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Abstract

In this research, the smoothed finite element methods (S-FEM) based on the edge-based (ES) and node-based
(NS) approaches are combined to develop for the 3-node triangular plate element which uses the mixed inter-
polation of tensorial components (MITC3) technique to remove the shear-locking phenomenon. This approach
is based on the βFEM in which the parameter β is used to tune the contribution ratio of the edge-based and
node-based smoothed domains. The strain fields of the proposed ES+NS-MITC3 element are smoothed on a
part of the edge-based domains and the other on the node-based domains which are respectively defined by
elements sharing common edges and common nodes. The ES+NS-MITC3 element passes the patch test and is
employed to statically analyze some benchmark Reissner-Mindlin plates, including square and rhombus ones.
Numerical results show that, in both thin and thick plates the ES+NS-MITC3 element can give results better
than similar elements using the ES-FEM or NS-FEM only.
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1. Introduction

Plate is one of the most popular structures in construction, shipbuilding, automotive or aerospace
industries due to its advantages of load-carrying capacity and aesthetics. Instead of using analytical
approaches [1–3], to determine the behaviors of complex plate structures the finite element methods
(FEM) are widely employed. Then many plate finite elements have been developed, especially trian-
gular elements based on the thick plate theory of Reissner-Mindlin which includes the transverse shear
strains [1]. One of the simplest triangular elements is the 3-node triangular element because it uses
the C0-type displacement approximation and is most efficient to discretize arbitrary plate geometries.
However, the original C0-type elements always exists non-zero transverse shear strains and leads to
underestimate the deflection, or the shear-locking phenomenon, of the thin plates which ignore the
transverse shear strains according to the Kirchhoff-Love plate theory. To make the C0-type elements
be used for analysis of both thin and thick plates, various techniques have been suggested and success-
fully applied to alleviate the shear locking. The Mindlin-type 3 node (MIN3) [4], the discrete shear
gap (DSG3) [5], or the mixed interpolation of tensorial components (MITC3) [6] techniques are some
of efficient approaches to attenuate the shear locking in the 3-node triangular element. Especially, the
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MITC3 approach satisfies the requirement of spatial isotropy, meaning that the element stiffness ma-
trices are independent of the sequence of node numbering. Consequently, the plate elements MIN3,
DSG3 or MITC3 can be used to analyze both thin and thick Reissner-Mindlin plates.

The strain fields of the 3-node triangular elements are constant on element domains because of
C0-type displacement approximation. To reduce much difference in strain fields between the elements,
the smoothed finite element methods (SFEM) have been proposed [7]. According to the SFEM, the
strain fields can be averaged over smoothed domains defined by adjacent elements having common
edges or common nodes, namely the edge-based smoothed (ES) or the node-based smoothed (NS)
methods respectively. Although the cell-based smoothed (CS) method is the other type of the SFEM,
it is identical to the FEM when applied for the isotropic 3-node triangular elements. The ES- and
NS-FEM have been successfully developed for the DSG3 and MITC3 plate elements [8–11].

Numerical results show that the ES-FEM usually brings overly stiff effects on the behaviors of
the discretized model. In contrast, the NS-FEM causes overly soft behaviors in comparison with ana-
lytical solutions. To narrow the gap in results provided by the SFEM and the analytical solutions, the
hybrid SFEM or βFEM has been suggested [12, 13] by reconstructing a new smoothed strain fields
which includes the ES- and NS-strain fields. In this approach, a scale factor β ∈ [0,1] is used to tune
the contribution ratio of ES- and NS-domains into the hybrid smoothed strain fields. The βFEM for
the DSG3 plate element has demonstrated the superior performance when analyzing statics and vibra-
tion of the Reissner-Mindlin plates [12, 13]. Therefore, the βFEM will be developed for the MITC3
triangular plate element in this work. The proposed plate element, called ES+NS-MITC3 element,
will be studied the accuracy and efficiency in the static analysis of the Reissner-Mindlin plates.

The paper is organized as follows. In the next section, the finite element formulae of the MITC3,
ES-MITC3, NS-MITC3 elements are briefly reviews and then the development of the ES+NS-MITC3
element is presented. The numerical performance of the ES+NS-MITC3 element is evaluated through
the static analyses of some benchmark plate problems in Section 3. In the last section, significant
conclusions about the proposed element are withdrawn.

2. Finite element formulation of ES+NS-MITC3 based on the Reissner-Mindlin plate theory

2.1. MITC3 plate element

Consider a bending plate with the mid-surface of area A as shown in Fig. 1. The plate is subjected
to loadings q normal to the mid-surface. According to the Reissner-Mindlin thick plate theory, the
translational displacements u, v,w related to the x-, y-, z-directions are determined by [1]

u (x, y, z) = zβx (x, y) ; v (x, y, z) = zβy (x, y) ; w (x, y, z) = w0 (x, y) (1)

where w0, βx, βy are respectively the deflection and the rotations of the mid-surface about y- and x-axis
with positive directions as shown in Fig. 1.

The mid-surface is discretized by the 3-node triangular elements. The displacements of the mid-
surface are approximated by [14]

w0 =

3∑
i=1

Niwi; βx =

3∑
i=1

Niθyi; βy = −

3∑
i=1

Niθxi (2)

46



Thanh, C. D., et al. / Journal of Science and Technology in Civil Engineering

Tạp chí Khoa học Công nghệ Xây dựng NUCE 2019 

3 
 

 (1)  

here w0, bx, by are respectively the deflection and the rotations of the mid-surface 
about y- and x-axis with positive directions as shown in Fig. 1. 
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in which wi, qxi, qyi are respectively the deflection and rotations of node i with the 
positive directions defined in Fig. 2; and the shape functions are 
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where xi, yi are the nodal coordinates of node i as shown in Fig. 2; and Ae is the area of 
the element. 

 From Eqs. (1) and (2), the relationships between the strains and the nodal 
displacements are determined 
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Figure 2. The 3-node triangular plate element and its
positive directions of the nodal displacements

in which wi, θxi, θyi are respectively the deflection and rotations of node i with the positive directions
defined in Fig. 2; and the shape functions are

N1 =
1

2Ae

[
(x2y3 − x3y2) + (y2 − y3) x + (x3 − x2) y

]
N2 =

1
2Ae

[
(x3y1 − x1y3) + (y3 − y1) x + (x1 − x3) y

]
N3 =

1
2Ae

[
(x1y2 − x2y1) + (y1 − y2) x + (x2 − x1) y

]
(3)

where xi, yi are the nodal coordinates of node i as shown in Fig. 2; and Ae is the area of the element.
From Eqs. (1) and (2), the relationships between the strains and the nodal displacements are

determined
εx

εy

γxy

 = z


∂βx/∂x
∂βy

/
∂y

∂βx/∂y + ∂βy
/
∂x

 = z
3∑

i=1

 0 0 Ni,x

0 −Ni,y 0
0 −Ni,x Ni,y

︸                  ︷︷                  ︸
Bbi


wi

θxi

θyi

︸  ︷︷  ︸
dei

= z
3∑

i=1

Bbidei (4)

{
γxz

γyz

}
=

{
βx + ∂w0/∂x
βy + ∂w0/∂y

}
=

3∑
i=1

[
Ni,x 0 Ni

Ni,x −Ni 0

]
︸                  ︷︷                  ︸

Bsi


wi

θxi

θyi

︸  ︷︷  ︸
dei

=

3∑
i=1

Bsidei (5)

where the gradients Bbi of the in-plane strains are given by

Bb1 =
1

2Ae

 0 0 b − c
0 a − d 0
0 c − b d − a

 ; Bb2 =
1

2Ae

 0 0 c
0 d 0
0 −c −d

 ; Bb3 =
1

2Ae

 0 0 −b
0 −a 0
0 b a

 (6)

in which a = x2˘x1, b = y2˘y1, c = y3˘y1, d = x3˘x1.
With the approximation of the transverse shear strains given by Eq. (5), there is always existence

of the transverse shear strains in analyzed plates. In other words, the pure 3-node triangular element
cannot be used for analysis of thin plates in which there are not the transverse shear strains according

47



Thanh, C. D., et al. / Journal of Science and Technology in Civil Engineering

to the Kirchhoff-Love thin plate theory. To be employed for both thin and thick plates, from the
mixed interpolation of tensorial components approach the transverse shear strains in Eq. (5) are re-
interpolated to be linear variations corresponding to the three edge directions of the element but be
constant on the edges. The interpolations of the transverse shear strains connect the displacement
approximations at tying points located at the mid-edges. The assumed transverse shear strains have
been designed by Lee and Bathe [6] for the continuum mechanics based 3-node triangular shell finite
elements, namely MITC3 technique to remove the shear locking. As a result, the transverse shear
strains in Eq. (5) can be rewritten as{

γMITC3
xz
γMITC3

yz

}
=

3∑
i=1

BMITC3
si dei (7)

in which by using one Gaussian quadrature point located at the centroid of the element, BMITC3
si

have been derived by Chau-Dinh et al. [10] in the explicit formulation, which only depends on nodal
coordinates, as follows

BMITC3
s1 =

1
2Ae

[
b − c (b − c) (b + c)/6 Ae + (d − a) (b + c)/6
d − a −Ae − (b − c) (a + d)/6 − (d − a) (a + d)/6

]
BMITC3

s2 =
1

2Ae

[
c −bc/2 + c (b + c)/6 ac/2 − d (b + c)/6
−d bd/2 − c (a + d)/6 −ad/2 + d (a + d)/6

]
BMITC3

s3 =
1

2Ae

[
−b −bc/2 − b (b + c)/6 −bd/2 + a (b + c)/6
a −ac/2 + b (a + d)/6 ad/2 − a (a + d)/6

] (8)

The constitutive relations between the stresses and the strains in the isotropic linear plates give
σx

σy

τxy

 =
E

1 − v2

 1 v 0
v 1 0
0 0 (1 − ν)/2



εx

εy

γxy

 =
Ez

1 − v2

 1 v 0
v 1 0
0 0 (1 − ν)/2

 3∑
i=1

Bbidei (9)

{
τxz

τyz

}
=

E
2(1 − v)

{
γMITC3

xz
γMITC3

yz

}
=

E
2(1 − v)

3∑
i=1

BMITC3
si dei (10)

with the Young’s modulus E and the Poisson’s ratio v.
The total potential energy of the plate subjected to the normal loadings q is expressed in matrix

notation as [14]

Π =

∫
A

h/2∫
−h/2

1
2

[
εxεyγxy

] 
σx

σy

τxy

 dzdA+
kh2

h2 + αh2
e

∫
A

h/2∫
−h/2

1
2

[
γMITC3

xz γMITC3
yz

] { τxz

τyz

}
dzdA−

∫
A

wqdA = 0

(11)
where the shear correction k is 5/6; the stabilized factor α is 0.1; and he is the maximum length of the
element’s edges [15].

Using Eqs. (4), (7), (9), and (10), the total potential energy is written by

Π =

Ne∑
e=1

1
2

dT
e


∫
Ae

BT
b DbBbdA

 de +

Ne∑
e=1

1
2

dT
e


∫
Ae

(
BMITC3

s

)T
DsBMITC3

s dA

 de −

Ne∑
e=1

dT
e

∫
Ae

NqdA = 0

(12)
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in which Bb = [Bb1 Bb2 Bb3]; BMITC3
s = [BMITC3

s1 BMITC3
s2 BMITC3

s3 ]; de = [dT
e1 dT

e2 dT
e3]T ; N =

[N1 0 0 N2 0 0 N3 0 0]T and

Db = D

 1 v 0
v 1 0
0 0 (1 − v)/2

 with D =
Eh3

12
(
1 − v2) (13)

Ds =
kEh3(

h2 + αh2
e

)
2(1 + v)

[
1 0
0 1

]
(14)

Differentiating Π in Eq. (12) with respect to de and equating each term to zero to minimize Π, the
discretized equilibrium equations are obtains as follows

Kd = F (15)

where d is the nodal displacements of the plate; K is the global stiffness matrix and assembled from
the element stiffness matrices

ke =

∫
Ae

BT
b DbBbdA +

∫
Ae

(
BMITC3

s

)T
DsBMITC3

s dA

= BT
b DbBbAe +

(
BMITC3

s

)T
DsBMITC3

s Ae

(16)

and F is the global load vector and assembled from the element load vectors

fe =

∫
Ae

NqdA (17)

2.2. ES-MITC3 plate element
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Figure 3. Edge-based smoothed domains for a plate
discretized by 3-node elements
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Figure 4. Node-based smoothed domains for a plate
discretized by 3-node elements

In the edge-based smoothed FEM [7], strain fields are averaged on domains of two adjacent ele-
ments. Particularly, the edge-based smoothed domains are defined by straight lines which connect the
edge’s nodes with the centroids of two elements sharing this edge as shown in Fig. 3. Therefore, the
ES-MITC3 plate element [10] is the MITC3 one in which the strain fields given by Eqs. (9) and (10)
are smoothed as follows
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where
_

Ak is the edge-based smoothed domain of edge “k”.
Using the relationships between the strain fields and nodal displacements given by Eqs. (9) and

(10), the smoothed strains fields in Eq. (18) can be expressed
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in which
_

Ak is the area of edge-based smoothed domain “k”;
_

Ne = 1 for edge “k” on the boundary

and
_

Ne = 2 for the others;
_

B
k

b,
_

B
k

s are respectively the gradient matrices of the in-plane and transverse
shear smoothed strains; and dk is the nodal displacements related to the smoothed domain “k”.

Substituting Eqs. (19) and (20) into the total potential energy in Eq. (11) and following the stan-
dard FEM procedure, the equilibrium equations of the plate discretized by the ES-MITC3 elements
are rewritten as

_

Kd = F (21)

where
_

K is the smoothed global stiffness matrix and assembled from the edge-based smoothed stiff-
ness matrices
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2.3. NS-MITC3 plate element

According to the node-based smoothed FEM [7], strain fields are averaged on domains of ele-
ments sharing nodes. These smoothed domains are defined by straight lines connecting the edges’
midpoints with the centroids of node-sharing elements as demonstrated in Fig. 4. As a result, the
strain fields in Eqs. (9) and (10) are smoothed on the node-based smoothed domains as follows [11]
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where
^

Al is the smoothed domain of node “l”.
Substituting the strain – nodal displacement relations in Eqs. (9) and (10) into the Eq. (23), the

node-based smoothed strains are rewritten
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in which
^

Al is the area of node-based smoothed domain “l”;
^

Ne and dl are respectively number of

elements and the nodal displacements belonging to the smoothed domain “l”; and
^

B
l

b,
^

B
l

s are the
gradient matrices of the in-plane and transverse shear smoothed strains, respectively.

Similarly, using the expressions of the nodal smoothed strains in Eqs. (24) and (25) for the strain
energy in the total potential energy in Eq. (11) and following the standard FEM procedure, the dis-
cretized equilibrium equations of the plate simulated by the NS-MITC3 elements can be obtained

^

Kd = F (26)

where
^

K is the smoothed global stiffness matrix and assembled from the node-based smoothed stiff-
ness matrices
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2.4. ES+NS-MITC3 plate element

In the approach of combining the ES- and NS-FEM, the strain fields of the MITC3 plate element
are now smoothed on a portion of the edge-based smoothed domains and the other of the node-based
smoothed ones as illustrated in Fig. 5(b). To build the smoothed domains including the ES- and NS-
ones, each element’s edge ed is divided into 3 segments as in Fig. 5(b) with the ratio

Led
1 = Led

3 = β
Led

2
; Led

2 = (1 − β) Led (28)
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Figure 5. (a) Edge and node-based smoothed domains for a plate discretized by 3-node elements;
(b) Definition of the ES- (line hatching) and the NS- (dot hatching) smoothed areas of a triangular element
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where Led = Led
1 + Led

2 + Led
3 ; β ∈ [0, 1] is a scale factor used to tune the contribution of the node-based

smoothed domains in the ES+NS-domains. It means that if β = 0, the ES+NS-domains become the
ES-domains, and if β = 1, the ES+NS-domains are purely NS-ones. This approach is also called the
βFEM [12, 13].

From the middle segments Led
2 and the end segments Led

1 and Led
3 , the ES-domains and NS-

domains are respectively constructed for elements having common edges and nodes to have the
smoothed areas of

Âk = β2_Ak; Ãl =
(
1 − β2

) ^

Al (29)

Consequently, the strain fields in Eqs. (9) and (10) averaged on the ES+NS-domains are deter-
mined by 
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Using Eq. (29) and substituting Eqs. (9), (10) into Eqs. (30), (31), the relationships between ES-
and NS-strain fields and the nodal displacements in the ES+NS-MITC3 plate element can be derived
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And then, from the total potential energy expressed in the smoothed strain fields given in Eqs.
(32)–(35), the equilibrium equations of the plates discretized by ES+NS-MITC3 elements can be
written

KES +NS d = F (36)

52



Thanh, C. D., et al. / Journal of Science and Technology in Civil Engineering

where KES +NS is the edge- and node-based smoothed global stiffness matrix and assembled from the
smoothed stiffness matrices
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3. Numerical examples

In this section, the accuracy and convergence of the ES+NS-MITC3 element will be evaluated
via the patch test and some benchmark plate problems. The results provided by the ES+NS-MITC3
element are compared with similar kinds of elements like ES-DSG3 [8], MITC3 [6], ES-MITC3
[10] and NS-MITC3 [11]. In all the examples, we choose the scale factor β = 0.6. To compare with
references, the deflection and moments at the plate center are normalized by

w̄c = wc
100D
qL4 ; M̄c = Mc

10
qL2 (39)

3.1. Patch test
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3.1. Patch test 

 Consider a patch test be a 0.01 m-thick rectangular plate with the dimension of 
0.24 m ´ 0.12 m, the Young's modulus E = 107 kN/m2 and the Poisson's ratio n = 0.25. 
The plate is discretized by 3-node triangular elements as in Fig. 6 [6]. With the 
deflection equation of the plate w = (1 + x + 2y + x2 + xy + y2 ) / 200 m, the ES+NS-
MITC3 element can reproduce the deflection and moments at node 5 as shown in 
Table 1. It means that the ES+NS-MITC3 plate element passes the patch test. 

 
Figure 6. Nodal coordinates of elements discretized for the patch test  

Table 1. Deflection and moments of the patch test at node 5 

Methods 
w5 

(´10-2 m) 

qx5  

(´10-2 rad.) 

qy5  

(´10-2 rad.) 

Mx5 

(kNm/m) 

My5 

(kNm/m) 

Mxy5 

(kNm/m) 

ES+NS-MITC3+ 0.6422 1.1300 -0.6400 -0.0111 -0.0111 -0.0033 

Exact solution 0.6422 1.1300 -0.6400 -0.0111 -0.0111 -0.0033 

3.2. Simply supported plate under uniform distributed loading 

 A square plate of the length L and the thickness h is simply supported on the 
boundary and subjected to the uniform loading q = 1 kN/m2 as illustrated in Fig. 7. 
The material properties are E = 1092000 kN/m2 and n = 0.3. The plate is modelled by 
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Figure 6. Nodal coordinates of elements
discretized for the patch test

Consider a patch test be a 0.01 m-thick rect-
angular plate with the dimension of 0.24 m ×
0.12 m, the Young’s modulus E = 107 kN/m2

and the Poisson’s ratio v = 0.25. The plate is dis-
cretized by 3-node triangular elements as in Fig.
6 [8]. With the deflection equation of the plate
w = (1 + x + 2y + x2 + xy + y2)/200 m, the ES+NS-
MITC3 element can reproduce the deflection and
moments at node 5 as shown in Table 1. It means
that the ES+NS-MITC3 plate element passes the
patch test.

Table 1. Deflection and moments of the patch test at node 5

Methods w5 (×10−2 m) θx5 (×10−2 rad.) θy5 (×10−2 rad.) Mx5 (kNm/m) My5 (kNm/m) Mxy5 (kNm/m)

ES+NS-MITC3+ 0.6422 1.1300 −0.6400 −0.0111 −0.0111 −0.0033
Exact solution 0.6422 1.1300 −0.6400 −0.0111 −0.0111 −0.0033

3.2. Simply supported plate under uniform distributed loading

A square plate of the length L and the thickness h is simply supported on the boundary and
subjected to the uniform loading q = 1 kN/m2 as illustrated in Fig. 7. The material properties are E
= 1092000 kN/m2 and v = 0.3. The plate is modelled by 2 × N × N triangular elements in which N is
number of elements on each edge.

The accuracy and convergence of the ES+NS-MITC3 element are studied for the thin plate with
the ratio h/L = 0.001 and the thick one with h/L = 0.1, and the meshes of N = 4, 8, 12, and 16.
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2´N´N triangular elements in which N is number of elements on each edge. 

 
Figure 7. Square plate simply supported on all edges and subjected to uniform 

distributed loading, and regularly meshed by N = 4 on each plate's edge  

  The accuracy and convergence of the ES+NS-MITC3 element are studied for 
the thin plate with the ratio h/L = 0.001 and the thick one with h/L = 0.1, and the 
meshes of N = 4, 8, 12, and 16.  

 The normalized deflections at the plate center provided by the ES+NS-MITC3 
element for the ratio h/L = 0.001 and h/L = 0.1 are demonstrated in Fig. 8. In both 
cases of the plate thickness, the convergence curve given by the ES+NS-MITC3 
element lies between those of the ES-MITC3 and NS-MITC3 elements. Therefore, the 
deflection of the ES+NS-MITC3 element approaches to the analytical solution [14] 
more rapidly than those of the ES-MITC3 and NS-MITC3 elements. However, the 
proposed combination of the ES- and NS-domains does not improve the results of 
moments as illustrated in Fig. 9. 

  
(a) h/L = 0.001 (b) h/L = 0.1 

Figure 8. Convergence of the normalized deflections at the center of the simply supported 
plates under uniform distributed loading 

Figure 7. Square plate simply supported on all edges and subjected to uniform distributed loading, and
regularly meshed by N = 4 on each plate’s edge

The normalized deflections at the plate center provided by the ES+NS-MITC3 element for the
ratio h/L = 0.001 and h/L = 0.1 are demonstrated in Fig. 8. In both cases of the plate thickness,
the convergence curve given by the ES+NS-MITC3 element lies between those of the ES-MITC3
and NS-MITC3 elements. Therefore, the deflection of the ES+NS-MITC3 element approaches to the
analytical solution [16] more rapidly than those of the ES-MITC3 and NS-MITC3 elements. However,
the proposed combination of the ES- and NS-domains does not improve the results of moments as
illustrated in Fig. 9.
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deflection of the ES+NS-MITC3 element approaches to the analytical solution [14] 
more rapidly than those of the ES-MITC3 and NS-MITC3 elements. However, the 
proposed combination of the ES- and NS-domains does not improve the results of 
moments as illustrated in Fig. 9. 
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Figure 9. Convergence of the normalized moments at the center of the simply supported 
plates under uniform distributed loading 

3.3. Simply supported Morley plate subjected to uniform distributed loading 

 Consider the rhombus Morley plate [15] of the length L = 100 cm and the 
thickness h = 1 cm as shown in Fig. 10. The plate is simply supported on all the edges 
and subjected uniform distributed loading q = 0.1 N/cm2. The Young's modulus E is 
109200 N/cm2 and the Poisson's ratio n  is 0.3.   

 
Figure 10. (a) Geometry, uniform distributed loading, and simply supported boundary 

of the Morley plate with a mesh of N = 4  

 The Morley plate is discretized by different meshes of N = 4, 8, 12, and 16, in 
which N is the number of elements on each edge of the plate (Fig. 10). The normalized 
deflections and moments at the plate center provided by the proposed element and the 
other reference ones are compared in Fig. 11 and Fig. 12 respectively. As shown in 
these figures, the results of the ES+NS-MITC3 element are average values of those 
given by the ES-MITC3 and NS-MITC3 elements. The deflection of the ES+NS-
MITC3 element well converge to the reference solution [15]. However, the accuracy 
and convergence of the moment given by the ES+NS-MITC3 are not good due to the 
bad results provide by the NS-MITC3 element. In this case, we can tune the scale 
factor b to be nearly equal 1.0 to dramatically reduce the overly soft behavior of the 
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Figure 9. Convergence of the normalized moments at the center of the simply supported plates
under uniform distributed loading
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Figure 10. Geometry, uniform distributed
loading, and simply supported boundary of the

Morley plate with a mesh of N = 4

Consider the rhombus Morley plate [17] of the
length L = 100 cm and the thickness h = 1 cm as
shown in Fig. 10. The plate is simply supported
on all the edges and subjected uniform distributed
loading q = 0.1 N/cm2. The Young’s modulus E
is 109200 N/cm2 and the Poisson’s ratio v is 0.3.

The Morley plate is discretized by different
meshes of N = 4, 8, 12, and 16, in which N is
the number of elements on each edge of the plate
(Fig. 10). The normalized deflections and mo-
ments at the plate center provided by the proposed
element and the other reference ones are compared
in Fig. 11 and Fig. 12, respectively. As shown in
these figures, the results of the ES+NS-MITC3 element are average values of those given by the ES-
MITC3 and NS-MITC3 elements. The deflection of the ES+NS-MITC3 element well converge to the
reference solution [17]. However, the accuracy and convergence of the moment given by the ES+NS-
MITC3 are not good due to the bad results provide by the NS-MITC3 element. In this case, we can
tune the scale factor β to be nearly equal 1.0 to dramatically reduce the overly soft behavior of the
node-based smoothed approach.
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3.4. Clamped circular plate under uniform distributed loading 

 Give a circular plate with the radius R = 5 m clamped on its circumference and 
subjected to uniform distributed loading q = 1 kN/m2 as shown Fig. 13(a). The plate 
thickness h with the ratio h/R = 0.02 and h/R = 0.2 are studied. The isotropic 
homogeneous material of the plate has E = 1092000 kN/m2, n = 0.3. 

  

(a) (b) 

Figure 13. (a) Geometry and loading of the clamped circular plate 
(b) A quarter of the plate discretized by 24 triangular elements and symmetric boundaries 

 Due to symmetry, a quarter of the plate is meshed by 6, 24, 54 or 96 elements as 
shown in Fig. 13(b). The deflections and moments at the plate center solved by the 
ES+NS-MITC3 and other reference elements are respectively demonstrated in Fig. 14 
and Fig. 15. Numerical results show that the hybrid model of the ES+NS-MITC3 
element can reduce the overly soft behaviors of the NS-MITC3 element and the overly 
stiff behaviors of the ES-MITC3 to rapidly approach the reference solutions [1] for 

Figure 11. Convergence of the normalized
deflections at the center of the Morley plate
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Figure 12. Convergence of the normalized moments
at the center of the Morley plate

3.4. Clamped circular plate under uniform distributed loading

Give a circular plate with the radius R = 5 m clamped on its circumference and subjected to
uniform distributed loading q = 1 kN/m2 as shown Fig. 13(a). The plate thickness h with the ratio
h/R = 0.02 and h/R = 0.2 are studied. The isotropic homogeneous material of the plate has E =
1092000 kN/m2, v = 0.3.

Due to symmetry, a quarter of the plate is meshed by 6, 24, 54 or 96 elements as shown in
Fig. 13(b). The deflections and moments at the plate center solved by the ES+NS-MITC3 and other
reference elements are respectively demonstrated in Fig. 14 and Fig. 15. Numerical results show that
the hybrid model of the ES+NS-MITC3 element can reduce the overly soft behaviors of the NS-
MITC3 element and the overly stiff behaviors of the ES-MITC3 to rapidly approach the reference
solutions [1] for both thin (h/R = 0.02) and thick (h/R = 0.2) plates.
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Figure 13. (a) Geometry and loading of the clamped circular plate;
(b) A quarter of the plate discretized by 24 triangular elements and symmetric boundaries
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both thin (h/R = 0.02) and thick (h/R = 0.2) plates.  

  
(a) h/R = 0.02 (b) h/R = 0.2 

Figure 14. (a) Deflections at the center of the clamped circular plate corresponding to 
different meshes of 6, 24, 54 and 96 elements  

  
(a) h/R = 0.02 (b) h/R = 0.2 

Figure 15. (a) Moments at the center of the clamped circular plate corresponding to 
different meshes of 6, 24, 54 and 96 elements 

4. Conclusions 

 The bFEM, which is the hybrid approach of the edge-based and node-based 
smoothed strains, has been developed for the 3-node triangular MITC3 plate elements. 
The suggested ES+NS-MITC3 element passes the patch test and attenuates the shear-
locking phenomenon. The static analyses of some benchmark plate problems show 
that the ES+NS-MITC3 element can reduce the overly stiff and soft behaviors of the 
purely ES-MITC3 and NS-MITC3 elements respectively. As a result, the ES+NS-
MITC3 element improves the accuracy of the plate deflections and moments as 
compared with the ES-MITC3 and NS-MITC3 elements, especially in the cases of 
coarse meshes. 
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Figure 14. Deflections at the center of the clamped circular plate corresponding to
different meshes of 6, 24, 54 and 96 elements
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Figure 15. Moments at the center of the clamped circular plate corresponding to
different meshes of 6, 24, 54 and 96 elements

4. Conclusions

The βFEM, which is the hybrid approach of the edge-based and node-based smoothed strains,
has been developed for the 3-node triangular MITC3 plate elements. The suggested ES+NS-MITC3
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element passes the patch test and attenuates the shear-locking phenomenon. The static analyses of
some benchmark plate problems show that the ES+NS-MITC3 element can reduce the overly stiff
and soft behaviors of the purely ES-MITC3 and NS-MITC3 elements respectively. As a result, the
ES+NS-MITC3 element improves the accuracy of the plate deflections and moments as compared
with the ES-MITC3 and NS-MITC3 elements, especially in the cases of coarse meshes.
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