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Abstract

This study presents a novel application of mesh-free method using the smoothed-radial basis functions for the
computational homogenization analysis of materials. The displacement field corresponding to the scattered
nodes within the representative volume element (RVE) is split into two parts including mean term and fluc-
tuation term, and then the fluctuation one is approximated using the integrated radial basis function (iRBF)
method. Due to the use of the stabilized conforming nodal integration (SCNI) technique, the strain rate is
smoothed at discrete nodes; therefore, all constrains in resulting problems are enforced at nodes directly. Tak-
ing advantage of the shape function which satisfies Kronecker-delta property, the periodic boundary conditions
well-known as the most appropriate procedure for RVE are similarly imposed as in the finite element method.
Several numerical examples are investigated to observe the computational aspect of iRBF procedure. The good
agreement of the results in comparison with those reported in other studies demonstrates the accuracy and
reliability of proposed approach.
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1. Introduction

Almost materials in nature can be considered as inhomogeneous structures composed by different
components. Predicting of the physical behavior of materials plays an important role in estimating
the loading-capacity of structures. Therefore, it is necessary to develop the robust approaches for
analysis of heterogeneous materials. Multiscale procedures are well-known as such efficient tools for
this problem. An equivalent homogeneous material relied the RVE is used for a substitution of the
heterogeneous one, and the problem is solved via the transition between micro-scale features and
macro-response. The fundamental theories of homogeneous computation were early developed in the
studies [1–10]. Then, the numerical implementation was concerned for improving the computational
aspect of this method. A number of studies using different procedures, such as finite element method
[11–14], boundary element method [15], mesh-free methods [16, 17] were published. This study
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employs a mesh-free method based on the radial basis functions (RBF). A well-known disadvantage
of meshless methods is lack of Kronecker-delta property in the shape function leading to the difficulty
in imposing the essential boundary conditions. In the purpose of overcoming this issue, the so-called
the point interpolation method (PIM) using polynomial basis function and radial point interpolation
method (RPIM) using radial basis function were introduced [18]. Then, the low-order polynomial
in combination with RBFs was also proposed for improving the accuracy and stability of RPIM.
Furthermore, some models of PIM using smoothing technique based on nodes (NS-PIM), cells (CS-
PIM) or edges (ES-PIM) were also developed in recent years, and more details can be found in [18,
19].

In this study, the stabilized conforming nodal integration (SCNI) scheme introduced by [20] is ex-
tended to RPIM, and the smoothed strains at every collocation point within the computational domain
can be obtained. All constrains and conditions of problems will be imposed directly at the scattered
nodes utilizing nodal integration procedure instead of using Gaussian quadrature, that reduces num-
ber of variables and integration points significantly. The numerical implementation is carried out
to investigate the computational aspect, and the good agreement in comparison with other studies
demonstrates the efficiency of proposed method.

2. Brief of homogenization theory

In this analysis, materials are considered to be macroscopically homogeneous, but microscopically
heterogeneous. A heterogeneous body V ∈ R3 is replaced by an equivalent homogeneous one VM ∈

R3. Next, a heterogeneous micro-base cell Vm ∈ R3 so-called the representative volume element
(RVE) will be investigated at every material point x ∈ VM. The micro-structure is subjected to the
body force g, the surface load t on the static boundary Γt and constrained by the displacement field u
on the kinematic boundary Γu.

The material response of macro-structure is determined by solving the macro-micro transitions
problems, where the RVE size plays an important role. The RVE size must be significantly great
to describe the material properties, but significantly small to ensure the reduced conditions of the
transitions. Actually, the size of microscopic base cell is very small compared with the macro-scale
(lm � lM); therefore, the body force g can be neglected in the micro-scale problem. The RVE equi-
librium state can be formulated in absence of body forces as

∇σm = 0 in Vm (1)

where σm denotes the microscopic stress.
The micro-scale problem can be handled as the boundary value one in solid mechanics. The

macroscopic strain εM are transferred to micro-structure in form of kinematic boundary constrains.
The displacement field u consists two components involving mean part ū and fluctuation part ũ

u = ū + ũ = εMX + ũ (2)

with X is the positional matrix of each material point in the computational domain.
Various approaches corresponding to different ways to impose the boundary condition have pro-

posed in the literature, see [7, 13, 21]. This study uses the the most efficient in terms of convergence
rate so-called periodic boundary condition. There are the periodicity of fluctuation field and anti-
periodicity of traction field at RVE boundary

ũ+ = ũ− on Γu; t+ = −t− on Γt (3)
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where ũ+ and ũ− are the fluctuation field, t+ and t− are the traction field of positive and negative
boundaries, respectively.

The periodic boundary condition can be generally performed as

u+ − u− = εM(X+ − X−) (4)

Note that, the boundary condition must always satisfy the averaging principle which is used to
solve the couple of microscopic and macroscopic problem, see [1, 2, 10]. The macroscopic strain and
stress tensors are computed by the volume average of microscopic those

εM =
1

Vm

∫
Vm

εmdVm; σM =
1

Vm

∫
Vm

σmdVm (5)

Utilizing the formula ∇X = I, the microscopic stress can be now expressed in the following
relation

σm = (∇σm)X + (∇X)σm = ∇(σmX) (6)

Substituting Eq. (6) to Eq. (5) and applying the Green’s theorem for integration, we obtain

σM =
1

Vm

∫
Vm

∇(σmX)dVm =
1

Vm

∫
Γm

nσmXdΓm =
1

Vm

∫
Γm

tXdΓm (7)

Similarly, the strain averaging can be rewritten as

εM =
1

Vm

∫
Vm

∇(εmX)dVm =
1

Vm

∫
Γm

nūdΓm (8)

The boundary condition must be defined to satisfy the constrain on the fluctuation field

1
Vm

∫
Γm

nũdΓm = 0 (9)

Therefore, Eq. (8) can be rewritten as follow

εM =
1

Vm

∫
Γm

nūdΓm +
1

Vm

∫
Γm

nũdΓm =
1

Vm

∫
Γm

nudΓm (10)

The material constant matrix DM for elastic state of macroscopic scale can be recalculated via the
Hooke’s law as

σM = DMεM (11)

3. Point interpolation method using radial basis functions

Consider a scattered node xT
Q = [x1, x2, ..., xN] within a closed area Ω. In the original formulation

of RPIM, the approximate function uh(x) is obtained by interpolating pass through the nodal value as

uh(x) = R(x)a(xQ) (12)

where a(xQ) denotes the coefficient vector corresponding to the given point xQ; R(x) is the basis
function vector which is expressed by

R(x) = [R1(x),R2(x), ...,RN(x)] (13)
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with N is number of scattered points in the problem domain.
Following [18], the major advantage of RPIM is that the matrix RQ is always invertable for ar-

bitrary scattered nodes. However, the unexpected results in terms of accuracy may occur. Therefore,
a polynomial term is added into the basis function to improve the computational efficiency. Ad-
ditionally, using polynomial reproduction leads to the flexible selection of shape parameters. The
approximate function for a set of points within the support domain is expressed as

uh(x) = R(x)a + p(x)b (14)

where a and b are the coefficient vectors corresponding to radial basis function R(x) and polynomial
basis function p(x), respectively

aT = {a1, a2, ..., aN}; bT = {b1, b2, ..., bM} (15)

with M is number of terms in b depending on the order of polynomial basis function.
Enforcing uh(x) function to pass through the scattered points within support domain, the matrix

form of Eq. (14) is obtained by enforcing uh(x) function at every points as follows

U = RQa + PMb (16)

where RQ is given by

RQ =

 · · ·

R1(rk)
· · ·

· · ·

R2(rk)
· · ·

· · ·

· · ·

· · ·

· · ·

RN(rk)
· · ·


N×N

(17)

with rk =‖ xk − xI ‖ is the distance between node Ith and point xk. The best ranked function in terms
of accuracy named multi-quadric (MQ) is employed in this study

RI(rk) = (r2
k + c2

I )q (18)

where cI = αdI is the shape parameter with α > 0 and dI is the minimal distance from point xI to its
neighbors.

To guarantee the unique approximation of function, the polynomial part must satisfy the extra
requirement [18] and the following constrains are usually imposed

PT
Ma = 0 (19)

The combination of Eqs. (16) and (19) gives[
RQ

PT
M

PM

0

] {
a
b

}
=

{
U
0

}
(20)

Eq. (20) can be rewritten as

G
{

a
b

}
=

{
U
0

}
(21)

The coefficient vectors a and b can be computed by inverting matrix G and then substitute into
Eq. (21). For convenience, a more efficient procedure proposed by [18] is employed

a = R−1
Q U − R−1

Q PMb; b = χbU (22)
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where
b = χbU; χb = [PT

MR−1
Q PM]−1PT

MR−1
Q (23)

Substituting b in Eq. (23) to in Eq. (22), we obtain

a = χaU (24)

where
χa = R−1

Q [1 − PMχb] = R−1
Q − R−1

Q PMχb (25)

Finally, the approximation function in Eq. (14) can be rewritten as

uh(x) = [R(x)χa + p(x)χb]U =

N∑
I=1

ΦI(x)uI (26)

The shape function and its partial derivatives for node kth can be expressed as

Φk =

N∑
I=1

RIχ
a
Ik +

M∑
J=1

pJχ
b
Jk (27)

∂Φk

∂x
=

N∑
I=1

∂RI

∂x
χa

Ik +

M∑
J=1

∂pJ

∂x
χb

Jk;
∂Φk

∂y
=

N∑
I=1

∂RI

∂y
χa

Ik +

M∑
J=1

∂pJ

∂y
χb

Jk (28)

For purpose of computational improvement, this study employs the strain smoothing method pro-
posed in [20] for use in nodal integration schemes as

ε̃h
i j(xJ) =

1
aJ

∫
ΩJ

1
2

(uh
i, j + uh

j,i)dΩ =
1

2aJ

∮
ΓJ

(
uh

i n j + uh
jni

)
dΩ (29)

where ε̃h
i j is the smoothed value of strains εh

i j at node J; aJ and ΓJ are the area of the representative
domain ΩJ of node J, respectively.

The smooth version of the strains can be expressed as

εh(xJ) =
[
ε̃h

xx(xJ) ε̃h
yy(xJ) 2ε̃h

xy(xJ)
]T

= B̃d (30)

where d denotes the displacement vector and B̃ is the strain matrix whose components are calculated
using the derivatives of shape function as

Φ̃I,α(xJ) =
1
aJ

∮
ΓJ

ΦI(xJ)nα(x)dΓ =
1

2aJ

ns∑
k=1

(
nk
α lk + nk+1

α lk+1
)
ΦI(xk+1

J ) (31)

where Φ̃ is the smoothed version of Φ; ns is the number of segments of a Voronoi nodal domain ΩJ

in the Fig. 1; xk
J and xk+1

J are the coordinates of the two end points of boundary segment Γk
J which has

length lk and outward surface normal nk.
It is interested to note that the shape function of RPIM possesses Kronecker delta property. Conse-

quently, the essential boundary conditions can be enforced by the similar way as in the finite element
method. Furthermore, the stabilized shape function also yields to the reduction of computational cost.
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Figure 1. Geometry definition of a representative nodal domain

4. RPIM discretisation of the homogenization problems

The displacement field u are approximated in terms of nodal reflection within the problem domain
using the RPIM procedure as follow

uh(x) =

N∑
I=1

ΦI(x)uI =

N∑
I=1

ΦI(x)
[

uI

vI

]
(32)

where uI and vI are the nodal displacement components corresponding to node Ith; N is number nodes
in the computational domain of area Ωm.

The periodic constrain in Eq. (6) can be recalled and expressed as follow

u+ − u− = uA − uB (33)

where uA and uB are the displacement of nodes at the RVE corners.
Denoting C for the coefficient matrix containing the (0, 1, −1) values, Eq. (33) can be per-

formed as
Cu = 0 (34)

The displacement vector u = [u1, v1, ..., uN , vN]T is determined from the equation system, in
which the global stiffness matrix K is built by assembling 2 × 2 matrices KIJ defined by

KIJ =

∫
Ωm

BT
I DmBJdΩm, I, J = 1, 2, . . . ,N (35)

where Dm is the material constant matrix of micro-scale.
The global load vector f consists 2 × 1 matrices fI as

fI =

∫
Γt

ΦItdΓt, I = 1, 2, . . . ,N (36)
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In this study, the condensation method is used to impose the boundary condition. The constrains
of displacement degree of freedoms (DOFs) in Eq. (34) are rewritten as

[
Ci Cd

] [ ui

ud

]
= 0 (37)

where ui and ud are the independent and dependent DOFs, respectively and

ud = −C−1
d Ciui = Cdiui (38)

Then, the linear equation system can be expressed as[
Kii Kid

Kdi Kdd

] [
ui

ud

]
=

[
fi

fd

]
(39)

In condensation method, the dependent DOFs ud will be eliminated from the equation system.
The reduced forms of the stiffness matrix K and loading vector f are now calculated as

K∗ = Kii + KidCdi + CT
diKdi + CT

diKddCdi; f∗ = fi + CT
difd (40)

The equation system is rewritten as

K∗u = f∗ or
[

Kaa Kab

Kba Kbb

] [
ua

ub

]
=

[
0
fb

]
(41)

where a and b denote the inner nodes and corner nodes, respectively.
The displacement corresponding to the corner nodes Ith can be determined by

ubI =

[
X
0

0
Y

0.5Y
0.5X

]  εxx

εyy

εxy

 = χbIεM (42)

with (X,Y) is the coordinate of the corner nodes Ith in the problem domain.
Using the condensation method, the reduced equation system is performed via the corner DOFs as

K∗bbub = f∗b (43)

where
K∗bb = Kbb −KbaK−1

aa Kab (44)

The macroscopic stress satisfies the averaging principle

σM =
1

Ωm

∫
Γm

tXdΓm =
1

Ωm
χT

b f∗b =
1

Ωm
χT

b K∗bbub =
1

Ωm
χT

b K∗bbχbεM (45)

Finally, homogenizing Eqs. (11) and (45), we obtain the material constant matrix for the macro-
scale as

DM =

 D11 D12 0
D21 D22 0
0 0 D66

 =
1

Ωm
χT

b K∗bbχb (46)
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5. Numerical solutions

5.1. Material models with a central inclusion

The micro-structure with an inclusion of radius R at center is taken into account in this example.
The geometry and dimension of RVE are illustrated in Fig. 2, all dimensions are in µm. The con-
stituent of material model includes Epoxy matrix (Em = 3.13 GPa, νm = 0.34) embedded with the
Glass fiber (Ec = 73 GPa, νc = 0.2).
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Figure 2. Microstructure with inclusion: geometry and discretization ( ) 

Several volume ratios  are investigated and the numerical solutions using 
RPIM and FEM models are collected in Table 1. From the table, it can be seen that 
RPIM results are very close to FEM models when using the same meshing database 
(2041 nodes, 2000 Q4-elements, 4000 T3-elements). The advantage of RPIM method 
is that number of integration points required to construct the stiffness matrix are much 
less than those in FEM formulations due to the use of SCNI technique leading to the 
integrations to be directly enforced at discretized nodes in the computational domain. 
That means the computational cost is significantly decreased using RPIM procedure.  
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RPIM 3.951 3.951 1.308 1.308 
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RPIM 4.873 4.873 1.532 1.540 
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30% 
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FEM-T3 5.776 5.776 1.748 1.687 
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Figure 2. Microstructure with inclusion: geometry and discretization (V/V0 = 20%)

Several volume ratios V/V0 are investigated and the numerical solutions using RPIM and FEM
models are collected in Table 1. From the table, it can be seen that RPIM results are very close to FEM
models when using the same meshing database (2041 nodes, 2000 Q4-elements, 4000 T3-elements).
The advantage of RPIM method is that number of integration points required to construct the stiffness
matrix are much less than those in FEM formulations due to the use of SCNI technique leading to the
integrations to be directly enforced at discretized nodes in the computational domain. That means the
computational cost is significantly decreased using RPIM procedure.

Table 1. RVE with inclusion: material parameters

V/V0 Approach
Material parameters (GPa)

D11 D22 D12 D66

10%
RPIM 3.951 3.951 1.308 1.308

FEM-T3 4.102 4.102 1.341 1.364
FEM-Q4 4.099 4.099 1.339 1.365

20%
RPIM 4.873 4.873 1.532 1.540

FEM-T3 4.823 4.823 1.528 1.527
FEM-Q4 4.820 4.820 1.527 1.528

30%
RPIM 5.892 5.892 1.691 1.776

FEM-T3 5.776 5.776 1.748 1.687
FEM-Q4 5.774 5.774 1.747 1.688

Number of integration points: RPIM: 2041; FEM-T3: 4000; FEM-Q4: 32000
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The effect shear modulus over the matrix modulus are compared with the analytical results re-
ported in [22], the numerical solutions reported in [21] and present FEM models. The comparison is
also plotted in Fig. 3(a). The agreement of present solutions and the analytical as well as other nu-
merical models shows the reasonability of proposed method. The displacement and stress fields are
shown in Figs. 3(b) and 3(c). It can be observed from the stress distribution that the stress is mainly
concentrated at the kernel in where the Glass fiber is reinforced.
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observed from the stress distribution that the stress is mainly concentrated at the kernel 
in where the Glass fiber is reinforced. 

 

5.2. Material models reinforced with the fibers 

The example investigates two representative material sections composed of 
aluminium matrix with Young’s modulus Em = 72.5 GPa and Poisson ratio νm = 0.33. 
The second material consisting short and long boron fibers with Young’s modulus Ec = 
400 GPa and Poisson’s ratio νc = 0.2 are embedded in the matrix. Figure 4 shows the 
dimensions and distribution of heterogeneity.  
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Figure 3. RVE with inclusion: the solutions

5.2. Material models reinforced with the fibers

The example investigates two representative material sections composed of aluminum matrix with
Young’s modulus Em = 72.5 GPa and Poisson ratio νm = 0.33. The second material consisting short
and long boron fibers with Young’s modulus Ec = 400 GPa and Poisson’s ratio νc = 0.2 are embedded
in the matrix. Fig. 4 shows the dimensions (µm) and distribution of heterogeneity.
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Figure 4. Micro-structure with rectangular heterogeneity 

 

To demonstrate the accuracy and reliability of proposed method, the numerical 
results of material properties are compared with those using the global-local FEM 
analysis reported in [5], VCFEM and HOMO2D in [6]. From Tables 2 and 3, it can be 
observed that present procedure can prove the compatible solutions in comparison with 
numerical methods in [5] and [6]. 

The displacement and the stress field distributions are plotted in Figures 5 and 6. 
It is seen that the stresses are concentrated at positions in where the stiffness 
significantly increase owing to the reinforcement of the fibers. 

 

Table 2. The comparison of material properties in case of short fiber model 

Author 
Material properties (GPa) 

D11 D22 D12 D66 

Present RPIM 124.084 152.529 36.800 42.915 

Fish and Wagimen [5] 122.357 151.351 36.191 42.112 

Ghosh et al. [6], VCFEM 118.807 139.762 38.052 42.440 

Ghosh et al. [6], HOMO2D 122.400 151.200 36.230 42.100 

 

Table 3. The comparison of material properties in case of long fiber model 

Author Material properties (GPa) 

(a) RVE with short fiber
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Figure 4. Micro-structure with rectangular heterogeneity
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To demonstrate the accuracy and reliability of proposed method, the numerical results of material
properties are compared with those using the global-local FEM analysis reported in [5], VCFEM
and HOMO2D in [6]. From Tables 2 and 3, it can be observed that present procedure can prove the
compatible solutions in comparison with numerical methods in [5, 6].

Table 2. The comparison of material properties in case of short fiber model

Author
Material properties (GPa)

D11 D22 D12 D66

Present RPIM 124.084 152.529 36.800 42.915

Fish and Wagimen [5] 122.357 151.351 36.191 42.112

Ghosh et al. [6], VCFEM 118.807 139.762 38.052 42.440

Ghosh et al. [6], HOMO2D 122.400 151.200 36.230 42.100

Table 3. The comparison of material properties in case of long fiber model

Author
Material properties (GPa)

D11 D22 D12 D66

Present RPIM 137.372 245.842 36.284 47.396

Fish and Wagimen [5] 136.147 245.810 36.076 46.850

Ghosh et al. [6], VCFEM 136.137 245.810 36.076 46.850

Ghosh et al. [6], HOMO2D 136.100 245.800 36.080 46.850

The displacement and the stress field distributions are plotted in Figs. 5 and 6. It can be seen
that the stresses are concentrated at positions where the stiffness significantly increase owing to the
reinforcement of the fibers.
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(a) RVE model (b) Displacement field (c) Stress field 

Figure 5: Material reinforced with short fiber using RPIM method (1681 nodes) 

 

   
(a) RVE model (b) Displacement field (c) Stress field 

Figure 6: Material reinforced with long fiber using RPIM method (1681 nodes) 

 

6. Conclusions 

A novel mesh-free method based on radial basis functions and SCNI scheme has 
been successfully applied for homogeneous analysis of materials. The important 
advantage of proposed method in comparison with mesh-based ones is the absence of 
the mesh and the high-order shape function, which may increse the accuracy and 
convergence rate of solutions. Morever, the periodic boundary condition for RVE is 
applied owing to the RPIM shape function possesses Kronecker-delta property. The 
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6. Conclusions

A novel mesh-free method based on radial basis functions and SCNI scheme has been success-
fully applied for homogeneous analysis of materials. The important advantage of proposed method
in comparison with mesh-based ones is the absence of the mesh and the high-order shape function,
which may increase the accuracy and convergence rate of solutions. Forever, the periodic boundary
condition for RVE is applied owing to the RPIM shape function possesses Kronecker-delta property.
The SCNI scheme for calculation of strains helps all constrains be enforced directly at scattered nodes
in the problem domain, and the computational cost can be reduced significantly. However, this study
only aims to analyse the elastic behavior of materials; therefore, the future works will extend to the
inelastic respond of materials and structures.
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