1118/1.598460
https://doi.org/10.1118/1.598460
https://doi.org/10.2514/3.13069
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/0304-4076(94)90038-8
https://doi.org/10.1016/0304-4076(94)90038-8
https://doi.org/10.1145/29380.29864
https://doi.org/10.1145/29380.29864
https://doi.org/10.1080/00207169108804011
https://doi.org/10.1051/ijsmdo:2007001

(51]

[52]
(53]
[54]
[55]
[56]
[57]

(58]

Xuan-Binh, L. / Journal of Science and Technology in Civil Engineering

Anderson, J. D. (1995). Computational fluid dynamics: the basics with applications. McGraw-Hill Inc,
Columbus, Ohio, USA.

Pointwise Inc (2019). Pointwise user’s manual. Pointwise Inc, USA.

Dassault Systems (2019). Catia user’s manual. Dassault Systems, France.

Autodesk Inc (2019). Autodesk inventor nastran user’s manual. Autodesk Inc, USA.

MSC Software (2016). Patran user’s guide. MSC Software, USA.

Myers, R. H. (1971). Response surface methodology. Boston: Allyn and Bacon, Inc.

Hieu, N. T., Tuan, V. A. (2018). Weight optimization of composite cellular beam based on the differential
evolution algorithm. Journal of Science and Technology in Civil Engineering (STCE)-NUCE, 12(5):
28-38.

Huong, N. L., Anh, N. V., Huyen, D. T. T., Son, T. H., Cuong, D. V. (2018). Optimization to water supply
system design and operation scheme in high rise buildings. Journal of Science and Technology in Civil
Engineering (STCE)-NUCE, 12(3):123-131.

41


https://doi.org/10.31814/stce.nuce2018-12(5)-04
https://doi.org/10.31814/stce.nuce2018-12(5)-04
https://doi.org/10.31814/stce.nuce2018-12(3)-12
https://doi.org/10.31814/stce.nuce2018-12(3)-12

	Introduction
	Fluid flow analysis and structural analysis
	Aerodynamics analysis
	Structural analysis
	Data transfer

	Optimization algorithms
	Response surface method
	Design of experiments
	Genetic algorithm
	Simulated annealing
	Integrated Multiobjective Optimization algorithm 

	Case study
	Conclusions

