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Abstract

This paper presents the elastic large-displacement analysis of planar steel frames with flexible connections
under static loads. A corotational beam-column element is established to derive the element stiffness matrix
considering the effects of axial force on bending moment (P-A effect), the additional axial strain caused by
end rotations and the nonlinear moment — rotation relationship of beam-to-column connections. A structural
nonlinear analysis program is developed by MATLAB programming language based on the modified spherical
arc-length algorithm in combination with the sign of displacement internal product to automate the analysis
process. The obtained numerical results are compared with those from previous studies to prove the effective-
ness and reliability of the proposed element and program.
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1. Introduction

In practice, due to high slenderness of the steel members, the response of the steel structure is
basically nonlinear. The effects of geometric nonlinearity and the flexibility of beam-to-column con-
nections, which presents the nonlinear moment-rotation relationship of the connections, to the frame
behavior are considerable, especially in large displacement analysis. There are three widespread for-
mulations of element stiffness matrix of total Lagrangian, updated Lagrangian and co-rotational meth-
ods. In the co-rotational formulation, the local coordinate is attached to the element and simultaniously
translates and rotates with the element during its deformation process. As a result, the derivation of
the element stiffness matrix all relies on this local coordinate without the rigid body translation and
rotation. Therefore, the co-rotational method reveals an outstanding advantage of dealing with large-
displacement problems.
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Wempner [1], Belytschko and Glaum [2], Crisfield [3], Balling and Lyon [4], Le et al. [5], Nguyen
[6], Doan-Ngoc et al. [7] and Nguyen-Van et al. [8] adopted the co-rotational method in their studies
to predict the large-displacement behavior of the members and structures. However, the flexibility
of the beam-to-column connections have not much paid attention in the combination with the co-
rotational formulation. This study continues the work of Doan-Ngoc et al. for rigid steel frames with
the consideration of the flexible connections. In this paper, a tangent hybrid element stiffness matrix
is formed by performing partial derivative of force load vector with respect to local displacement
variables. The flexible beam-to-column connections are modeled by zero-length rotational springs.
The moment at flexible connections is updated during the analysis process upon the tangent rigidity
and rotation. Notably, the proposed hybrid element is able to consider not only the P-delta effect but
also the effect of axial strain caused by the bending of the element. The modified spherical arc-length
which allows saving the computational effort on the basis that the stiffness matrix is only required to
calculate for the first loop each load step is adopted. A sign criterion of product vector of displacement
is combined with this non-linear equation solution method to trace the equilibrium path of structure.
The obtained numerical results from the analysis program are compared to existing studies to illustrate
the accuracy and efficiency of the proposed element.

2. Finite element formulation

2.1. Internal force and rotation angle at element ends

U, Us
2 M1 “r 91 A) M,
1 = .,__‘_____ ____ — ’ »
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Figure 1. Co-rotational beam-column element

A traditional elastic beam-column element subjected to moment M; and M, at two extremities
and axial force F is presented in Fig. 1. The displacement can be approximated via the function
A(x) = ax’ + bx* + cx + d proposed by Balling and Lyon [4]. The relation of internal force and
rotation at two ends can be expressed as:

21
M] _ ElI| 4 2 B _% 0]
Ui =5l il T2 (1S .
30 15
EA 1,1 1
F=——6+EA|—6 — —6,0 —92 2
L™ [15 3012 T 5% )

where 61, 6, are rotational angle at two nodes of element.

2.2. Internal force with consideration of connection flexibility

Two zero-length springs are attached to two element nodes to form a hybrid beam-column ele-
ment, as shown in Fig. 2. The rotation of the flexible connection will be:

01 =00:1-61); 62=(0:2—6,2) (3)
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where 6,; and 0; are the conjugate rotations for the moments M,; and M; at node i 6,; 1s incremental
nodal rotations at node i"".

Figure 2. Beam-column element with flexible connection

The moment-rotation relation of flexible connection related to the tangent connection rigidities
Rir1, Ry can be expressed in the incremental form:

AM.y = Ry A6y @)
AM > = Rin A6,
Meanwhile,
M =M,
5
{ Mo =M, )

Hence, the moment-rotation relation of flexible connection can be re-written as:

AM :g Sle S2¢ Ab, (6)
AM» Lo | S2¢ 53¢ Ab»

where s1., $2., §3. are determined according to the tangent connection rigidities Ry, Ryp:

EI EI
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2.3. Co-rotational beam-column element stiffness matrix

The undeformed and deformed configuration of the co-rotational beam-column element AB is
presented in Fig. 3. The local u displacement vector and the global displacement vector u are:

ﬁ={5 01 O }T, u={u1 up U3 U4 Us Ug }T )

The element length in two configurations Ly and L, respectively, is calculated as:

Ly = \/(XB - xa)’ +@p—2), L= \/(XB +uy = xa = 11)” + (2 + us — 24 — )’ (10)
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Figure 3. Initial and deformed configuration of beam-column element

The geometry parameter can be determined as:

0=(L-Ly), Oq1=uz—(@-ap), 602=us—(a—ap (11)
+uUs — 74 — + Uy — X4 —
sina = (ZB s~ uz)’ cosa = (xB e~ XA ul) (12)
L L
—_ + —_ —_
ap = sin”! (ZBL—OZA), @ = sin”! (ZB s LZA uz) (13)

Taking the derivative of ¢, 6.1, 6, with respect to u;, the global and local displacement relation is
obtained as follows:

—cosa —-sina 0 cosa sina O

= sina@ cosa sina cos a
om\ _p_| - 1 - (14)
ou L L L L
_sin@ cosa 0 sine cosa
L L L L

Then, the relation of local element force fy, and global element force f¢ is:

T
fL={F Ma M | (15)
M + M, M, + M, r
fG:{_F (Mey + Me2) M, F _ (M1 + M) Mz} (16)
L L
o\,
f = (—“) f, = B'fy (17)
ou
Finally, the global tangent element stiffness matrix is achieved:
Bf(; GBT TafL
Keg=|—|=|—f +B — 18
¢ ( ou ) ( ou - ou 1%
T 1
K = B'KLB + “ - F + = [rir” v | (Mo + M) (19)
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where Kj, is local tangent element stiffness matrix

. . T
rlz{sma —cosa 0 —sina cosa 0}

. . T
rzz{—cosa —sina 0 cosa sina O}

At connection positions, M. = M|, M = M>, thus the stiffness matrix Ky, is:

oF oM, oMy, 1 [ OF oM, OM; T
00 00 00 00 06 00
Ke = ofL\ | OF OM. OMo | | OF OM, OM,
Yo\oa) | 000 00 86 || 80 00 00
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An explicit expression of K :
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Kri,j = Kriji
where
2 1
Hl = E (96‘1 - 6)rl) - % (06‘2 - 0r2)
H, = ! (6 6,1) + 2 (6 6,2)
2 = 30 cl rl 15 c2 r2

2.4. Algorithm of nonlinear equation solution

The residual load vector at the loop i” of the j load step is defined as

R;_l = Fini'_1 - /lj'_lFex

(20)
21

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

€19

(32)

where F;, is the system internal force vector which is accumulated global element force vector f, F.,
is called the reference load vector and A is load parameter. In order to solve the equation (32) contin-
uously at “snap-back” and “snap-through” behavior, the modified arc-length nonlinear algorithm in
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combination with the scalar product criterion, proposed by Posada [9], is adopted. Specifically, the
sign of incremental load parameter A/l}- at the first iteration of each incremental load level is

1 ASJ'
ST - (33)
o )
sign(AA}) = sign (({Au}j“_’f‘ﬂ“’)T {5ﬁ}}.) 34)

where A/l} and {Au}j‘f{sﬁ “ are the incremental load factor at the 7" load step and the converged

incremental displacement vector at the previous load step, 6ﬁ} = K F, is the current tangential
displacement vector.

3. Numerical examples

An automatic structural analysis MATLAB program is developed to trace the load-displacement
behavior of steel frames with rigid or flexible connections under static loads. The efficiency of the
coded program is verified through the comparison between the achieved results and those from pre-
ceding investigations in the three following examples.

3.1. Linear flexible base column subjected to eccentric load

Fig. 4 presents a column with the applied P
loads, geometrical and material properties. The 0.01P4 v
base is considered as a clamped point or a flexi- f—.—,‘ I”
ble connection with the rigidity of Rj. This mem- el
ber was investigated by So and Chan [10] by using / 4= 0.01 (w?
two three-node elements with a four-order approx- L "I L= 32(m)
imate function for the horizontal displacement. It H E=210x 10° (N/m?)
can be seen in Fig. 5 that two proposed elements ] I = 10412 (m*)

are adequate to achieve a good convergence for Y g — o L0ET
L

both column-base connection cases. The analyti-

cal results have a very good agreement with those

of So and Chan (Fig. 6). Furthermore, this exam- Figure 4. Column under eccentric load
ple illustrates the capacity of the developed pro-

gram for dealing with the “snap-back” behavior.

3.2. Cantilever beam with concentrated load at free end

A flexible base cantilever beam with a point load at the free end (Fig. 7) was studied by Aristizabal-
Ochoa [11] using classical elastic method. The behavior of the moment-rotation relation of flexible
connection is stimulated by the three-parameter model with ultimate moment M, = EI/L, initial ro-
tational angle ¢y = 1 and the factor n = 2. As shown in Fig. 8, the convergent load-displacement can
be found with two proposed elements. The results from the written analysis program match very well
with the analytical solution of Aristizabal-Ochoa (Fig. 9). In addition, it can be referred that the effect
of connection flexibility is considerable. Specifically, at the load factor of 2, the non-dimensionless
displacement (1 — v/L) of the rigid beam is roughly 0.41 which much lower than that, 0.82, for the
beam with flexible base.
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Figure 5. Convergence rate according to different number of proposed elements
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Figure 7. (a) moment-rotational relation model (b) cantilever beam
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Figure 8. Equilibrium path equivalent to used proposed element quantity
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Figure 9. Load-displacement relationship at free end

3.3. William’s toggle frame

Fig. 10 shows the properties of well-known William’s toggle frame [12] where an analytical solu-
tion is given. This structure was then studied in three different boundary conditions including fixed,

L =657.2 (mm)
h =9347 (mm)

EI=26615 (kN.mm?)
EA= 8385 (kN)
R, = 2034 (kN.mm/rad)

Figure 10. William’s toggle frame
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linear flexible and hinge by Tin-Loi and Misa [13]. Depicted in the Fig. 11 is the comparison of
numerical results from using 1, 2 and 3 proposed elements, respectively. Again, two proposed ele-
ments are sufficient to achieve an acceptably converged result. As presented in Fig. 12, irrespective
of boundary conditions, the obtained results reveal good convergence with those of Tin-Loi and Misa
and William. Besides that, the program manages to tackle the “snap-through” behavior.
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Figure 11. Number of proposed element versus convergence rate
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Figure 12. Load-deflection curve
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4. Conclusions

This study derives a co-rotational beam-column element for large-displacement elastic analysis
of planar steel frames with flexible connections under static loads. Zero-length rotational springs
with either linear or nonlinear moment-rotation relations are adopted to simulate the flexibility of
beam-to-column connections. The modified spherical arc-length method coupled with the sign of
displacement internal product is integrated into the MATLAB computer program to trace the load-
displacement path regardless of the presence of “snap-back” or “snap-through” behavior. The results
of numerical examples demonstrates the accuracy and effectiveness of the proposed element with the
use of only two proposed elements in all examples.
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