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Abstract

Ambient vibration testing is a preferred technique for heath monitoring of civil engineering structures be-
cause of several advantages such as simple equipment, low cost, continuous use and real boundary conditions.
However, the excitation not controlled and not measured, is always assumed as Gaussian white noise in the
processing of ambient responses called operational modal analysis. In presence of harmonics due to rotating
parts of machines or equipment inside the structures, e.g., fans or air-conditioners. . . , the white noise assump-
tion is not verified and the response analysis becomes difficult and it can even lead to biased results. Recently,
transmissibility function has been proposed for the operational modal analysis. Known as independent of exci-
tation nature in the neighborhood of a system’s pole, the transmissibility function is thus applicable in presence
of harmonics. This study proposes therefore to apply the transmissibility functions for modal identification of
ambient vibration testing and investigates its performance in presence of harmonics. Numerical examples and
an experimental test are used for illustration and validation.

Keywords: operational modal analysis; transmissibility function; harmonic component; ambient vibration test-
ing.
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1. Introduction

Health monitoring of structures can be realized by dynamic tests where modal parameters com-
prising natural frequencies, damping ratios and mode shapes, at different times are compared. The
variation in time of these parameters is an indicator of structural modifications and/or eventual struc-
tural damages [1]. Classically, modal parameters are obtained from an experimental modal analysis
where both artificial excitation by a hammer/shaker, and its structural responses are measured. These
dynamic tests are convenient in laboratory conditions. For real structures, an ambient vibration testing
is more adequate because of several advantages: simple equipment thus low cost, continuous use, real
boundary conditions. However, excitation of natural form such as wind, noise, operational loadings, is
not measured and hence the name unknown input or response only dynamic tests. The excitation not
controlled and not measured is always assumed as white noise in operational modal analysis [2]. In
presence of harmonics on excitation for instance structures having rotating components such buildings
with fans/air-conditioners, high speed machining machines, the white noise assumption is not verified
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and that makes the modal identification process difficult, even leading to biased results. To distinguish
natural frequencies and harmonic components, several indicators have been proposed using damping
ratios, mode shapes, and histograms and kurtosis values [3–5]. Agneni et al. [6] proposed a method
for the harmonic removal in operational of rotating blades. The authors used the statistical parameter
called "entropy"to find out the possible presence of harmonic signals blended in a random signal.
Modak et al. [7, 8] used the random decrement method for separating resonant frequencies from
harmonic excitation frequencies. The distinction is based on the difference in the characteristics of
randomdec signature of stochastic and harmonic response of a structure. In order to palliate the white
noise assumption, Devriendt and Guillaume [9, 10] proposed to use transmissibility functions defined
by ratio in frequency domain between measured responses as primary data. The authors showed that
this technique is (i) independent of excitation nature in the neighborhood of a system’s pole [10] and
(ii) able to identify natural frequencies in presence of harmonics when different load conditions are
considered [11]. After few years, Devriendt et al. [12] introduced a new method that combines all the
measured single-reference transmissibility functions in a unique matrix formulation to reduce the risk
of missing system poles and to identify extra non-physical poles. However, the matrix formulation is
also determined by the different load conditions. Yan and Ren [13] proposed the power spectrum den-
sity transmissibility method to identify modal parameters from only one load condition. This method
gave good results, nevertheless, only Gaussian white noise was used for numerical validation. Using
also only one load condition, Araujo and Laier [14] applied the singular value decomposition algo-
rithm to power spectral density transmissibility matrices. The authors obtained good results when
excitation is of colored noise. The aim of this work is to assess the performance of the modal iden-
tification technique based on transmissibility functions in presence of harmonics. For the sake of
completeness, Section 2 presents briefly definitions and most relevant properties of transmissibility
functions/matrices. The procedure to obtain modal parameters from singular values is also explained.
Section 3 is devoted to applications with numerical examples and a laboratory test. An additional step
was added when distinction between structural modes and harmonic components, became necessary.
Finally, conclusions on the performance of the transmissibility functions based method, is given in
Section 4.

2. Modal identification based on transmissibility functions

This section gives a short description of the modal identification method based on transmissibility
functions. The more details of the method and its demonstrations can be found in references [10, 11,
14].

2.1. Definitions

Vibration responses of a N Degree-of-Freedom (DoF) linear structure are noted by vector x (t) =

[x1 (t) , x2 (t) , . . . , xN (t)]T in time domain and in frequency domain by x̂ (ω) = [x̂1 (ω) , x̂2 (ω) , . . . ,
x̂N (ω)]T . A transmissibility function Ti j (ω) is defined in frequency domain by

Ti j (ω) =
x̂i (ω)
x̂ j (ω)

(1)

where x̂i (ω) and x̂ j (ω) are respectively responses in DoF i and j. The transmissibility function de-
pends in general on excitation (location, direction and amplitude) and it is, therefore, not possible to
use it in a direct way to identify modal parameters. Devriendt and Guillaume [10] noted, however,
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that at a system’s pole, transmissibility functions are independent of excitation and equal to ratio of
the corresponding mode shape. Let’s consider two loading cases k and l, the corresponding transmis-
sibility functions are respectively T k

i j (ω) and T l
i j (ω). They proposed, therefore, a new function

∆T kl
i j (ω) = T k

i j (ω) − T l
i j (ω) (2)

and noted that the system’s poles were also the poles of functions ∆−1T kl
i j (ω) defined by

∆−1T kl
i j (ω) =

1
∆T kl

i j (ω)
(3)

Using ∆−1T kl
i j (ω) as primary data, it is possible to apply classical modal identification methods

in frequency domain for instance, the LSCF method or the PolyMAX method [15] to extract modal
parameters. As ∆−1T kl

i j (ω) can contain more than the system’s poles, the choice of physical poles are
performed via the rank of a matrix of transmissibility functions composed from three loading cases

Tr (ω) =


T 1

1r (ω) T 2
1r (ω) T 3

1r (ω)
T 1

2r (ω) T 2
2r (ω) T 3

3r (ω)
...

...
...

1 1 1

 (4)

Singular vectors in the columns of Ur (ω) and singular values in the diagonal of Sr (ω) are deduced
from Tr (ω) by the singular value decomposition algorithm

Tr (ω) = Ur (ω) Sr (ω) VT
r (ω) (5)

Three singular values are organized in decreasing order σ1 (ω) ≥ σ2 (ω) ≥ σ3 (ω). At the system’s
poles, the matrix Tr (ω) is of rank one, thus the second singular value σ2 (ω) tends towards zeros. The

curve
1

σ2 (ω)
shows hence peaks at natural frequencies of the mechanical system.

2.2. PSDTM-SVD method

The application of the previous technique needs three independent loading cases. In practice, it
is not simple although a loading case can be different from another by either location or direction
or amplitude. Araujo and Laier [14] proposed an alternative method using responses of only one
loading case.

The method denoted by PSDTM-SVD, is based on the singular value decomposition of power
spectrum density transmissibility matrices with different references. From operational responses, a
transmissibility function between two responses xi (t) and x j (t) with reference to response xr (t) is
estimated by

T (r)
i j (ω) =

S xi xr (ω)
S x j xr (ω)

(6)

where S xi xr (ω) is the cross power spectrum density function of xi (t) and xr (t). Assume that responses
are measured at L sensors, it is thus possible to establish L matrices T̄(r)

j (ω) , j = 1, . . . , L, by

T̄ j (ω) =


T (1)

1 j (ω) T (2)
1 j (ω)

T (1)
2 j (ω) T (2)

2 j (ω)
. . . T (L)

1 j (ω)
. . . T (L)

2 j (ω)
...

...

T (1)
L j (ω) T (2)

L j (ω)

...
...

. . . T (L)
L j (ω)

 (7)
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Araujo and Laier [14] showed that at a natural frequency ωm, the columns of T̄(r)
j (ωm) are linearly

dependent. That is equivalent with the rank of the matrix is equal to one. Using singular value decom-
position of T̄ j (ω), singular values from the second to the Lth tend toward zero. The inverse of these
singular values can be used to assess the natural frequencies of the system. The authors proposed a
global curve via two stages of average. The first stage is to take average of singular values from the
second to the last σ( j)

k (ω) , (k = 2, . . . , L) obtained with L matrices T̄ j (ω) as

1
σ̂k (ω)

=
1
L

L∑
j=1

1

σ
( j)
k (ω)

with k = 2, . . . , L (8)

where σ
( j)
k (ω) is the kth singular values of T̄ j (ω). In the second stage, the global curve π (ω) is

obtained by the product of the averaged singular values as

π (ω) =

L∏
k=2

1
σ̂k (ω)

(9)

The natural frequencies ωm are indicated in the curve π (ω) by peaks and the first singular vectors
of T̄ j (ωm) at these peaks give estimates of the corresponding modes shapes.

3. Applications

3.1. Numerical example
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𝐿bc tend toward zero. The inverse of these singular values can be used to assess the 
natural frequencies of the system. The authors proposed a global curve via two stages 
of average. The first stage is to take average of singular values from the second to the 
last 𝜎?

(6)(𝜔), (𝑘 = 2…𝐿) obtained with 𝐿 matrices 𝐓Y6(𝜔) as  
*

R1D(9)
= *

]
∑ *

RD
(:)(9)

]
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R1D(9)

]
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The natural frequencies 𝜔a are indicated in the curve 𝜋(𝜔)	 by peaks and the first 
singular vectors of 𝐓Y6(𝜔a) at these peaks give estimates of the corresponding modes 
shapes.  

 

3. Applications 

3.1. Numerical example  

 A two-degree-of-freedom system was used for numerical validation. It is 
illustrated in Figure 1 with its mechanical properties. The PSDTM-SVD method was 
applied to identify the modal parameters of the system. Power spectral density functions 
were estimated with Hamming windows of 2048 points and 75% overlapping. 

 
Figure 1. 2 DoFs system 

Three loading conditions denoted as load cases, were considered in order to assess the 
performance of the PSDTM-SVD method. The load case 1 is the excitation of a pure 
Gaussian white noise. The load case 2 corresponds to the excitation of the Gaussian 
white noise mixed with a damped harmonic excitation. And the load case 3 indicates 
the excitation of the Gaussian white noise added by a pure harmonic excitation. The 
Matlab software [16] was used to solve dynamic responses of the system. While the 

Figure 1. 2 DoFs system

A two-degree-of-freedom system was used for
numerical validation. It is illustrated in Fig. 1
with its mechanical properties. The PSDTM-SVD
method was applied to identify the modal param-
eters of the system. Power spectral density func-
tions were estimated with Hamming windows of
2048 points and 75% overlapping.

Three loading conditions denoted as load
cases, were considered in order to assess the per-
formance of the PSDTM-SVD method. The load
case 1 is the excitation of a pure Gaussian white noise. The load case 2 corresponds to the excitation
of the Gaussian white noise mixed with a damped harmonic excitation. And the load case 3 indicates
the excitation of the Gaussian white noise added by a pure harmonic excitation. The Matlab software
[16] was used to solve dynamic responses of the system. While the Gaussian white noise excitation
was generated by a normal random process of zero mean and a given standard deviation, the harmonic
excitation (damped or pure) was simulated using determinist exponential and/or sinusoidal functions.
The three load cases were separately analyzed. In all the cases, loading was assumed to be located at
only the second DoF i.e. f1 (t) = 0 and f2 (t) , 0. Responses in displacement were obtained by the
Runge–Kutta algorithm with 50000 points and sampling period ∆t = 0.002 sec. For the load case 1,
the Gaussian white noise has zero mean and standard deviation δ = 1. The corresponding responses
of the system are presented in Fig. 2.

Using the responses, two modes of the system were easily identified by the PSDTM-SVD method.
In Fig. 3, two peaks of these modes are clearly shown on the π (ω) curve.
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Gaussian white noise excitation was generated by a normal random process of zero 
mean and a given standard deviation, the harmonic excitation (damped or pure) was 
simulated using determinist exponential and/or sinusoidal functions. The three load 
cases were separately analyzed. In all the cases, loading was assumed to be located at 
only the second DoF i.e. 𝑓*(𝑡) = 0 and 𝑓,(𝑡) ≠ 0. Responses in displacement were 
obtained by the Runge-Kutta algorithm with 50000 points and sampling period ∆𝑡 =
0.002 sec. For the load case 1, the Gaussian white noise has zero mean and standard 
deviation 𝛿 = 1. The corresponding responses of the system are presented in Figure 2.  

 
Figure 2. [2DoFs, load case 1] simulated responses 

Using the responses, two modes of the system were easily identified by the PSDTM-
SVD method. In Figure 3, two peaks of these modes are clearly shown on the 𝜋(𝜔)	 

Figure 2. [2DoFs, load case 1] simulated responses
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curve. 

 
Figure 3. [2DoFs, load case 1] PSDTM-SVD method 

The identified frequencies and mode shapes from the load case 1 are given in Table 1. 
They are very close to the exact values.  

Table 1: [2 DoFs, load case 1] identified parameters and exact values 

Modal parameters  Exact PSDTM-SVD 

𝑓*(Hz) 

𝑓,(Hz) 

10.30 

30.12 

10.25 

30.03 

Mode 1 
1.00 

1.39 

1.00 

1.39 

Mode 2 
1.00 

-0.72 

1.00 

-0.71 

  

 For the load case 2, the same Gaussian white noise as in the load case 1, was used, 
i.e. with zero mean and standard deviation	𝛿 = 1. However, a damped harmonic 
excitation of the form of 𝐴𝑒Cr,stub sin(2𝜋𝑓y𝑡), was added to the white noise. This is 
similar to the example of Araujo and Laier [14] who dealt with a colored noise 
excitation. The frequency of the damped harmonic excitation 𝑓y was taken equal to 50 
Hz whereas different values were given to the amplitude 𝐴 and to the damping 
coefficient	𝜉. The 𝜋(. )	 curves given by the PSDTM-SVD method, are presented in 

Figure 3. [2DoFs, load case 1] PSDTM-SVD method

The identified frequencies and mode shapes from the load case 1 are given in Table 1. They are
very close to the exact values.

For the load case 2, the same Gaussian white noise as in the load case 1, was used, i.e. with
zero mean and standard deviation δ = 1. However, a damped harmonic excitation of the form of
Ae−ξ2π f0t sin (2π f0t), was added to the white noise. This is similar to the example of Araujo and Laier
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Table 1. [2 DoFs, load case 1] identified parameters and exact values

Modal parameters Exact PSDTM-SVD

f1 (Hz) 10.30 10.25
f2 (Hz) 30.12 30.03

Mode 1
1.00 1.00
1.39 1.39

Mode 2
1.00 1.00
−0.72 −0.71

[14] who dealt with a colored noise excitation. The frequency of the damped harmonic excitation f0
was taken equal to 50 Hz whereas different values were given to the amplitude A and to the damping
coefficient ξ. The π (.) curves given by the PSDTM-SVD method, are presented in Fig. 4.
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Figure 4. [2DoFs, load case 2] PSDTM-SVD method 

It can be noted that when 𝐴 = 10	N and 𝜉 = 0.5%, two structural modes are easily 
identified from the 𝜋(. ) curve and the peak of 50 Hz is almost eliminated. When the 
amplitude 𝐴 of the harmonic excitation was increased to 50 N and the damping 
coefficient was kept constant (0:5%), the peak of 50 Hz becomes visible in the 
𝜋(. )	curve. The same remark is noted when the amplitude 𝐴 was kept constant (10 N) 
and the damping coefficient 𝜉 was decreased to 0.1%. The increase of 𝐴 or the decrease 
of 𝜉 gives a weight (relative energy ratio) more important of the harmonic in the loading. 
The more this weight is important, the more the identification process is difficult due to 

Figure 4. [2DoFs, load case 2] PSDTM-SVD method

It can be noted that when A = 10 N and ξ = 0.5%, two structural modes are easily identified from
the π (.) curve and the peak of 50 Hz is almost eliminated. When the amplitude A of the harmonic
excitation was increased to 50 N and the damping coefficient was kept constant (0:5%), the peak
of 50 Hz becomes visible in the π (.) curve. The same remark is noted when the amplitude A was
kept constant (10 N) and the damping coefficient ξ was decreased to 0.1%. The increase of A or the
decrease of ξ gives a weight (relative energy ratio) more important of the harmonic in the loading.
The more this weight is important, the more the identification process is difficult due to non-structural
peaks corresponding to harmonic excitation.

Table 2 presents identified parameters. Except the harmonic component that can be misunderstood
as structural mode, identified modal parameters are very close to their exact values.

In the load case 3, the Gaussian white-noise excitation has zero mean and modifiable standard
deviation δw whereas the harmonic excitation has the form of A sin (2π f0t). The relative weight of
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Table 2. [2 DoFs, load case 2] identified parameters and exact values

Modal parameters Exact
PSDTM-SVD

A = 10, ξ = 0.5% A = 50, ξ = 0.5% A = 10, ξ = 0.1%

f1 (Hz) 10.30 10.25 10.25 10.25
f2 (Hz) 30.12 30.03 30.03 30.03
f3 (Hz) 50.00 - 50.04 50.04

Mode 1
1.00 1.00 1.00 1.00
1.39 1.39 1.39 1.39

Mode 2
1.00 1.00 1.00 1.00
−0.72 −0.71 −0.70 −0.70

Mode 3
- - 1.00 1.00
- - −4.96 −4.70

the white noise and the harmonic excitation is measured by the Signal to Noise Ratio (SNR) in dB,
defined by

SNR = 20log10

(
δw

δh

)
(10)

where δh =
A
√

2
is standard deviation of the harmonic excitation. In this example, harmonic compo-

nent was kept constant with A = 10 N and f0 = 50 Hz while the white noise was taken with different
values of δw to simulate different SNR levels. The more the SNR value is, the less the weight of
the harmonic excitation is. The performance of the PSDTM-SVD method was checked with different
SNR values. The π (.) curves are presented in Fig. 5.

Tạp chí Khoa học Công nghệ Xây dựng NUCE 2018 

10 
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Figure 5. [2DoFs, load case 3] PSDTM-SVD method 

When SNR ≥ 8 dB, two structural modes are easily identified because the	𝜋(. ) curve in 
blue solid line in Figure 5, presents two peaks and the peak of 50 Hz is almost reduced. 
For comparison purpose, the Frequency Domain Decomposition (FDD) method [17] 
was also applied to the responses and the corresponding results are presented in Figure 
6. It can be noted that the peak corresponding to the harmonic frequency in the PSDTM-
SVD method is quite eliminated. However, the peak is still well visible in the FDD 
method [17]. Identified modal parameters are presented in Table 3 and they are in good 
agreement with their exact values except the harmonic component also identified by the 

Figure 5. [2DoFs, load case 3] PSDTM-SVD method
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When SNR ≥ 8 dB, two structural modes are easily identified because the π (.) curve in blue solid
line in Fig. 5, presents two peaks and the peak of 50 Hz is almost reduced. For comparison purpose,
the Frequency Domain Decomposition (FDD) method [17] was also applied to the responses and
the corresponding results are presented in Fig. 6. It can be noted that the peak corresponding to the
harmonic frequency in the PSDTM-SVD method is quite eliminated. However, the peak is still well
visible in the FDD method [17]. Identified modal parameters are presented in Table 3 and they are
in good agreement with their exact values except the harmonic component also identified by the
FDD method.
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component) are filtered and transformed back to time domain using the fast Fourier 
transform. The histogram and the kurtosis value of the time responses are deduced. The 
distinction is then based on the different statistical properties of a structural mode and 
harmonic component. If the histogram has a bell shape, i.e. the shape of a normal 
distribution, and its kurtosis value is close to 3, it is a structural mode. However, if the 
histogram has two maximum at two extremities and a minimum in the middle; and its 
kurtosis value is close to 1.5, it is a harmonic component. 

 
Figure 6. [2DoFs, load case 3 (SNR=8 dB)] FDD method 

After the identification of three peaks from the 𝜋(. ) curve by the PSDTM-SVD method, 
responses corresponding of each identified peak are filtered to calculate kurtosis values 
and draw histograms. Table 4 presents all kurtosis values together with their exact 
values in parenthesis, while Figure 7 shows the corresponding histograms.  

Table 4: [2 DoFs, load case 3 (SNR=0 dB)] kurtosis values of identified peaks 

Modal 
characteristics  

Peak 1 Peak 2 Peak 3 

Frequency (Hz) 10.25 30.03 50.04 

Kurtosis value 
3.21 (3.00) 

3.21 (3.00) 

3.07 (3.00) 1.61 (1.50) 

3.07 (3.00) 1.61 (1.50) 

Conclusion Structural Structural Harmonic 

It can be seen that the histograms of the first and second peaks have the form of a bell, 

Figure 6. [2DoFs, load case 3 (SNR = 8 dB)] FDD method

Table 3. [2 DoFs, load case 3] identified parameters and exact values

Modal parameters Exact
PSDTM-SVD FDD

SNR = 8 dB SNR = 0 dB SNR = 8 dB

f1 (Hz) 10.30 10.25 10.25 10.25
f2 (Hz) 30.12 30.03 30.03 30.03
f3 (Hz) 50.00 - 50.04 50.04

Mode 1
1.00 1.00 1.00 1.00
1.39 1.39 1.39 1.39

Mode 2
1.00 1.00 1.00 1.00
−0.72 −0.72 −0.72 −0.70

Mode 3
- - 1.00 1.00
- - −4.85 −5.52

When the weight of the harmonic component is more important in the loading, i.e. SNR value
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decreases, the peak of 50 Hz becomes more visible in the π (.) curve and it makes the modal identifi-
cation more complicated. The red dash-dot line in Fig. 5 presents the π (.) curve for SNR = 0 dB. The
PSDTM-SVD method can identify the harmonic peak of 50 Hz as a structural mode.

Note that in Table 2 and Table 3, it is possible to calculate the orthogonality between identified
mode shapes via the Modal Assurance Criterion (MAC). The high values of MAC between mode
3 and mode 1, and between mode 3 and mode 2, indicate that mode 3 is potential a non-structural
mode but further investigations are necessary to confirm whether the mode 3 is harmonic and mode 1
and mode 2 are structural. This is particularly useful because in general, mode shapes are orthogonal
in relative to the mass and stiffness matrix and they are not necessarily orthogonal between them.
Moreover, harmonic excitation can be close to a structural mode and thus activates a harmonic mode
similar to the structural mode shape.

In order to avoid this mistake, we propose to use the kurtosis value and the histogram [5] as a post-
processing step of the PSDTM-SVD method to distinguish between structural modes and harmonic
components.

In this step, the responses corresponding to each peak (structural or harmonic component) are
filtered and transformed back to time domain using the fast Fourier transform. The histogram and
the kurtosis value of the time responses are deduced. The distinction is then based on the different
statistical properties of a structural mode and harmonic component. If the histogram has a bell shape,
i.e. the shape of a normal distribution, and its kurtosis value is close to 3, it is a structural mode.
However, if the histogram has two maximum at two extremities and a minimum in the middle; and its
kurtosis value is close to 1.5, it is a harmonic component.

After the identification of three peaks from the π (.) curve by the PSDTM-SVD method, responses
corresponding of each identified peak are filtered to calculate kurtosis values and draw histograms.
Table 4 presents all kurtosis values together with their exact values in parenthesis, while Fig. 7 shows
the corresponding histograms.

Table 4. [2 DoFs, load case 3 (SNR = 0 dB)] kurtosis values of identified peaks

Modal characteristics Peak 1 Peak 2 Peak 3

Frequency (Hz) 10.25 30.03 50.04

Kurtosis value
3.21 (3.00) 3.07 (3.00) 1.61 (1.50)
3.21 (3.00) 3.07 (3.00) 1.61 (1.50)

Conclusion Structural Structural Harmonic
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while the histograms of third peak has two maxima at boundaries. Furthermore, kurtosis 
values are respectively 3.21-3.21; 3.07-3.05 and 1.61-1.61 for the first, second and third 
peak. These results allow to recognize that the first two peaks are structural modes and 
the third peak corresponds to harmonic component. 

 

 
(a) Peak 1 

 
(b) Peak 2 

 
(c) Peak 3 

   

Figure 7. [2DoFs, load case 3 (SNR=8 dB)] Histograms 

 

3.2. Laboratory experimental test  

 In order to investigate the efficiency of the transmissibility functions based modal 
identification approach, experimental responses of a cantilever beam were used. The 
beam of Dural material, is of 850 mm in length and has a rectangular cross-section of 
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It can be seen that the histograms of the first and second peaks have the form of a bell, while
the histograms of third peak has two maxima at boundaries. Furthermore, kurtosis values are respec-
tively 3.21-3.21; 3.07-3.05 and 1.61-1.61 for the first, second and third peak. These results allow to
recognize that the first two peaks are structural modes and the third peak corresponds to harmonic
component.

3.2. Laboratory experimental test

In order to investigate the efficiency of the transmissibility functions based modal identification
approach, experimental responses of a cantilever beam were used. The beam of Dural material, is
of 850 mm in length and has a rectangular cross-section of 40 mm × 4.5 mm. The Dural material
has a Young modulus of 74 GPa and a density of 2790 kg/m3. The beam clamped at its left side,
was connected at 700 mm to a LSD 201 shaker which was suspended by steel cables with a support.
Time responses were recorded by accelerometers located respectively at 150 mm, 500 mm and 830
mm from the clamp end. Two loading conditions were studied. In the load case 1, only white noise
excitation generated by the shaker was applied to the beam. In the load case 2, not only the white noise
but also the excitation generated by a rotating mass of a motor located at 315 mm from the beam left
side, were applied. The rotating mass is of 0.0162 kg with eccentricity of 0.01 m. Fig. 8 shows the
configuration of the laboratory test.
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Fig. 9 presents responses under shaker excitation corresponding to load case 1. The responses
of 192000 points were sampled with a period of 0.00125 sec. To calculate power spectral densities,
the signals were divided into 75% overlapping segments of 2048 points. Using the PSDTM-SVD
method, three first modes of the beam were easily identified. Fig. 10(a) shows clearly three peaks of
these modes in the π (.) curve.
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Figure 10. [Laboratory test] PSDTM-SVD method 

Figure 11 shows the correlation between the identified mode shapes by the PSDTM-
SVD method, of the load case 1 and the load case 2 through the modal assurance 
criterion (MAC) matrix. High values of off-diagonal terms in the MAC matrix, 
highlights the possibility of non-structural mode associated to the first peak of the load 
case 2. In order to clearly distinguish structural modes from harmonic components for 
load case 2, kurtosis values and histograms corresponding to each identified peak by 
the PSDTM-SVD method, were estimated. The obtained kurtosis values of the first 
three peaks are given in Table 6 and their histograms are shown in Figure 12. 

The histograms of the first mode has two maxima at both sides and the kurtosis values 
are close to the theoretical value of 1.5. It allows to confirm that the first peak is a 
harmonic component. The histograms of the second and third peaks clearly show a bell 
form, and their kurtosis values are very close to 3. The second and third peaks are thus 
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(b) Load case 2

Figure 10. [Laboratory test] PSDTM-SVD method

For the load case 2, in the π (.) curve of the PSDTM-SVD method in Fig. 10(b), there are additional
peaks; especially the predominance of the first peak at 13.28 Hz. It comes from the rotating eccentric
mass of 800 rpm. Among the three structural modes previously identified with the load case 1, the
first mode is almost hidden by the harmonic of the rotating mass. Identified frequencies and mode
shapes from three dominant peaks on the π (.) curves of the load case 1 and 2, are given in Table 5.
They are quite identical for the PSDTM-SVD method and the FDD method in the load case 1. In
presence of harmonic excitation in the load case 2, the first identified frequency by the PSDTM-SVD
method corresponds probably to the harmonic component and not to the first structural mode.
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Table 5: [Laboratory test] identified parameters. 
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parameters  
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𝑓,(Hz) 
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19.73 

63.48 

112.50 

19.73 

63.48 

112.50 

13.28 

63.48 

112.50 

Mode 1 

1.00 

2.00 

-2.04 

1.00 

1.96 

1.00 

2.14 

-1.96 -1.79 

Mode 2 

1.00 

-2.22 

6.07 

1.00 

-2.02 

6.08 

1.00 

-2.26 

5.99 

Mode 3 

1.00 

-1.54 

-2.22 

1.00 

-1.54 

-2.21 

1.00 

-1.55 

-2.21 

 

 
Figure 11. [Laboratory test] MAC matrix between identified mode shapes Figure 11. [Laboratory test] MAC matrix

between identified mode shapes

Fig. 11 shows the correlation between the
identified mode shapes by the PSDTM-SVD
method, of the load case 1 and the load case 2
through the modal assurance criterion (MAC) ma-
trix. High values of off-diagonal terms in the MAC
matrix, highlights the possibility of non-structural
mode associated to the first peak of the load
case 2. In order to clearly distinguish structural
modes from harmonic components for load case 2,
kurtosis values and histograms corresponding to
each identified peak by the PSDTM-SVD method,
were estimated. The obtained kurtosis values of
the first three peaks are given in Table 6 and their
histograms are shown in Fig. 12.

The histograms of the first mode has two max-
ima at both sides and the kurtosis values are close
to the theoretical value of 1.5. It allows to confirm
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Table 5. [Laboratory test] Identified parameters

Modal parameters
FDD PSDTM-SVD

Load case 1 Load case 1 Load case 2

f1 (Hz) 19.73 19.73 13.28
f2 (Hz) 63.48 63.48 63.48
f3 (Hz) 112.50 112.50 112.50

Mode 1
1.00 1.00 1.00
2.00 1.96 2.14
−2.04 −1.96 −1.79

Mode 2
1.00 1.00 1.00
−2.22 −2.02 −2.26

6.07 6.08 5.99

Mode 3
1.00 1.00 1.00
−1.54 −1.54 −1.55
−2.22 −2.21 −2.21

Table 6. [Laboratory test] kurtosis values from peaks of the load case 2

Modal characteristics Peak 1 Peak 2 Peak 3

Frequency (Hz) 13.28 63.48 112.50

1.56 2.94 2.92
Kurtosis value 1.55 3.03 2.91

1.52 2.97 2.95

Conclusion Harmonic Structural Structural
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that the first peak is a harmonic component. The histograms of the second and third peaks clearly
show a bell form, and their kurtosis values are very close to 3. The second and third peaks are thus
structural modes.
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4. Conclusions

The operational vibration testing is the most convenient for real structures. However, its common
assumption of white noise excitation is rarely verified in real conditions, particularly when harmonic
components are inside excitation due to rotating part of mechanical systems and structures.

Transmissibility functions are recognized as independent of nature of excitation in the neighbor-
hood of a system’s pole. When different loading conditions are considered, these functions can be
used as primary data to identify modal parameters. The independent property to the excitation nature
is interesting because it can alleviate the assumption of white noise excitation in ambient vibration
testing.

In this work, the performance of this transmissibility functions based approach through the PSDTM-
SVD method, was studied when both harmonic excitation and white noise excitation exist together.
The PSDTMSVD method was chosen because of its advantage allowing the use of only one load
condition. A two degree-of-freedom numerical example and a laboratory test were considered.

The results of the two degree-of-freedom numerical example show that the PSDTM-SVD method
is performant and structural frequencies are well identified when white noise excitation is more dom-
inant than harmonic excitation (e.g. SNR ≥ 8 dB). Structural peaks are clearly visible on the π(:)
curve whereas harmonic peak is much reduced. Note that, in the same situation, the harmonic peak
is always present in the FDD method that is based on power spectral density of responses. When the
weight of the harmonic excitation becomes important (e.g. SNR = 0 dB), the peak of the harmonic
component cohabits with that of the structural modes. It makes the modal identification process more
complicated. A post-processing step was proposed to distinguish the structural modes and the har-
monic components. Based on kurtosis values and histograms, the distinction allows to easily confirm
a peak corresponding to a mode or simply a harmonic component.

For the laboratory experimental test, the PSDTM-SVD method gives good results if there is only
white noise excitation. When harmonic excitation is mixed with the white noise excitation, the pre-
dominance of the harmonic component among the visible peaks of π(:) curve, complicates the recog-
nition of structural peaks and harmonic one. The application of the post-processing step is necessary
and it allows readily to highlight the structural modes and the harmonic component.

From obtained results, it can be concluded that the PSDTM-SVD method is performant for am-
bient vibration testing. When harmonic excitation is mixed to white noise excitation with a small
weight, the PSDTM-SVD method highlights only structural modes. However, when harmonic ex-
citation weight becomes important, the post-processing step for distinction of structural modes and
harmonic components from visible peaks, is necessary.
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