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Abstract

Buckling analysis of thin-walled composite channel beams is presented in this paper. The displacement field
is based on classical beam theory. Both plane stress and plane strain state are used to achieve constitutive
equations. The governing equations are derived from Lagrange’s equations. Ritz method is applied to obtain
the critical buckling loads of thin-walled beams. Numerical results are compared to those in available literature
and investigate the effects of fiber angle, length-to-height’s ratio, boundary condition on the critical buckling
loads of thin-walled channel beams.
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1. Introduction

Composite materials are widely used in many fields of civil, aeronautical and mechanical engi-
neering owing to low thermal expansion, enhanced fatigue life, good corrosive resistance, and high
stiffness-to-weight and strength-to-weight ratios. A large number of structural members made of com-
posites have the form of thin-walled beams. In addition to the increasing in application, thin-walled
composite beams also attract a huge attention from reseachers to study their structural behaviours.

The thin-walled theories are presented by [1, 2]. Bauld and Lih-Shyng [3] then developed Vlasov’s
thin-walled isotropic material beam theory for the composite one. Gupta et al. [4] used finite element
method (FEM) for analysing thin-walled Z-section laminated anisotropic beams. Bank and Bednar-
czyk [5] proposed a thin-walled beam theory for bending analysis of composite beams by considering
shear deformation. In this study, the Timoshenko beam theory together with a modified form of the
shear coefficient are developed. An analytical study for flexural-torsional stability of thin-walled com-
posite I-beams is presented by [6, 7]. Based on FEM and classical lamination theory, [8–10] predicted
flexural-torsional buckling load of thin-walled composite beams. Navier solution is used by [11] for
buckling and free vibration analysis of thin-walled composite beams. Shan and Qiao [12] conducted
a combined analytical and experimental study for buckling behaviours of composite channel beams
by considering the bending-twisting coupling and shear effect. Cortinez and Piovan [13] used FEM
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for the stability analysis of thin-walled composite beams. The displacement fields in this study are
developed by using non-linear theory. The exact stiffness matrix method are proposed by [14, 15] for
flexural-torsional stability analysis of thin-walled composite I-beams. Vo and Lee [16, 17] used FEM
for flexural-torsional stability analysis of thin-walled composite beams. In recent years, buckling be-
haviours of thin-walled functionally grade open section beams are also analysed [18–21]. It can be
seen that Ritz method has seldom been used to analyse the buckling problem of thin-walled composite
channel beams.

In this paper, the bending and warping shears are considered. The main novelty of this paper is
to apply a Ritz solution for the buckling analysis of thin-walled composite beams. The governing
equations are derived by using Lagrange’s equations. Results of the present element are compared
with those in available literature to show its accuracy of the present solution. Parametric study is also
performed to investigate the effects of length-to-height ratio, fibre angle on critical buckling loads of
the thin-walled composite beams.

2. Theoretical formulation
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Figure 1. Thin-walled coordinate systems

The theoretical development requires three
sets of coordinate systems as shown in Fig. 1. The
first coordinate system is the orthogonal Cartesian
coordinate system (x, y, z), for which the y- and z-
axes lie in the plane of the cross-section and the x
axis parallel to the longitudinal axis of the beam.
The second coordinate system is the local plate co-
ordinate (n, s, x) wherein the n axis is normal to
the middle surface of a plate element, the s axis is
tangent to the middle surface and is directed along
the contour line of the cross-section. θs is an angle
of orientation between (n, s, x) and (x, y, z) coor-
dinate systems. The pole P, which has coordinate
(yP, zP), is called the shear center [22].

2.1. Constitutive relations

The constitutive equations for the kth-ply in the global coordinate system (n, s, x) are given by:
σx

σs

σxs


(k)

=

 Q̄11 Q̄12 Q̄16
Q̄12 Q̄22 Q̄26
Q̄16 Q̄26 Q̄66


(k) 

εx

εs

γxs

 (1)

where Q̄i j are transformed reduced stiffnesses. The one-dimensional stress states of thin-walled com-
posite beams are derived from Eq. (1) by assuming plane strain or plane stress state [23, 24]:{

σx

σxs

}(k)

=

( ¯̄Q11
¯̄Q16

¯̄Q16
¯̄Q66

)(k) {
εx

γxs

}
(2)

- For plane strain state (εs = 0):

¯̄Q11 = Q̄11,
¯̄Q16 = Q̄16,

¯̄Q66 = Q̄66 (3)
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- For plane stress state (σs = 0):

¯̄Q11 = Q̄11 −
Q̄2

12

Q̄22
, ¯̄Q16 = Q̄16 −

Q̄12Q̄26

Q̄22
, ¯̄Q66 = Q̄66 −

Q̄2
26

Q̄22
(4)

Constitutive equation in Eq. (2) can be also applied for thin-walled isotropic beams [25]:

¯̄Q11 = E, ¯̄Q16 = 0, ¯̄Q66 = G =
E

2 (1 + υ)
(5)

where E,G and υ are Young’s modulus, shear modulus and Poisson ratio of isotropic material, re-
spectively.

2.2. Kinematics

The mid-surface displacements (ū, v̄, w̄) at a point in the contour coordinate system are written by
[26, 27]:

v̄ (s, x) = V (x) sin θs (s) −W (x) cos θs (s) − φ (x) q (s) (6)

w̄ (s, x) = V (x) cos θs (s) + W (x) sin θs (s) + φ (x) r (s) (7)

ū (s, x) = U (x) − V,x (x) y (s) −W,x (x) z (s) − ψ$ (x)$ (s) (8)

where the comma symbol indicates a partial differentiation with respect to the corresponding sub-
script coordinate. U,V and W are displacement of P in the x-, y- and z- directions, respectively; φ is
the rotation angle about pole axis; $ is warping function given by:

$ (s) =

s∫
s0

r (s)ds (9)

It can be seen that displacement fields in Eqs. (6)–(8) are derived from Vlasov assumption which

shear strain of the mid-surface is zero in each plate
(
γ̄sx =

∂w̄
∂x

+
∂ū
∂s

= 0
)

[1, 27]. The displacements

(u, v,w) at any generic point on section are obtained from Kirchhoff–Love’s the classical plate theory
which ignored shear deformation [27]:

v (n, s, x) = v̄ (s, x) (10)

w (n, s, x) = w̄ (s, x) − nv̄,s (s, x) (11)

u (n, s, x) = ū (s, x) − nv̄,x (s, x) (12)

The strains fields are obtained:
εx = ε̄x + nκ̄x (13)

γsx = nκ̄sx (14)

where

ε̄x =
∂ū
∂x
, κ̄x = −

∂2v̄
∂x2 , κ̄sx = −2

∂2v̄
∂s∂x

(15)
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In Eq. (15), ε̄x, κ̄x and κ̄sx are mid-surface axial strain and biaxial curvature of the plate, respec-
tively. Thin-walled beam strain fields can be obtained by substituting Eqs. (6)–(8) into Eq. (15) as:

ε̄x = ε0
x + yκz + zκy +$κ$ (16)

κ̄x = κz sin θ − κy cos θ − κ$q (17)

κ̄sx = κsx (18)

where ε0
x, κy, κz, κ$, κsx are axial strain, biaxial curvatures in the y and z direction, warping curvature

with respect to the shear center, and twisting curvature in the beam, respectively defined as:

ε0
x = U,x (19)

κy = −W,xx (20)

κz = −V,xx (21)

κ$ = −φ,xx (22)

κsx = −2φ,x (23)

Substituting Eqs. (16)–(23) into Eqs. (13)–(14), the strains fields of thin-walled beam can be writ-
ten as:

εx = ε0
x + (y + n sin θ) κz + (z − n cos θ) κy + ($ − nq) κ$ (24)

γsx = nκsx (25)

2.3. Variational formulation

The strain energy ΠE of the beam is given by:

ΠE =
1
2

∫
Ω

(σxεx + σsxγsx)dΩ

=
1
2

L∫
0

(
E11U2

,x − 2E12U,xV,xx − 2E13U,xW,xx − 4E14U,xφ,x + E22V2
,xx + 2E24V,xxφ,xx

+E33W2
,xx + 2E34W,xxφ,xx − 4E35W,xxφ,x + E44φ

2
,xx + 4E55φ

2
,x

)
dx

(26)

where Ω is volume of beam, Ei j is stiffness of thin-walled composite beam (see [9] for more detail).
The potential energy ΠW of thin-walled beam subjected to axial compressive load N0 can be

expressed as:

ΠW = −
1
2

∫
Ω

N0

A

(
v2
,x + w2

,x

)
dΩ

= −
1
2

L∫
0

N0

(
V2
,x + W2

,x + 2zpV,xφ,x − 2ypW,xφ,x +
IP

A
φ2
,x

)
dx

(27)

where A is the cross-sectional area, IP is polar moment of inertia of the cross-section about the cen-
troid defined by [8, 18]:

IP = Iy + Iz (28)
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where Iy and Iz are second moment of inertia with respect to y- and z-axis, respectively, given by:

Iy =

∫
A

z2dA (29)

Iz =

∫
A

y2dA (30)

The total potential energy of thin-walled beam is expressed by:

Π = ΠE + ΠW

=
1
2

L∫
0

(
E11U2

,x − 2E12U,xV,xx − 2E13U,xW,xx − 4E14U,xφ,x + E22V2
,xx + 2E24V,xxφ,xx

+E33W2
,xx + 2E34W,xxφ,xx − 4E35W,xxφ,x + E44φ

2
,xx + 4E55φ

2
,x

)
dx

−
1
2

L∫
0

N0

(
V2
,x + W2

,x + 2zpV,xφ,x − 2ypW,xφ,x +
IP

A
φ2
,x

)
dx

(31)

2.4. Ritz solution

By using the Ritz method, the displacement field is approximated by:

U(x) =

m∑
j=1

ϕ j,x(x)U j (32)

V(x) =

m∑
j=1

ϕ j(x)V j (33)

W(x) =

m∑
j=1

ϕ j(x)W j (34)

φ(x) =

m∑
j=1

ϕ j(x)φ j (35)

where U j,V j,W j and φ j are unknown and need to be determined; ϕ j (x) are approximation functions
[21]. It should be noted that these approximation functions in Table 1 satisfy the various boundary
conditions (BCs) such as simply-supported (S-S), clamped-free (C-F), clamped-simply supported (C-
S) and clamped-clamped (C-C).

By substituting Eqs. (32)–(35) into Eq. (31) and using Lagrange’s equations:

∂Π

∂p j
= 0 (36)

with p j representing the values of
(
U j,V j,W j, φ j

)
, the buckling behaviours of the thin-walled beam

can be obtained by solving the following equations:


K11 K12 K13 K14

T K12 K22 K23 K24

T K13 T K23 K33 K34

T K14 T K24 T K34 K44





u
v
w
Φ

 =


0
0
0
0

 (37)
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Table 1. Approximation functions and essential BCs of thin-walled beams

BC
ϕ j(x)

e
− jx

L

x = 0 x = L

S-S
x
L

(
1 −

x
L

)
V = W = φ = 0 V = W = φ = 0

C-F
( x

L

)2
U = V = W = φ = 0 V,x = W,x = φ,x = 0

C-S
( x

L

)2 (
1 −

x
L

)
U = V = W = φ = 0,
V,x = W,x = φ,x = 0

V = W = φ = 0

C-C
( x

L

)2(
1 −

x
L

)2 U = V = W = φ = 0,
V,x = W,x = φ,x = 0

U = V = W = φ = 0,
V,x = W,x = φ,x = 0

where the stiffness matrix K is given by:

K11
i j = E11

L∫
0

ϕi,xxϕ j,xxdx, K12
i j = −E12

L∫
0

ϕi,xxϕ j,xxdx, K13
i j = −E13

L∫
0

ϕi,xxϕ j,xxdx,

K14
i j = 2E15

L∫
0

ϕi,xxϕ j,xdx − E14

L∫
0

ϕi,xxϕ j,xxdx, K22
i j = E22

L∫
0

ϕi,xxϕ j,xxdx + N0

L∫
0

ϕi,xϕ j,xdx,

K23
i j = E23

L∫
0

ϕi,xxϕ j,xxdx, K24
i j = E24

L∫
0

ϕi,xxϕ j,xxdx − 2E25

L∫
0

ϕi,xxϕ j,xdx + N0zp

L∫
0

ϕi,xϕ j,xdx,

K33
i j = E33

L∫
0

ϕi,xxϕ j,xxdx, K34
i j = E34

L∫
0

ϕi,xxϕ j,xxdx − 2E35

L∫
0

ϕi,xxϕ j,xdx − N0yp

L∫
0

ϕi,xϕ j,xdx,

K44
i j = E44

L∫
0

ϕi,xxϕ j,xxdx − 2E45

L∫
0

(
ϕi,xxϕ j,x + ϕi,xϕ j,xx

)
dx + 4E55

L∫
0

ϕi,xϕ j,xdx +
N0Ip

A

L∫
0

ϕi,xϕ j,xdx

(38)

3. Numerical results
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Figure 2. Geometry of thin-walled composite channel beams 
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 angle-fly in flanges and web. It can be seen that the buckling mode 1, 2 and 
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Figure 2. Geometry of thin-walled composite
channel beams

In this section, numerical results are carried
out to determine critical buckling loads of thin-
walled channel beams with various configurations
including boundary conditions, lay-ups. The mate-
rial properties and geometry of thin-walled beams
are given in Table 2 and Fig. 2.

Firstly, in order to verify the present solution,
a simply-supported beam with isotropic channel
section (b1 = b2 = 14.5 cm, b3 = 30 cm, h1 =

h2 = h3 = 1.0 cm, E = 200 GPa and G = 80 GPa)
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Table 2. Material properties of thin-walled beams

Material (MAT) properties MAT.I MAT.II

E1 (GPa) 144 141.9
E2 = E3 (GPa) 9.65 9.78

G12 = G13 (GPa) 4.14 6.13
G23 (GPa) 3.45 4.8
ν12 = ν13 0.30 0.42

is considered. The critical buckling load is presented in Table 3. It is clear that the present re-
sults are coincided with those obtained from [18]. Another verified example is also performed for
composite beams. The critical buckling load of channel beams (MAT.I, b1 = b2 = b3 = 10 cm,
h1 = h2 = h3 = 1.0 cm and L = 20b3) is showed in Table 4 and compared with [13]. Good agreement
is also found. It should be noted that the buckling load for plane strain state (εs = 0) is bigger for
plane stress state (σs = 0). This phenomenon can be explained by the fact that the plane strain state is
equivalent ignoring Poisson’s effect and causes the beams stiffer.

Table 3. Critical buckling load (kN) of simply-supported beam

L (m)
Reference

Note
Present Nguyen et al. [18]

4 1569.64 1552.57 Torsional buckling
6 772.43 772.43 Flexural buckling
8 434.50 434.50 Flexural buckling

Table 4. Critical buckling load (105 N) of thin-walled channel beams

BC Reference
Lay-up

(00/00/00/00) (00/900/900/00)

S-S Present (εs = 0) 2.631 1.603
Present (σs = 0) 2.617 1.595

Cortinez and Piovan [13] 2.674 1.635

C-F Present (εs = 0) 0.932 0.658
Present (σs = 0) 0.929 0.656

Cortinez and Piovan [13] 0.947 0.670

C-S Present (εs = 0) 4.979 2.884
Present (σs = 0) 4.952 2.869

Cortinez and Piovan [13] 5.058 2.941

C-C Present (εs = 0) 9.364 5.270
Present (σs = 0) 9.310 5.240

Cortinez and Piovan [13] 9.503 5.371
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Secondly, the symmetric angle-ply channel beams with the various BCs and lay-ups are consid-
ered. The thickness of flanges and web are of 0.0762 cm, and made of asymmetric laminates that
consist of 6 layers (

[
η − η

]
3). The critical buckling load of channel beams (MAT.II, b1 = b2 = 0.6 cm,

b3 = 2.0 cm and L = 100b3) is showed in Table 5. It can be observed that the buckling load reduces
as lay-up increases for all BCs. From Table 5, it can be seen that there is a significant difference
between results of plane stress and plane strain state for beams with arbitrary angle. Available litera-
tures indicate that plane stress assumption is more appropriate and widely used for composite beams
[23, 24, 28–30]. Figs. 3(a)–3(f) show first three buckling mode shape of S-S beams with [30/ − 30]3
angle-fly in flanges and web. It can be seen that the buckling mode 1, 2 and 3 are first flexural mode
in y-direction (Mode V), first and second torsional mode (Mode Φ) for both plane stress and plane
strain state.

Table 5. Critical buckling load (N) of thin-walled channel beams

BC
Lay-up

[0] [15/ − 15] [30/ − 30] [45/ − 45] [60/ − 60] [75/ − 75] [90/ − 90]

S-S
εs = 0 28.215 24.944 17.172 9.137 4.062 2.222 1.945
σs = 0 27.871 22.572 10.379 4.180 2.456 2.011 1.921

C-F
εs = 0 7.054 6.206 4.263 2.269 1.011 0.555 0.486
σs = 0 6.968 5.618 2.581 1.042 0.614 0.503 0.480

C-S
εs = 0 57.720 50.864 34.951 18.598 8.283 4.543 3.978
σs = 0 57.018 46.038 21.152 8.532 5.022 4.113 3.930

C-C
εs = 0 112.858 99.383 68.257 36.320 16.183 8.881 7.778
σs = 0 111.486 89.958 41.322 16.673 9.817 8.043 7.684

Finally, effect of length-to-height ratio on buckling behaviours of the thin-walled composite beams
is investigated. Figs. 4(a) and 4(b) show the critical buckling load of beams (MAT.II, b1 = b2 =

0.6 cm, b3 = 2.0 cm, h1 = h2 = h3 = 0.0762 cm and [45/ − 45]3). It can be seen that the buckling
load reduces as length-to-height ratio increases for all BCs.

4. Conclusions

Ritz method is applied to analyse buckling of thin-walled composite channel beams in this paper.
The theory is based on the classical theory. The governing equations are derived from Lagrange’s
equations. The critical buckling loads of thin-walled composite channel beams with various BCs are
obtained and compared with those of the previous works. The results indicate that:

- The effects of fiber orientation are significant for buckling behaviours of thin-walled chan-
nel beams.

- For thin-walled beams with arbitrary angle, the buckling loads for plane stress and for plane
strain state are significantly different.
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(c) Mode shape 2: N02 = 68.171 N (εs = 0)
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(d) Mode shape 2: N02 = 41.283 N (σs = 0)
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(e) Mode shape 3: N03 = 153.482 N (εs = 0)
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(f) Mode shape 3: N03 = 92.949 N (σs = 0)

Figure 3. First three buckling mode shape of S-S beams
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composite beams is investigated. Figs. 4(a) and (b) show the critical buckling load of 
beams (MAT.II, , , and ). It 
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- The effects of fiber orientation are significant for buckling behaviours of thin-
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- The present solution is found to be appropriate and efficient in analysing buckling problems of
thin-walled composite channel beams.
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