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Abstract

In this study, for the first time an isogeometric finite element formulation for bending analysis of functionally
graded porous (FGP) plates reinforced by graphene platelets (GPLs) embedded in piezoelectric layers is pre-
sented. It is named as PFGP-GPLs for a short. The plates are constituted by a core layer, which contains the
internal pores and GPLs dispersed in the metal matrix either uniformly or non-uniformly according to three dif-
ferent patterns, and two piezoelectric layers perfectly bonded on the top and bottom surfaces of host plate. The
modified Halpin–Tsai micromechanical model is used to estimate the effective mechanical properties which
vary continuously along thickness direction of the core layer. In addition, the electric potential is assumed to
vary linearly through the thickness for each piezoelectric sublayer. A generalized C0-type higher-order shear
deformation theory (C0-HSDT) in association with isogeometric analysis (IGA) is investigated. The effects of
weight fractions and dispersion patterns of GPLs, the coefficient and distribution types of porosity as well as
external electrical voltages on structure’s behaviors are investigated through several numerical examples.
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1. Introduction

The porous materials whose excellent properties such as lightweight, excellent energy absorption,
heat resistance have been extensively employed in various fields of engineering including aerospace,
automotive, biomedical and other areas [1–5]. However, the existence of internal pores leads to a
significant reduction in the structural stiffness [6]. In order to overcome this shortcoming, the re-
inforcement with carbonaceous nanofillers such as carbon nanotubes (CNTs) [7–9] and graphene
platelets (GPLs) [10, 11] into the porous materials is an excellent and practical choice to strengthen
their mechanical properties.

In recent years, porous materials reinforced by GPLs [12] have been paid much attention to by
the researchers due to their superior properties such as lightweight, excellent energy absorption, ther-
mal management [13–15]. The artificial porous materials such as metal foams which possess com-
binations of both stimulating physical and mechanical properties have been prevalently applied in
lightweight structural materials [16, 17] and biomaterials [18]. The GPLs are dispersed in materials
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in order to amend the implementation while the weight of structures can be reduced by porosities
[19]. With the combination advantages of both GPLs and porosities, the mechanical properties of the
material are significantly recovered but still maintain their potential for lightweight structures [20].
Based on modifying the sizes, the density of the internal pores in different directions, as well as GPL
dispersion patterns, the FGP plates reinforced by GPLs (FGP-GPLs) have been introduced to obtain
the required mechanical characteristics [21–23]. In the last few years, there have been many studies
being conducted to investigate the impacts of GPLs and porosities on the behaviors of structures un-
der various conditions. Based on the Ritz method and Timoshenko beam theory, the authors in Refs.
[24, 25] studied the free vibration, elastic buckling and the nonlinear free vibration, post-buckling
performances of FGP beams, respectively. The uniaxial, biaxial, shear buckling and free vibration
responses of FGP-GPLs were also investigated by [26] based on the first-order shear deformation
theory (FSDT) and Chebyshev-Ritz method. Additionally, to investigate the static, free vibration and
buckling of FGP-GPLs, [27] utilized IGA based on both FSDT and the third-order shear deformation
theory (TSDT).

Piezoelectric material is one of smart material kinds, in which the electrical and mechanical prop-
erties have been coupled. One of the key features of the piezoelectric materials is the ability to make
the transformation between the electrical power and mechanical power. Accordingly, when a structure
embedded in piezoelectric layers is subjected to mechanical loadings, the piezoelectric material can
create electricity. On the contrary, the structure can be changed its shape if an electric field is put
on. Due to coupling mechanical and electrical properties, the piezoelectric materials have been exten-
sively applied to create smart structures in aerospace, automotive, military, medical and other areas.
In the literature of the plate integrated with piezoelectric layers, there are various numerical methods
being introduced to predict their behaviors.

In this study, the piezoelectric plate with the core layer composed of FGP materials reinforced by
GPLs is considered. Based on concept of sandwich structure, the excellent mechanical properties of
structure are created by combining outstanding properties of component materials. Accordingly, the
presence of porosities in metal matrix leads to decreasing the weight of structure while the mechanical
properties are significantly improved by reinforcing GPLs. Meanwhile, two piezoelectric material
layers are embedded on the top and bottom surfaces of a porous core layer.

2. Material properties of a PFGP-GPLs plate
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Figure 1. Configuration of a PFGP- GPLs plate. Figure 1. Configuration of a PFGP- GPLs plate

In this study, a sandwich plate with length a,
width b and total thickness of h = hc + 2hp shown
in Fig. 1 is modeled. In which hc and hp are the
thicknesses of the FGP-GPLs layer, core layer, and
the piezoelectric face layers, respectively.

Three different porosity distribution types
along the thickness direction of plates including
two types of non-uniformly symmetric and a uni-
form are illustrated in Fig. 2. As presented in this
figure, E′ is Young’s modulus of uniform porosity
distribution E′1 and E′2 denote the maximum and
minimum Young’s moduli of the non-uniformly distributed porous material without GPLs, respec-
tively. In addition, three GPL dispersion patterns shown in Fig. 3 are investigated for each porosity
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distribution. In each pattern, the GPL volume fraction VGPL is assumed to vary smoothly along the
thickness direction.
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Figure 2. Porosity distribution types [24] 
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Figure 3. Three dispersion patterns 𝐴, 𝐵 and 𝐶 of the GPLs for each porosity 
distribution type. 
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(a) Non-uniform porosity distribution 1
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(b) Non-uniform porosity distribution 2
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(c) Uniform porosity distribution

Figure 2. Porosity distribution types [24]
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Figure 3. Three dispersion patterns A, B and C of the GPLs for each porosity distribution type

The material properties including Young’s moduli E (z) , shear modulus G (z) and mass density
ρ (z) which alter along the thickness direction for different porosity distribution types can be expressed
as 

E(z) = E1 [1 − e0λ(z)] ,
G(z) = E(z)/ [2(1 + v(z))] ,
ρ(z) = ρ1 [1 − emλ(z)] ,

(1)

where

λ(z) =


cos(πz/hc), Non-uniform porosity distribution 1
cos(πz/2hc + π/4), Non-uniform porosity distribution 2
λ, Uniform porosity distribution

(2)

in which E1 = E′1 and E1 = E′ for types of non-uniformly and uniform porosity distribution, respec-
tively. ρ1 denotes the maximum value of mass density of the porous core. The coefficient of porosity
e0 can be determined by

e0 = 1 − E′2/E
′
1 (3)

Through Gaussian Random Field (GRF) scheme [28], the mechanical characteristic of closed-cell
cellular solids is given as

E(z)
E1

=

(
ρ(z)/ρ1 + 0.121

1.121

)2.3

for
(
0.15 <

ρ(z)
ρ1

< 1
)

(4)
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Then, the coefficient of mass density em in Eq. (1) is possibly stated as

em =
1.121

(
1 − 2.3

√
1 − e0λ(z)

)
λ(z)

(5)

Also according to the closed-cell GRF scheme [29], Poisson’s ratio ν (z) is derived as

v(z) = 0.221p′ + ν1(0.342p′2 − 1.21p′ + 1) (6)

where ν1 represents the Poisson’s ratio of the metal matrix without internal pores and p′ is given as

p′ = 1.121
(
1 − 2.3

√
1 − e0λ(z)

)
(7)

It should be noted that to obtain a meaningful and fair comparison, the mass per unit of surface M of
the FGP plates with different porosity distributions is set to be equivalent and can be calculated by

M =

∫ hc/2

−hc/2
ρ(z)dz (8)

Then, the coefficient of porosity ψ in Eq. (1) for uniform porosity distribution can be defined as

λ =
1
e0
−

1
e0

(
M/ρ1h + 0.121

0.121

)2.3

(9)

The volume fraction of GPLs alters along the thickness of the plate for three dispersion patterns
depicted in Fig. 3 can be given as

VGPL =


S i1 [1 − cos(πz/hc)] , Pattern A
S i2 [1 − cos(πz/2hc + π/4)] , Pattern B
S i3, Pattern C

(10)

where S i1, S i2 and S i3 are the maximum values of GPL volume fraction and i = 1, 2, 3 corresponds
to two non-uniform porosity distributions 1, 2 and the uniform distribution, respectively.

The relationship between the volume fraction VGPL and weight fractions ΛGPL is given by

ΛGPLρm

ΛGPLρm + ρGPL − ΛGPLρGPL

hc/2∫
−
hc/2

[1 − emα(z)]dz =

hc/2∫
−
hc/2

VGPL [1 − emα(z)]dz (11)

By the Halpin-Tsai micromechanical model, Young’s modulus E1 is determined as

E1 =
3
8

(
1 + ζLηLVGPL

1 − ηLVGPL

)
Em +

5
8

(
1 + ζwηwVGPL

1 − ηwVGPL

)
Em (12)

in which

ζL =
2lGPL

tGPL
, ζW =

2wGPL

tGPL
, ηL =

(EGPL/Em) − 1
(EGPL/Em) + ζL

, ηW =
(EGPL/Em) − 1
(EGPL/Em) + ζw

(13)
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where wGPL, lGPL and tGPL denote the average width, length and thickness of GPLs, respectively;
EGPL and Em are Young’s moduli of GPLs and metal matrix, respectively. Then, we can determine
the mass density ρ1 and Poison’s ratio ν1 of the GPLs reinforced for porous metal matrix according to
the rule of mixture as

ρ1 = ρGPLVGPL + ρmVm (14)

ν1 = νGPLVGPL + νmVm (15)

where ρGPL, νGPL and VGPL are the mass density, Poisson’s ratio and volume fraction of GPLs, re-
spectively; while ρm, νm and Vm = 1 − VGPL represent the mass density, Poisson’s ratio and volume
fraction of metal matrix, respectively.

3. Theory and formulation of PFGP-GPLs plate

3.1. The C0-type higher-order shear deformation theory (C0-type HSDT)

The higher-order shear deformation theory (HSDT) and the classical plate theory (CPT) bear the
relationship to derivation transverse displacement also called slope components. In some numerical
methods, it is often difficult to enforce boundary conditions for slope components due to the unifica-
tion of the approximation variables. Therefore, a C0-type HSDT is rather recommended. Please see
Refs. [30, 31] for more details.

3.2. Garlerkin weak forms of PFGP-GPL plates

The linear piezoelectric constitutive equations can be expressed as follow [31][
σ
D

]
=

[
c −eT

e g

] [
ε̄
E

]
(16)

where ε̄ and σ are the strain vector and the stress vector, respectively; c denotes the elastic constant
matrix.

c =


A B L 0 0
B G F 0 0
L F H 0 0
0 0 0 AS BS
0 0 0 BS DS


(17)

where

(Ai j, Bi j,Gi j, Li j, Fi j,Hi j) =

h/2∫
−h/2

(1, z, z2, f (z), z f (z), f 2(z))Q̄b
i jdz i, j = 1, 2, 6

(Ai j
s , B

i j
s ,D

i j
s ) =

h/2∫
−h/2

[
1, f ′(z), ( f ′(z))2

]
Q̄s

i jdz i, j = 4, 5

(18)

The electric field vector E, can be defined as

E = −gradφ = −∇φ (19)
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Note that, for the type of piezoelectric materials considered in this work the stress piezoelectric
constant matrices e, the strain piezoelectric constant matrices d and the dielectric constant matrices g
can be written as follows

e =

 0 0 0 0 e15
0 0 0 e15 0

e31 e32 e33 0 0

 ; d =

 0 0 0 0 d15
0 0 0 d15 0

d31 d32 d33 0 0

 ; g =

 p11 0 0
0 p22 0
0 0 p33

 (20)

3.3. Approximation of mechanical displacement and electric potential field

a. Mechanical displacement field

Based on the NURBS (Non-Uniform Rational Basis functions), the mechanical displacement field
of the FGP plate can be approximated as follows

uh (ξ, η) =

m×n∑
A

Re
A (ξ, η)dA (21)

where m × n is the number of basis functions. Meanwhile Re
A (ξ, η) denotes a NURBS basis function

and dA =
[
u0A v0A wA βxA βyA θxA θyA

]T
is the vector of nodal degrees of freedom associated

with control point A.
The in-plane and shear strains can be rewritten as

[
ε γ

]T
=

m×n∑
A=1

[
B1

A B2
A B3

A Bs1
A Bs2

A

]T
dA (22)

where

B1
A =

 RA,x 0 0 0 0 0 0
0 RA,y 0 0 0 0 0

RA,y RA,x 0 0 0 0 0

 , B2
A = −

 0 0 0 RA,x 0 0 0
0 0 0 0 RA,y 0 0
0 0 0 RA,y RA,x 0 0


B3

A =

 0 0 0 0 0 RA,x 0
0 0 0 0 0 0 RA,y

0 0 0 0 0 RA,y RA,x


Bs1

A =

[
0 0 RA,x −RA 0 0 0
0 0 RA,y 0 −RA 0 0

]
, Bs2

A =

[
0 0 0 0 0 RA 0
0 0 0 0 0 0 RA

]
(23)

b. Electric potential field

The electric potential variation is assumed to be linear in each sublayer and is approximated
throughout the piezoelectric layer thickness [32].

3.4. Governing equations of motion

The elementary governing equation of motion can be derived in the following form[
Muu 0

0 0

] [
d̈
φ̈

]
+

[
Kuu Kuφ

Kφu −Kφφ

] [
d
φ

]
=

[
f
Q

]
(24)
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where
Kuu =

∫
Ω

BT
u cBudΩ; Kuφ =

∫
Ω

BT
u ẽTBφdΩ

Kφφ =

∫
Ω

BT
φgBφdΩ; Muu =

∫
Ω

ÑT mÑdΩ; f =

∫
Ω

q̄0N̄dΩ

(25)

with
Bu = [B1 B2 B3 Bs1 Bs2]T ; N̄ =

[
0 0 RA 0 0 0 0

]
;

ẽ =
[

eT
m zeT

m f (z) eT
m eT

s f ′ (z) eT
s

] (26)

and

em =

 0 0 0
0 0 0

e31 e32 e33

 ; es =

 0 e15
e15 0
0 0

 (27)

The global mass matrix Muu is described as

Muu =

∫
Ω




N0
N1
N2


T  I1 I2 I4

I2 I3 I5
I4 I5 I6




N0
N1
N2


 dΩ (28)

where

N0 =

 RA 0 0 0 0 0 0
0 RA 0 0 0 0 0
0 0 RA 0 0 0 0


N1 = −

 0 0 0 RA 0 0 0
0 0 0 0 RA 0 0
0 0 0 0 0 0 0

 ; N2 =

 0 0 0 0 0 RA 0
0 0 0 0 0 0 RA

0 0 0 0 0 0 0


(29)

4. Numerical results

4.1. Convergence and verification studies

In this section, the accuracy and reliability of the proposed method are verified through a numer-
ical example which has just been reported by [33]. The free vibration analysis for a square sandwich
FGP-GPLs with simply supported boundary condition (SSSS) is considered. That means the right
side of Eq. (24) is zeros vector. The initial parameters of plate are given as: a = b = 1 m, h = 0.005a,
hp = 0.1h, hp = 0.8h, e0 = 0.5. The sandwich plate includes isotropic metal face layers (Aluminum)
and a porous core layer which is constituted by the uniformly distributed porous reinforced with
uniformly distributed GPLs along the thickness. In this example, the copper is chosen as the metal
matrix of the core layer whose material properties, as well as metal face ones, are given Table 1. For
the GPLs, the parameters are used as follows: lGPL = 2.5 µm, wGPL = 1.5 µm, tGPL = 1.5 nm and
ΛGPL = 1.0wt.%.

The convergence and accuracy of present formulation using quadratic (p = 2) elements at mesh
levels of 7 × 7, 11 × 11, 15 × 15, 17 × 17 and 19 × 19 elements are studied. The natural frequencies
generated from the proposed method are compared with analytical solutions [33] based on CPT. Table
2 lists the natural frequencies of the first four m and n values with differentcontrol mesh. Noted that
mode 1, mode 5, mode 11 and mode 21 of the vibration correspond with mn = 1, nm = 1,mn =

13, nm = 31,mn = 3, nm = 3 and mn = 3, nm = 5. These modes are carefully chosen because of
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Table 1. Material properties

Properties Core Piezoelectric

Ti-6Al-4V Alumium oxide Al Al2O3 Cu GPL PZT-G1195N

Elastic properties
E11 (GPa) 105.70 320.24 70 380 130 1010 63.0
E22 (GPa) 105.70 320.24 70 380 130 1010 63.0
E33 (GPa) 105.70 320.24 70 380 130 1010 63.0
G12 (GPa) - - - - - - 24.2
G13 (GPa) - - - - - - 24.2
G23 (GPa) - - - - - - 24.2

ν12 0.2981 0.26 0.3 0.3 0.34 0.186 0.30
ν13 0.2981 0.26 0.3 0.3 0.34 0.186 0.30
ν23 0.2981 0.26 0.3 0.3 0.34 0.186 0.30

Mass density
p (kg/m3) 4429 3750 2702 3800 8960 1062.5 7600

Piezoelectric coefficients
d31 (m/V) - - - - - - 254 × 10−12

d32 (m/V) - - - - - - 254 × 10−12

Electric permittivity
p11 (F/m) - - - - - - 15.3 × 10−9

p22 (F/m) - - - - - - 15.3 × 10−9

p33 (F/m) - - - - - - 15.3 × 10−9

the active vibration in the middle region of the plate where has more damage than other regions [34].
Furthermore, the relative error percentages compared with the analytical solutions are also given in
the corresponding column. It can be seen that obtained results from the present approach agree well
with the analytical solutions [33] for all selected modes. In addition, Table 2 also reveals that the
same accuracy of natural frequency is almost obtained for all modes using quadratic elements at mesh
levels of 17× 17 and 19× 19 elements. The difference between the two mesh levels is not significant.
As a result, for a practical point of view, the mesh of 17 × 17 quadratic elements is applied to model
the square plate for all numerical examples.

4.2. Static analysis

In this example, the static analysis of a cantilevered piezoelectric FGM square plate with a size
length 400 mm 400 mm is considered. The FGM core layer is made of Ti-6A1-4V and aluminum
oxide whose the effective properties mechanical is described based on the rule of mixture [35]. The
plate is bonded by two piezoelectric layers which are made of PZT-G1195N on both the upper and
lower surfaces symmetrically. The thickness of the FGM core layer is 5 mm and the thickness of each
piezoelectric layer is 0.1 mm. All material properties of the core and piezoelectric layers are listed in
Table 1. Note that, as power index n = 0 implies the FG plate consists only of Ti-6A1-4V while n
tends to∞, the FG plate almost totally consists of aluminum oxide.

Firstly, the effect of input electric voltages on the deflection of the cantilevered piezoelectric
FGM square plate subjected to a uniformly distributed load of 100 N/m2 is examined. Table 3 shows
the tip node deflection of FG plate corresponding to various input electric voltages. These results
agree well with the reference solutions [36] for all cases. In addition, the centerline deflection of
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Table 2. Comparison of convergence of the natural frequency (rad/s) for a square sandwich simply supported
FGP-GPLs with different control meshes

Mesh
Methods

Mode type (m, n) Present Analytical [33] Relative error∗ (%)

7×7 (1,1) 161.1793 160.6964 +0.30050
(1,3) 854.1663 803.4820 +6.30808
(3,3) 1540.2424 1446.2676 +6.49774
(3,5) 2885.6399 2731.8389 +5.62994

11×11 (1,1) 160.7703 160.6964 +0.04598
(1,3) 822.1301 803.4820 +2.32091
(3,3) 1466.4552 1446.2676 +1.39584
(3,5) 2799.8612 2731.8389 +2.48998

15×15 (1,1) 160.7038 160.6964 +0.00460
(1,3) 812.5604 803.4820 +1.12988
(3,3) 1455.3742 1446.2676 +0.62964
(3,5) 2766.2133 2731.8389 +1.25828

17×17 (1,1) 160.7008 160.6964 +0.00273
(1,3) 810.1388 803.4820 +0.82849
(3,3) 1452.6178 1446.2676 +0.43907
(3,5) 2755.0973 2731.8389 +0.85138

19×19 (1,1) 160.6970 160.6964 +0.00037
(1,3) 810.1320 803.4820 +0.82764
(3,3) 1452.6037 1446.2676 +0.43810
(3,5) 2755.0870 2731.8389 +0.85100

∗Relative error =
Present value − Analytical value

Analytical value
× 100%

piezoelectric FGM square plate only subjected to input electric voltage of 10 V is displayed in Fig. 4.
As expected, the obtained results are in good agreement with the reference solution, which is reported
by [36]. For further illustration, the centerline deflection of piezoelectric FGM square plate subjected
to simultaneously electro-mechanical load is shown in Fig. 5. The observation indicates that when

Table 3. Tip node deflection of the cantilevered piezoelectric FGM plate subjected to a uniform load
and different input voltages (10−3 m)

Input voltages (V)
Ti-6Al-4V Aluminum oxide

Present CS-DSG3 [36] Present CS-DSG3 [36]

0 −0.25437 −0.25460 −0.08946 −0.08947
20 −0.13328 −0.13346 −0.04608 −0.04609
40 −0.01229 −0.01232 −0.00271 −0.00271
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the input voltage increases, the deflection of the plate becomes smaller because the piezoelectric
effect makes the displacement of FGM plate going upward. For the input electric voltage of 40 V, the
profile of deflection of the plate is different from those with other electric voltages due to the electric
field vector E generates the electric field force. This electric field force is opposite to the mechanical
force. Therefore, with the same mechanical loading the bigger of the input voltage make the smaller
of displacement. However, it should be limitted the value of the input voltage in order to restrict the
demolition of structures.
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Figure 5. Profile of the centerline deflection of square piezoelectric FGM plate under a uniform loading and
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Secondly, an FGP-GPLs integrated with piezoelectric layers, PFGP-GPLs, which has the same
geometrical dimensions, boundary conditions and pressure loading with above example is investi-
gated. The material properties of porous core and face layers, as well as GPL dimensions, are given
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as the same in Section 4.1. Table 4 presents the deflection of tip node of cantilever PFGP-GPLs
plate with ΛGPL = 0 and various porosity coefficients under a uniform loading and different input
electric voltages. Through our observation, at a specific of input electrical voltage, an increase in
porosity coefficients leads to increasing in the deflection of PFGP-GPL plate because the stiffness of
plate will decrease significantly as the higher density and larger size of internal pores. Conversely,
the deflection of PFGP-GPL plate decreases when the input voltage increases. Meanwhile, Table 5
shows the tip node deflection of a cantilever PFGP-GPL plate for three GPL dispersion patterns with
ΛGPL = 1.0wt.% and e0 = 0.2 under a uniform loading and different input electric voltages. As ex-
pected, the effective stiffness of PFGP-GPLs plate can be greatly reinforced after adding a number of
GPLs into matrix materials.

Table 4. Tip node deflection w.10−3 (m) of a cantilever PFGP-GPLs plate for various porosity coefficients
with ΛGPL = 0 under a uniform loading and different input voltages

Input voltages (V)
e0

0.0 0.1 0.2 0.4 0.6

Non-uniform porosity 1
0 −0.2055 −0.2131 −0.2213 −0.2395 −0.2606
20 −0.1096 −0.1136 −0.1178 −0.1271 −0.1381
40 −0.0137 −0.0140 −0.0142 −0.0148 −0.0156

Non-uniform porosity 2
0 −0.2055 −0.2182 −0.2330 −0.2721 −0.3348
20 −0.1096 −0.1162 −0.1238 −0.1438 −0.1761
40 −0.0137 −0.0141 −0.0145 −0.0155 −0.0174

Uniform porosity
0 −0.2055 −0.2193 −0.2352 −0.2558 −0.3332
20 −0.1096 −0.1167 −0.1248 −0.1453 −0.1750
40 −0.0137 −0.0141 −0.0144 −0.0154 −0.0168

The careful observation shows that the dispersion pattern A dispersed GPLs symmetric through
the midplane of plate provides the smallest deflection while the asymmetric dispersion pattern B has
the largest deflection. As a result, the dispersion pattern A yields the best reinforcing performance for
the static analysis of PFGP-GPLs plate. Besides, for any specific weight fractions, the GPLs dispersion
patterns, input electric voltages and porosity coefficients, the porosity distribution 1 always provides
the best reinforced performance as evidenced by obtaining the smallest deflection. This comment is
clearly shown in Fig. 6 which shows the effect of porosity coefficients and GPL weight fractions
on the tip deflection of PFGP-GPL plates with input electric voltage of 0 V. Possibly to see that
the combination between the porosity distribution 1 and GPL dispersion pattern A makes the best
structural performance for FGP square plate compared with all considered combinations.

Fig. 7 shows the profile of the centerline deflection of the cantilever PFGP-GPLs plate for various
core types and input electric voltages under electro-mechanic loading. Accordingly, four core types
constituted by the porosity distribution type 1, the GPL dispersion pattern A and two values of the
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Table 5. Tip node deflection w.10−3 (m) of a cantilever PFGP-GPLs plate for three GPL patterns with
ΛGPL = 1.0wt.% and e0 = 0.2 under a uniform loading and different input voltages

GPL patterns
Input voltages (V)

0 20 40 60

Non-uniform porosity 1
A −1.1938 −0.6299 −0.0664 0.4971
B −1.5325 −0.8107 −0.0898 0.6311
C −1.4852 −0.7867 −0.0879 0.6108

Non-uniform porosity 2
A −1.2567 −0.6616 −0.0670 0.5276
B −1.6308 −0.8607 −0.0917 0.6772
C −1.5657 −0.8274 −0.0894 0.6486

Uniform porosity
A −1.2666 −0.6667 −0.0669 0.5328
B −1.6243 −0.8576 −0.0911 0.6754
C −1.5801 −0.8348 −0.0895 0.6559
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Figure 6. Effect of porosity coefficients and GPL weight fractions on deflection of PFGP-GPL plates
with input voltage of 0V

porosity coefficients and weight fraction of GPLs are considered in this example. It is observed that
the stiffness of the plate is significantly improved when reinforced by GPLs. Besides, the centreline
deflection of the plate tends to go backward to the input electric voltage due to the piezoelectric
effect. Therefore, if the porous core layer of plate reinforced by GPLs combines with the piezoelectric
material, the displacements of the structure will significantly decrease.
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 5. Conclusions 

An effective numerical model within the framework of IGA in associated with the 
C0-HSDT has been proposed for the bending responses of PFGP-GPLs plates. The core 
layer of plate constituted by the combination of three porosity distribution types and 
dispersion pattern of GPLs, respectively is considered. The mechanical displacement 
field is approximated through the C0-HSDT model applying IGA while the electric 
potential is assumed to vary linearly along the thickness of each piezoelectric sublayer. 
By the static analyses, the influences of different parameters including external electric 
voltages, porosity distribution types, porosity coefficients, dispersion patterns and 
weight fractions of GPL on the behaviors of PFGP-GPLs plates are exhaustively studied. 
Interestingly, the obtained results agree well with existing studies or available solutions 
in the literature. Furthermore, we achieved numerical solutions for PFGP-GPLs, while 
analytical solutions for them have not been found yet. 
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Interestingly, the obtained results agree well with existing studies or available solutions 
in the literature. Furthermore, we achieved numerical solutions for PFGP-GPLs, while 
analytical solutions for them have not been found yet. 
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Figure 7. Profile of the centerline deflection of a cantilever PFGP-GPLs plate with many kinds of cores under
a uniform loading and different input voltages

5. Conclusions

An effective numerical model within the framework of IGA in associated with the C0-HSDT has
been proposed for the bending responses of PFGP-GPLs plates. The core layer of plate constituted by
the combination of three porosity distribution types and dispersion pattern of GPLs, respectively is
considered. The mechanical displacement field is approximated through the C0-HSDT model apply-
ing IGA while the electric potential is assumed to vary linearly along the thickness of each piezoelec-
tric sublayer. By the static analyses, the influences of different parameters including external electric
voltages, porosity distribution types, porosity coefficients, dispersion patterns and weight fractions of
GPL on the behaviors of PFGP-GPLs plates are exhaustively studied. Interestingly, the obtained re-
sults agree well with existing studies or available solutions in the literature. Furthermore, we achieved
numerical solutions for PFGP-GPLs, while analytical solutions for them have not been found yet.
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