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Abstract

The current article is concerned with the interaction of Rayleigh waves with surface defects of arbitrary shape
in a homogeneous, isotropic, linearly elastic half-space. Using a linear superposition principle, the interaction
generates a scattered field which is equivalent to the field radiated from a distribution of horizontal and vertical
tractions on the surface of the defect. These tractions are equal in magnitude but opposite in sign to the corre-
sponding tractions obtained from the incident wave. The scattered field is then computed as the superposition
of the displacements radiated from the tractions at every point of the defect surface using the reciprocity the-
orem approach. The far-field vertical displacements are compared with calculations obtained by the boundary
element method (BEM) for circular, rectangular, triangular and arbitrary-shaped defects. Comparisons between
the theoretical and BEM results, which are graphically displayed, are in excellent agreement. It is also discussed
the limitations of the proposed approximate theory.
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1. Introduction

Surface waves, first investigated by [1], have been widely used in the area of nondestructive eval-
uation (NDE) for several decades. When engineering structures such as buildings, bridges, pipelines,
ships and aircrafts contain surface defects not accessible for visual inspection, Rayleigh surface waves
can be very useful in the detection and characterization of the defects. Understanding of Rayleigh
interaction with surface defects is, therefore, critical to the further development of nondestructive
evaluation techniques and material characterization methods.

Studies related to free surface waves propagating in half-spaces can be easily found in the text-
books [2—4] and the original articles, see for examples [1, 5]. Rayleigh wave motions subjected to
surface or subsurface sources are very important for practical applications in science and engineer-
ing. They have also been largely investigated using the conventional integral transform method and
the recent reciprocity approach [2, 6-16]. Scattering of Rayleigh waves by surface defects such as
cracks, cavities and corrosion pits has been extensively considered in the literature. Typical examples
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of analytical work are the papers by [17-20]. Numerical work has been carried out by the finite el-
ement method [21-23], and the boundary element method [24, 25]. In a related category are papers
on scattering by strips and grooves, see [20, 26—28]. Good agreement between numerical and exper-
imental results of Rayleigh waves scattered by surface defects can be found in [4]. The approximate
boundary conditions of shifting the loading of the defect on the flat surface was earlier explored by
[29], see also Ogilvy’s review article [30]. An approach based on matched asymptotic expansions was
presented in [31].

In the current investigation, we propose a simple approach based on reciprocity theorems to in-
vestigate the scattering of Rayleigh waves from surface defects in a homogeneous elastic half-space.
Compared to the previous results only for circular cavities obtained in [18], this work presents sev-
eral calculations, results and discussions regarding different defects of circular, rectangular, triangular
and arbitrary shapes. Comparisons between the theoretical computations and numerical results using
boundary element method are graphically displayed and show excellent agreement. It is also discussed
in this article the limitations of the proposed approach.

In the following, the paper is divided into four sections. Section 2 states the problem as the su-
perposition of the incident wave and the scattered field. The scattered field, which is of interest in the
current work, is equivalent to the field radiated by the tractions on the surface of defect. An analyt-
ical method based on reciprocity theorems to determine the displacement field of the surface waves
radiated by a time-harmonic force is discussed in section 3. In section 4, detailed results and com-
parisons are presented followed by discussions on the limitations of the approximate approach. The
conclusions are given in section 5.

2. Problem statement

Consider an isotropic elastic solid half-space z > 0 in Cartesian coordinate system, (x, y, z), which
contains an arbitrary-shaped defect on the surface. A plane Rayleigh wave propagating in the x-
direction is incident on the defect, see Fig. 1(a). Using the linear superposition technique, the total
field u,,; may be written as

Usor = Wip + Uge (1)

where u;, is the incident field and the ug, is scattered field.
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Figure 1. Linear superposition
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By virtue of linear superposition shown in Fig. 1, the scattered field is equivalent to the field
generated by the application of a distribution of tractions applied on the surface of the defect. These
tractions can be calculated from the corresponding tractions due to the incident wave on a virtual de-
fect in the half-space without defect. The horizontal and vertical tractions can therefore be calculated
from the stress components of the incident Rayleigh wave and the outward normal vectors of the de-
fect surface. The tractions, in turn, generate a radiated field which is equivalent to the scattered wave
field. It is noted that the tractions on the surface of the defect generate body waves as well as surface
waves. The surface waves, which do not suffer geometrical attenuation, dominate at sufficiently large
values of |x].

The traction components are first calculated for every point of the defect surface. The reciprocity
theorem is then applied to the equivalent time-harmonic loads that are applied on the surface of
the half-space, to obtain the displacement amplitudes of the scattered field. The total displacement
amplitude is a superposition of the amplitudes generated by the horizontal and vertical loads at every
point on the surface.

3. Rayleigh waves generated by a distribution of loadings

The surface waves considered in this research are two-dimensional and nondispersive. In addition
to that its amplitude decreases with depth, a surface wave is defined by the angular frequency w, the

w . . :
wavenumber k, where k = — with ¢ being the surface wave velocity, the Lame constants A, u and the

c
mass density p. The displacements may be written as [18]
uy = £iAU (2) €%, u, = AW (g) 2)

where the time-harmonic term exp(iwt) has been omitted for simplicity, and the plus and minus signs
apply to Rayleigh waves traveling in the negative and positive x-direction, respectively. In Eq. (2)

U@ =die™P + dye ™, W(2) = dye ™" — 3)
where
C2 CZ
p=w’1——, q= 1——2 4)
CL CT
with

2
S q=J@ )
p p

which are the longitudinal and transverse wave velocities, respectively. Dimensionless d, d», d3 are
defined by

- (1 + q2) 1+ 42
q
d=———=, dy=q, dz= 6
! 2p 2=4 3 2 (6)
The corresponding stresses can be easily calculated using Hooke’s law
To = AT () €™, 1y = £iAT ()€, 15 = AT () € (7)
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where
Tux (2) = hyt (dae™ + dse™ ) ®)
Tox (2) = kyu (doe™* + dye ™) ©)
Te (2) = ku (dge ™7 + doe ™) (10)
with

(1 + qz) (1 +2p% - qz)
2p
Reciprocity theorems in general offer a relation between displacements, tractions and body forces

of two different loading states of an elastic body as given in the following equation (see References
(6, 91)

dy =

. ds=-2q, de=-di=1+q, —dg=do=2q (1)

f(f;‘uf — flul)av = f(fgu;? — Tl nidS, i.j=xz (12)
v S
where § is the contour around the domain V, f; indicates the body forces, n; is the components of the
unit vector along the outward normal to S, and A, B denotes two elastodynamic states. These relations
were used to obtain surface wave motions in a half-space, see for examples [6, 8,9, 17]. In this section,
they are applied to solve the scattering of surface waves by a surface defect.

The approximate approach to the analysis of surface waves scattered by a defect at the surface of
an elastic half-space is applied to a defect that has an arbitrary shape. Suppose that the defect shape
is defined as z = h (x). For the problem given in Fig. 1(c), the tractions are the horizontal and vertical
surface forces which need to be calculated. The forces on the virtual defect boundary at (xg, zo) are

S (%0, 20) = Txx (X0, 20) B’ (x0) dxo — Tz (X0, 20) dx0 (13)
1z (x0,20) = Txz (x0,20) B’ (x0) dxo — T2 (x0,20) dxo (14)

Using the expressions of displacement and stress components of the incident field yields

fr (x0,20) = —Ain [Tax (z0) ' (x0) + iT; (z0)] € *ddxo (15)
£2 (%0, 20) = —Ain [Tz (z0) B (x0) + T2z (z0)] e *dxg (16)

where A;, is the amplitude of the incident wave and zo = % (xp). These loads will generate surface
waves in both positive and negative directions. The reciprocity theorems are then used to obtain the
displacements of the scattered field. The detailed computation is introduced in [6, 18]. Note that the
radiation from the opposites in sign of the distributions with respect to xg of these surface forces
approximates the scattering of an incident surface wave by the defect. The forward radiation (x > 0)
and the backward radiation (x < 0) are, respectively,

iA* (x0,z0)

Ut (x,2) = o F (0, 20) dxoWR (z) e (17)
B 1A™ (x0, 2 B Yy .
U (x,2) = %F (x0, 20) € 2 "0 dxoWR (2) ™** (18)

where

F* (x0,20) = i [Tax (20) B (x0) + iTxz (20)] U (0) = [iTxz (z0) I’ (x0) + Tz (20)] W (0) (19)
F~ (x0,20) = =i [Txx (20) h’ (x0) + iTx; (20)] U (0) = [Tz (20) b’ (x0) + Tz (20)] W (0)  (20)
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Egs. (19) and (20) represent the radiation from individual surface forces located at x = xp. To
obtain the radiation of the distributions of surface forces, we integrate these equations over xg from
Xo = X1 to xp = xp. For the displacements on the surface (z = 0), we may write

Ut = ALW(0) e (21)
U™ = AL W (0) ™ (22)
where
A i
Sc l +
— F ,20)d 23
. =57 (x0,20) dxo (23)
X1
A i [
sC l ik xi
_sc F~ (xo, od 24
. =57 (x0,20) €~ X0 (24)

X1

are amplitude ratios between the scattered field and incident field. Note that the integrals appearing in
Egs. (23) and (24) may be analytically obtained for defects of well-defined shape. In general, however,
a numerical procedure should be used to compute the amplitude ratios.

4. Results and discussions

In this section, the absolute values of the amplitude ratios given in Egs. (23) and (24) are plotted
for different defect shapes in comparison with numerical results by the boundary element method.
We have built a BEM code using Fortran taking into account the idea of Rayleigh wave correction
presented in Ref. [24]. This idea is simple that allows the Rayleigh waves propagating along the free
surface of the half-space to escape the computational domain without producing spurious reflections
from its limits. In our computer program, the boundary conditions applying for the scattered field
are the traction values obtained theoretically at the positions of the defect boundary but of the oppo-
site sign.

Note that theoretical results obtained by the proposed approach can conveniently and proficiently
provide understanding of generation, propagation, reflection, transmission, and scattering of ultra-
sound which is essential to build measurement models for quantitative ultrasonic methods. They also
allow us to perform and adjust ultrasonic tests on an interactive basis, thus providing us with an effec-
tive response process to improve data acquisition and gaining more information about the character-
istics of the defects. However, this approach is an approximation and should have certain limitations.
Therefore, the BEM results, which are assumed to be close to the exact solutions, are used to examine
the accuracy of the approximation.

The geometry of the defects, which are characterized by the depth D and half of the width
Ry, is shown in Figs. 2(a), (b), (¢) and (d). The comparisons are plotted versus the dimension-
less quantities kRy. In all cases of study, the material is chosen as steel having a shear modulus of

N N k
= 7.987210'" —, a Lame’s constant of 1 = 11.0310'® —, and a density of p = 7800 —g . In the
m rn

m?
followmg representation of the results, we fix D = 0.1 mm and Ry = 1.0 mm and vary the frequency

A,
from f = 0.1 MHz to f = 1.0 MHz so that kR also varies. The values of |—| and |—| are thus

in in

dependent only on the dimensionless quantities kRy.
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Figure 2. Defect geometry
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Four cases of study are for circular, rectangular, triangular and general arbitrary-shaped defects
(Fig. 2). Absolute values of the amplitude ratios regarding scattering of surface waves by a circular
defect are shown in Fig. 3. In general, the comparisons between are in excellent agreement. As kRy >
1.5, a slight difference between the analytical and the BEM results appears for the backscattering.
This is due to for the existence of the term ¢~ 2, where Xo = kxg in Eq. (23).
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Figure 3. Backscattering (left) and forward scattering (right) of a circular defect:
Ryp =1.0mm, D =0.1 mm, 0.1 MHz < f < 1.0 MHz

The comparisons for rectangular and triangular defects are presented in Figs. 4 and 5, respectively.
In the case of a rectangular defect, the comparison is in good agreement as kRy < 1, especially for

the forward scattering and shows a clear difference when kR

100

> 1. This shows the limitations of
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the proposed approach to the defect having sharp surface. Meanwhile, the comparisons between the
analytical and the BEM calculations show excellent agreement for the case of a triangular defect.
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Figure 4. Backscattering (left) and forward scattering (right) of a rectangular defect:
Ry =1.0mm, D =0.1 mm, 0.1 MHz < f < 1.0 MHz
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Figure 5. Backscattering (left) and forward scattering (right) of a triangular defect:
Ryp=1.0mm, D =0.1 mm, 0.1 MHz < f < 1.0 MHz

The amplitude ratios corresponding to scattering of surface waves by a defect of arbitrary shape
are shown in Fig. 6. Note that the depth of the defect is calculated from the lowest point of the defect
to the surface of the half-space. The volume of this defect is chosen to be similar to the one of circular
defect, but their shapes are different. The comparisons are also in very good agreement as in the case
of the circular one. The backscattering amplitude ratios in the two cases behave similarly as kRy < 1.5
and start to have slightly different as kRy > 1.5.

It can also be seen in Figs. 3 to 6 that for the forward scattering, the largest amplitude ratios come
from the rectangular defect while the smallest ones are of the triangular defect. This can be explained
that the volume of defect or defect size is another critical parameter to scattering phenomenon.

In summary, the comparisons between the analytical and BEM results from Figs. 3 to 6 show
not only excellent agreement but also slight differences for different defects. The analytical approach
presented in this paper has the limitations. Excellent agreement is shown for small parameter KRy and
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Figure 6. Backscattering (left) and forward scattering (right) of an arbitrary-shaped defect:
Ryp =1.0mm, D =0.1 mm, 0.1 MHz < f < 1.0 MHz

small volume of the defect. The difference increases with the increase of dimensionless quantity kRj.
It can be explained as that as kR rises and kD is fixed, the volume of the defect increases. For the case
of the backscattering, the existence of the term e~ > appearing in Eq. (23) also affects the accuracy
of the proposed approximation.

5. Conclusions

It has been shown in this article that the scattering of surface waves by a two-dimensional defect
of arbitrary shape in an elastic half-space can be solved in a simple manner by application of the elas-
todynamic reciprocity theorems. We have theoretically derived the ratios of the vertical displacement
amplitudes of the scattered surface waves to those of the incident surface waves in terms of dimen-
sionless quantities. The comparisons with BEM results have shown the validation of the analytical
approximation for certain ranges of the parameters kRy and the volume of defect. It can be seen in
this investigation that the proposed theoretical approach has given a quite good agreement for the
rectangular defect, and excellent agreement for the circular, triangular and arbitrary-shaped defects.
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