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Abstract

This paper presents an efficient and accurate numerical technique based upon the scaled boundary finite el-
ement method for the analysis of two-dimensional, linear, second-order, boundary value problems with the
domain completely described by a circular defining curve. The scaled boundary finite element formulation is
established in a general framework allowing single-field and multi-field problems, bounded and unbounded
bodies, distributed body source, and general boundary conditions to be treated in a unified fashion. The con-
ventional polar coordinates together with a properly selected scaling center are utilized to achieve the exact
description of the circular defining curve, exact geometry of the domain, and exact spatial differential opera-
tors. A general solution of the resulting system of linear, second-order, nonhomogeneous, ordinary differential
equations is constructed via standard procedures and then used together with the boundary conditions to form
a system of linear algebraic equations governing nodal degrees of freedom. The computational performance of
the implemented procedure is then fully investigated for various scenarios within the context of geo-mechanics
applications.
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1. Introduction

In the past two decades, the scaled boundary finite element method (SBFEM) has been developed
for unbounded and bounded domains in two and three-dimensional media. The SBFEM is achieved in
two purposes such with regards to the analytical and numerical method and to the standard procedure
of the finite element and boundary element method within the numerical procedures [1]. The SBFEM
has proved to be more general than initially investigated, then developments have allowed analysis of
incompressible material and bounded domain [2], and inclusion of body loads [3]. The complexity
of the original derivation of this technique led to develop weighted residual formulation [4, 5]. Then
[6, 7] used virtual work and novel semi-analytical approach of the scaled boundary finite element
method to derive the standard finite element method for two dimensional problems in solid mechanics
accessibly.

Vu and Deeks [8] investigated high-order elements in the SBFEM. The spectral element and hi-
erarchical approach were developed in this study. They found that the spectral element approach was
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better than the hierarchical approach. Doherty and Deeks [9] developed a meshless scaled bound-
ary method to model the far field and the conventional meshless local Petrov-Galerkin modeling.
This combining was general and could be employed to other techniques of modeling the far field.
Although, the SBFEM has demonstrated many advantages in the approach method, it also has had
disadvantaged in solving problems involving an unbounded domain or stress singularities. When the
number of degrees of freedom became too large, the computational expense was a trouble. So, He
et al. [10] developed a new Element-free Galerkin scaled boundary method to approximate in the
circumferential direction. This work was applied to a number of standard linear elasticity problems,
and the technique was found to offer higher and better convergence than the original SBFEM. Fur-
thermore, Vu and Deeks [11] presented a p-adaptive in the SBFEM for the two dimensional problem.
These authors investigated an alternative set of refinement criteria. This led to be maximized the
solution accuracy and minimizing the cost. Additionally, He et al. [12] investigated the possibility
of using the Fourier shape functions in the SBFEM to approximate in the circumferential direction.
This research used to solve three elastostactic and steady-state heat transfer problems. They found that
the accuracy and convergence were better than using polynomial elements or using an element-free
Galerkin to approximate on the circumferential direction in the SBFEM. In nearly years, [13] pre-
sented an exact defining curves for two-dimensional linear multi-field media. These authors selected
the scaling center are utilized to achieve the exact description of circular defining curve, exact geom-
etry of domain, and exact spatial differential operators. They showed that use the exact description of
defining curve in the solution procedure can significantly reduce the solution error and, as a result,
reduce the number of degrees of freedom required to achieve the target accuracy in comparison with
standard linear elements.

The aforementioned works have shown various important progresses to implement the SBFEM
in analysis of engineering problems. In geotechnical engineering, bearing capacity and slope stabil-
ity problems are of very particular importance. When a mass of soil is loaded, it displays behavioral
complexities, which may depend on stress or strain levels. The objective of this study is to extend the
work of Jaroon and Chung [13] to further enhance the capability of the SBFEM with circular defining
curve to analyze geo-mechanics in unbounded bodies. The medium is made of a homogeneous, lin-
early elastic material. The conventional polar coordinates are used to discretize on the defining curve.
The paper is organized as follows. Section 2 deals with the weak-form equation of two-dimensional,
multi-filed body. Section 3 addresses the SBFEM formulation and solution. Finally, the presented for-
mulation will be used for analysis of two examples in Section 4 followed by conclusions drawn from
this study in Section 5.

2. Problem formulation
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Figure 1: Schematic of two-dimensional, multi-field body  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic of a scaling center 
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Figure 1. Schematic of two-dimensional,
multi-field body

Consider a two-dimensional body occupying a
region Ω in R2 as shown schematically in Fig. 1.
The region is assumed smooth in the sense that
all involved mathematical operators (e.g., integra-
tions and differentiations) can be performed over
this region. In addition, the boundary of the body
Ω, denoted by ∂Ω, is assumed piecewise smooth
and an outward unit normal vector at any smooth
point on ∂Ω is denoted by n = {n1 n2}

T . The inte-
rior of the body is denoted by int Ω.
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Three basic field equations including the fundamental law of conservation, the constitutive law
of materials, and the relation between the state variable and its measure of variation, which relate the
three field quantities u(x), ε̄(x) and σ(x), are given explicitly by

LTσ + b = 0 (1)

σ = Dε̄ (2)

ε̄ = Lu (3)

where L is a linear differential operator defined, in terms of a 2Λ × Λ-matrix, by

L = L1
∂

∂x1
+ L2

∂

∂x2
; L1 =

[
I
0

]
,L2 =

[
0
I

]
(4)

with I and 0 denoting a Λ ×Λ-identity matrix and a Λ ×Λ-zero matrix, respectively. By applying the
law of conservation at any smooth point x on the boundary ∂Ω, the surface flux t(x) can be related to
the body flux σ(x) and the outward unit normal vector n(x) by t =

[
n1I n2I

]
σ, where, n1 and n2 are

components of n(x).
By applying the standard weighted residual technique to the law of conservation in Eq. (1), then

integrating certain integral by parts via Gauss-divergence theorem, and finally employing the relations
in Eqs. (2) and (3), the weak-form equation in terms of the state variable is given by∫

Ω

(Lw)T D(Lu)dA =

∫
∂Ω

wT tdl +

∫
Ω

wT bdA (5)

where w is a Λ-component vector of test functions satisfying the integrability condition∫
Ω

[
(Lw)T (Lw) + wT w

]
dA < ∞.

3. Scaled boundary formulation
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Figure 2. Schematic of a scaling center x0
and a defining curve C

Let x0 = (x10, x20) be a point in R2 and C be
a simple, piecewise smooth curve in R2 parame-
terized by a function r : s ∈ [a, b] → (x10 +

x̂1(s), x20 + x̂2(s)) ∈ R2 as shown in Fig. 2. Now,
let us introduce the following coordinate transfor-
mation

xα = xα0 + ξ x̂α(s) (6)

where

x̂1(s) = r cos
(
θa

(1 − s)
2

+ θb
(1 + s)

2

)
; x̂2(s) = r sin

(
θa

(1 − s)
2

+ θb
(1 + s)

2

)
(7)

The linear differential operator L given by Eq. (4) can now be expressed in terms of partial deriva-
tives with respect to ξ and s by

L = b1
∂

∂ξ
+ b2

1
ξ

∂

∂s
(8)
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where b1 and b2 are 2Λ × Λ-matrices defined by

b1 =
1
J


dx̂2

ds
IΛ×Λ

−
dx̂1

ds
IΛ×Λ

 ; b2 =
1
J

[
−x̂2IΛ×Λ

x̂1IΛ×Λ

]
; J = x̂1

dx̂2

ds
− x̂2

dx̂1

ds
(9)

(for more details about the description of circular arc element, see also the work of [13]).
From the coordinate transformation along with the approximation, the state variable u is now

approximated by uh in a form

uh = uh(ξ, s) =

m∑
i=1

φ(i)(s)uh
(i)(ξ) = NS Uh (10)

where uh
(i)(ξ) denotes the value of the state variable along the line s = s(i), NS is a Λ × mΛ-matrix

containing all basis functions, and Uh is a vector containing all functions uh
(i)(ξ). The approximation

of the body flux σ is given by

σh = σh(ξ, s) = D(Lhuh) = D
[
B1Uh

,ξ +
1
ξ

B2Uh
]

(11)

where B1 and B2 are given by B1 = b1NS ; B2 = b2BS ; BS = dNS /ds. Similarly, the weight function
w and its derivatives Lw can be approximated, in a similar fashion, by

wh = wh(ξ, s) =

m∑
i=1

φ(i)(s)wh
(i)(ξ) = NS Wh (12)

where wh
(i)(ξ) denotes an arbitrary function of the coordinate ξ along the line s = s(i) and Wh is a

vector containing all functions wh
(i)(ξ).
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Figure 3: Schematic of a generic body   and its approximation h . 

 

 

 

 

 

 

 

 

 

 

Figure 5: Schematics of (a) pressurized semi-circular hole in linear elastic, infinite 

medium and (b) half of domain used in the analysis. 
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Figure 3. Schematic of a generic body Ω and its
approximation Ωh

A set of scaled boundary finite element equa-
tions is established for a generic, two-dimensional
body Ω as shown in Fig. 3. The boundary of the
domain ∂Ω is assumed consisting of four parts re-
sulting from the scale boundary coordinate trans-
formation with the scaling center x0 and defining
curve C: the inner boundary ∂Ω1, the outer bound-
ary ∂Ω2, the side-face-1 ∂Ωs

1, and the side-face-2
∂Ωs

2. The body is considered in this general setting
to ensure that the resulting formulation is applica-
ble to various cases.

As a result of the boundary partition ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ωs
1 ∪ ∂Ωs

1, by changing to the ξ, s-
coordinates via the transformation, the weak-form in Eq. (5) becomes

s2∫
s1

ξ2∫
ξ1

(Lw)T D(Lu)Jξdξds =

s2∫
s1

wT
1 t1(s)Js(s)ξ1ds +

s2∫
s1

wT
2 t2(s)Js(s)ξ2ds

+

ξ2∫
ξ1

(ws
1)T ts

1(ξ)Jξ1dξ +

ξ2∫
ξ1

(ws
2)T ts

2(ξ)Jξ2dξ +

s2∫
s1

ξ2∫
ξ1

wT bJξdξds

(13)
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By manipulating the involved matrix algebra, integrating the first two integrals by parts with
respect to the coordinate ξ, the weak-form in Eq. (13) is approximated by

ξ2∫
ξ1

(Wh)
T
[
−ξE0Uh

,ξξ + (E1 − ET
1 − E0)Uh

,ξ +
1
ξ

E2Uh − Ft − ξFb

]
dξ

+ (Wh
2)T

[{
ξE0Uh

,ξ + ET
1 Uh

}
ξ=ξ2
− P2

]
− (Wh

1)T
[{
ξE0Uh

,ξ + ET
1 Uh

}
ξ=ξ1

+ P1

]
= 0

(14)

where the matrices E0, E1, E2, and the following quantities are defined by

E0 =

ξ2∫
ξ1

BT
1 DB1Jds; E1 =

ξ2∫
ξ1

BT
2 DB1Jd; E2 =

ξ2∫
ξ1

BT
2 DB2Jds (15)

P1 =

so∫
si

(NS )
T t1(s)ξ1Js(s)ds; P2 =

so∫
si

(NS )
T t2(s)ξ2Js(s)ds (16)

Ft
1 = Ft

1(ξ) = (NS
1 )T ts

1(ξ)Jξ1; Ft
2 = Ft

2(ξ) = (NS
2 )T ts

2(ξ)Jξ2; Ft = Ft
1 + Ft

2 (17)

Fb = Fb(ξ) =

s2∫
s1

(NS )
T bJds (18)

From the arbitrariness of the weight function Wh, it can be deduced that

ξ2E0Uh
,ξξ + ξ(E0 + ET

1 − E1)Uh
,ξ − E2Uh + ξFt + ξ2Fb = 0 ∀ξ ∈ (ξ1, ξ2) (19)

Qh(ξ2) = P2 (20)

Qh(ξ1) = −P1 (21)

where the vector Qh = Qh(ξ) commonly known as the nodal internal flux is defined by

Qh(ξ) = ξE0Uh
,ξ + ET

1 Uh (22)

Eqs. (19)–(21) form a set of the so-called scaled boundary finite element equations governing the
function Uh = Uh(ξ). It can be remarked that Eq. (19) forms a system of linear, second-order, non-
homogeneous, ordinary differential equations with respect to the coordinate ξ whereas Eqs. (20) and
(21) pose the boundary conditions on the inner and outer boundaries of the body. It should be evident
from Eqs. (19)–(21) that the information associated with the prescribed distributed body source and
the prescribed boundary conditions on both inner and outer boundaries can be integrated into the for-
mulation via the term Fb and the conditions described in Eqs. (20) and (21), respectively. Consistent
with the partition of the vector Uh, the vector Ft can also be partitioned into Ft = {Ftu Ftc

}
T where

Ftu = Ftu(ξ) contains many 0 functions and known functions associated with prescribed surface flux
on the side face and has the same dimension as that of Uhu and Ftc = Ftc(ξ) contains unknown func-
tions associated with the unknown surface flux on the side face and has the same dimension as that of
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Uhc. According to this partition, the system of differential equations in Eq. (19) and the nodal internal
flux can be expressed, in a partitioned form, as

ξ2
[

Euu
0 Euc

0
(Euc

0 )T Ecc
0

]  Uhu
,ξξ

Uhc
,ξξ

 + ξ

[
Euu

0 + (Euu
1 )T
− Euu

1 Euc
0 + (Ecu

1 )T
− Euc

1
(Euc

0 )T
+ (Euc

1 )T
− Ecu

1 Ecc
0 + (Ecc

1 )T
− Ecc

1

]  Uhu
,ξ

Uhc
,ξ


−

[
Euu

2 Euc
2

(Euc
2 )T Ecc

2

] {
Uhu

Uhc

}
+ ξ

{
Ftu

Ftc

}
+ ξ2

{
Fbu

Fbc

}
= 0

(23)

{
Qhu

Qhc

}
= ξ

[
Euu

0 Euc
0

(Euc
0 )T Ecc

0

]  Uhu
,ξ

Uhc
,ξ

 +

[
(Euu

1 )T (Ecu
1 )T

(Euc
1 )T (Ecc

1 )T

] {
Uhu

Uhc

}
(24)

Eq. (23) can be separated into two systems:

ξ2Euu
0 Uhu

,ξξ + ξ
[
Euu

0 + (Euu
1 )T
− Euu

1

]
Uhu
,ξ − Euu

2 Uhu = −ξFtu − ξ2Fbu − Fsuu (25)

ξFtc = −ξ2Fbc − Fsuc − Fscc (26)

where the vectors Fsuu, Fsuc, and Fscc are defined by

Fsuu = ξ2Euc
0 Uhc

,ξξ + ξ(Euc
0 + (Ecu

1 )T − Euc
1 )Uhc

,ξ − Euc
2 Uhc (27)

Fsuc = ξ2(Euc
0 )T Uhu

,ξξ + ξ
[
(Euc

0 )T
+ (Euc

1 )T
− Ecu

1

]
Uhu
,ξ − (Euc

2 )T Uhu (28)

Fscc = ξ2Ecc
0 Uhc

,ξξ + ξ
[
Ecc

0 + (Ecc
1 )T
− Ecc

1

]
Uhc
,ξ − Ecc

2 Uhc (29)

By following the same procedure, the partitioned equation as shown in Eq. (24) can also be sepa-
rated into two systems:

Qhu(ξ) = ξEuu
0 Uhu

,ξ + (Euu
1 )T Uhu + Qhuc(ξ) (30)

Qhc(ξ) = ξ(Euc
0 )T Uhu

,ξ + (Euc
1 )T Uhu + Qhcc(ξ) (31)

where the known vectors Qhuc(ξ) and Qhcc(ξ) are defined by

Qhuc(ξ) = ξEuc
0 Uhc

,ξ + (Ecu
1 )T Uhc; Qhuc(ξ) = ξEcc

0 Uhc
,ξ + (Ecc

1 )T Uhc (32)

Now, a system of differential equations given by Eq. (25) along with the following two boundary
conditions on the inner and outer boundaries:

Qhu(ξ2) = Pu
2 (33)

Qhu(ξ1) = −Pu
1 (34)

A homogeneous solution of the system of linear differential equations in Eq. (25), denoted by Uhu
0 ,

is derived following standard procedure from the theory of differential equations. The homogeneous
solution Uhu

0 must satisfy

ξ2Euu
0 Uhu

0,ξξ + ξ
[
Euu

0 + (Euu
1 )T
− Euu

1

]
Uhu

0,ξ − Euu
2 Uhu

0 = 0 (35)

and the corresponding nodal internal flux, denoted by Qhu
0 (ξ), is given by

Qhu
0 (ξ) = ξEuu

0 Uhu
0,ξ + (Euu

1 )T Uhu
0 (36)
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Since Eq. (35) is a set of (m − p)Λ linear, second-order, Euler-Cauchy differential equations, the
solution Uhu

0 takes the following form

Uhu
0 (ξ) =

2(m−p)Λ∑
i=1

ciξ
λiψu

i (37)

where a constant λi is termed the modal scaling factor, ψ is the (m− p)Λ-component vector represent-
ing the ith mode of the state variable, and ci are arbitrary constants denoting the contribution of each
mode to the solution. By substituting Eq. (37) into Eqs. (35) and (36), then introducing a 2(m − p)Λ-
component vector Xi such that Xi = {ψu

i qu
i }

T , Eqs. (35) and (36) can be combined into a system of
linear algebraic equations

AXi = λiXi (38)

where the matrix A is given by

A =

[
−(Euu

0 )−1(Euu
1 )T (Euu

0 )−1

Euu
2 − Euu

1 (Euu
0 )−1(Euu

1 )T Euu
1 (Euu

0 )−1

]
(39)

Determination of all 2(m − p)Λ pairs {λi,Xi} is achieved by solving the eigenvalue problem in
Eq. (38) where λi denote the eigenvalues and Xi are associated eigenvectors. In fact, only a half of
the eigenvalues has the positive real part whereas the other half has negative real part. Let λ+ and
λ− be (m − p)Λ × (m − p)Λ diagonal matrices containing eigenvalues with the positive real part and
the negative real part, respectively. Also, let Φψ+ and Φq+ be matrices whose columns containing,
respectively, all vectors ψu

i and qu
i obtained from the eigenvectors Xi = {ψu

i qu
i }

T associated with all
eigenvalues contained in λ+ and letΦψ− andΦq− be matrices whose columns containing, respectively,
all vectors ψu

i and qu
i obtained from the eigenvectors Xi = {ψu

i qu
i }

T associated with all eigenvalues
contained in λ−. Now, the homogeneous solutions Uhu

0 and Qhu
0 (ξ) are given by

Uhu
0 (ξ) = Φψ+Π+(ξ)C+ +Φψ−Π−(ξ)C− (40)

Qhu
0 (ξ) = Φq+Π+(ξ)C+ +Φq−Π−(ξ)C− (41)

where Π+ and Π− are diagonal matrices obtained by simply replacing the diagonal entries λi of
the matrices λ+ and λ− by the a function ξλi , respectively; and C+ and C− are vectors containing
arbitrary constants representing the contribution of each mode. It is apparent that the diagonal entries
of Π+become infinite when ξ → ∞ whereas those of Π−is unbounded when ξ → 0. As a result,
C+ is taken to 0 to ensure the boundedness of the solution for unbounded bodies and, similarly, the
condition C− = 0 is enforced for bodies containing the scaling center.

A particular solution of Eq. (25), denoted by Uhu
1 , associated with the distributed body source, the

surface flux on the side face and the prescribed state variable on the side face can also be obtained
from a standard procedure in the theory of differential equations such as the method of undetermined
coefficient. Once the particular solution Uhu

1 is obtained, the corresponding particular nodal internal
flux Qhu

1 can be calculated. Finally, the general solution of Eq. (25) and the corresponding nodal
internal flux are then given by

Uhu(ξ) = Uhu
0 (ξ) + Uhu

1 (ξ) = Φψ+Π+(ξ)C+ +Φψ−Π−(ξ)C− + Uhu
1 (ξ) (42)

Qhu(ξ) = Qhu
0 (ξ) + Qhu

1 (ξ) = Φq+Π+(ξ)C+ +Φq−Π−(ξ)C− + Qhu
1 (ξ) (43)
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To determine the constants contained in C+ and C−, the boundary conditions on both inner and outer
boundaries are enforced. By enforcing the conditions Eqs. (33) and (34), it gives rise to{

C+

C−
}

=

[
Φq+Π+(ξ1) Φq−Π−(ξ1)
Φq+Π+(ξ2) Φq−Π−(ξ2)

]−1 ({
−Pu

1
Pu

2

}
−

{
Qhu

1 (ξ1)
Qhu

1 (ξ2)

})
(44)

From Eq. (44), it can readily be obtained and substituting Eq. (47) into its yields

K
{

Uhu(ξ1)
Uhu(ξ2)

}
=

{
−Pu

1
Pu

2

}
+ K

{
Uhu

1 (ξ1)
Uhu

1 (ξ2)

}
−

{
Qhu

1 (ξ1)
Qhu

1 (ξ2)

}
(45)

where the coefficient matrix K, commonly termed the stiffness matrix, is given by

K =

[
Φq+Π+(ξ1) Φq−Π−(ξ1)
Φq+Π+(ξ2) Φq−Π−(ξ2)

] [
Φψ+Π+(ξ1) Φψ−Π−(ξ1)
Φψ+Π+(ξ2) Φψ−Π−(ξ2)

]−1

(46)

(for more details about the method procedure, see also the work of [13]).
By applying the prescribed surface flux and the state variable on both inner and outer boundaries,

a system of linear algebraic equations as shown in Eq. (25) is sufficient for determining all involved
unknowns. Once the unknowns on both the inner and outer boundaries are solved, the approximate
field quantities such as the state variable and the surface flux within the body can readily be post-
processed, and the approximated body flux can be computed from (10) and (11) as

uh(ξ, s) = NS (s)Uh(ξ) = NS u(s)Uhu(ξ) + NS c(s)Uhc(ξ) (47)

σh(ξ, s) = D
[
Bu

1(s)Uhu
,ξ (ξ) +

1
ξ

Bu
2(s)Uhu(ξ)

]
+ D

[
Bc

1(s)Uhc
,ξ (ξ) +

1
ξ

Bc
2(s)Uhc(ξ)

]
(48)

where NS u and NS c are matrices resulting from the partition of NS ; Bu
1, Bc

1 and Bu
2, Bc

2 are matrices
resulting from the partition of the matrices B1 and B2, respectively. It is emphasized here again that
the solutions in Eqs. (47) and (48) also apply to the special cases of bounded and unbounded bodies.
For bounded bodies containing the scaling center, C− simply vanishes and, for unbounded bodies,
C+ = 0.

4. Performance application

Based on the method procedure of the prosed technique, numerical technique is written in Matlab
by the author. Some numerical examples to verify the proposed technique and demonstrate its perfor-
mance and capabilities. To demonstrate its capability to treat a variety of boundary value problems,
general boundary conditions, and prescribed data on the side faces, the types of problems associated
with linear elasticity (Λ = 2) for various scenarios within the context of geo-mechanics applications.
The conventional polar coordinates are utilized to achieve the exact description of the circular defin-
ing curve, exact geometry of domain. The number of meshes with N identical linear elements are
employed. The number of meshes are the number of elements on defining curve. The accuracy and
convergence of numerical solutions are carrying out the analysis via a series of meshes.
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4.1. Semi-circular hole in an infinite domain

Consider a semi-circular hole of radius R in an infinite domain as shown in Fig. 4(a). The medium
is made of a homogeneous, linearly elastic, isotropic material with Young’s modulus E and Poisson’s
ratio ν and subjected to the pressure p1 = p cos φ on the surface of the hole, and the modulus matrix
D with non-zero entries D11 = (1 − ν)E/(1 + ν)(1 − 2ν), D44 = (1 − ν)E/(1 + ν)(1 − 2ν), D14 = D41 =

νE/(1+ν)(1−2ν), D23 = E/2(1+ν), D22 = E/2(1+ν), D32 = E/2(1+ν), D33 = E/2(1+ν). Due to the
symmetry, it is sufficient to model this problem using only half of the semi-circular as shown in Fig.
4(b), with appropriate condition on side face (i.e., the normal displacement and tangential traction
on the side faces vanish). To describe the geometry, the scaling center is chosen at the center of the
semi-circular whereas the hole boundary is treated as the defining curve. In a numerical study, the
Poisson’s ratio ν = 0.3 and meshes with N identical linear elements are employed.

Results for normalized radial stress (σrr/p1) is reported in Fig. 5, respectively, for four meshes
(i.e., N = 4, 8, 16, 32). It is worth noting that the discretization with only few linear elements can
capture numerical solution with the sufficient accuracy.
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Figure 5: Schematics of (a) pressurized semi-circular hole in linear elastic, infinite 
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Figure 4. Schematics of (a) pressurized semi-circular hole in linear elastic, infinite medium
and (b) half of domain used in the analysis
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4.2. Semi-infinite wedge

As the last example, a representative boundary value problem associated with a semi-infinite
wedge is considered in order to investigate the capability of the proposed technique as shown in
Fig. 6(a). The medium is made of a homogeneous, linearly elastic, isotropic material with Young’s
modulus E and Poisson’s ratio ν and subjected to the uniform pressure p on the surface of the x2
direction, (the modulus matrix D is taken to be same as that employed in section 4.1 for the plane
strain condition). In the geometry modeling, the scaling center is considered at 0. The geometry
of semi-infinite is fully described by the defining curve on hole of domain. As a result, the two
boundaries become the side faces (Fig. 6(b)). In the analysis, the Poisson’s ratio is taken as ν = 0.3
and defining curve is discretized by N identical linear elements. The normalized radial stress (σrr/νp)
and normalized hoop stress (σθθ/νp) are reported along radial (angle θ/2) in Figs. 7 and 8. It can
be seen that the discretization with only few linear elements can capture numerical solution with the
sufficient accuracy.
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5. Conclusions

A numerical technique based on the scaled boundary finite element method has been success-
fully developed for solving two-dimensional, multi-field boundary value problems with the domain
completely described by a circular defining curve. Both the formulation and implementations have
been established in a general framework allowing a variety of linear boundary value problems and
the general associated data (such as the domain geometry, the prescribed distributed body source,
boundary conditions, and contribution of the side face) to be treated in a single, unified fashion. Re-
sults from several numerical study have indicated that the proposed SBFEM yields highly accurate
numerical solutions with the percent error weakly dependent on the level of mesh refinement. The
results also show that it is advantageous to use circular defining curve, and that higher convergence
can be obtained. The potential extension of the proposed technique will be developed to investigate
the mechanical behavior of geomaterials such as anisotropic, non-linear and elastoplastic.
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