
Journal of Science and Technology in Civil Engineering NUCE 2019. 13 (3): 113–123

A DEEP LEARNING-BASED PROCEDURE FOR ESTIMATION OF
ULTIMATE LOAD CARRYING CAPACITY OF STEEL TRUSSES

USING ADVANCED ANALYSIS

Truong Viet Hunga,∗, Vu Quang Vietb, Dinh Van Thuatc

aFaculty of Civil Engineering, Thuyloi University, 175 Tay Son street, Dong Da district, Hanoi, Vietnam
bFaculty of Civil Engineering, Vietnam Maritime University, 484 Lach Tray street,

Ngo Quyen district, Hai Phong city, Vietnam
cFaculty of Building and Industrial Construction, National University of Civil Engineering,

55 Giai Phong road, Hai Ba Trung district, Hanoi, Vietnam

Article history:
Received 02/07/2019, Revised 12/08/2019, Accepted 12/08/2019

Abstract

In the present study, Deep Learning (DL) algorithm or Deep Neural Networks (DNN), one of the most powerful
techniques in Machine Learning (ML), is employed for estimation of ultimate load factor of nonlinear inelastic
steel truss. Datasets consisting of training and test data are created based on advanced analysis. In datasets,
input data are the member cross-sections of the truss members and output data is the ultimate load factor of
the whole structure. An example of a planar 39-bar steel truss is studied to demonstrate the efficiency and
accuracy of the DL method. Five optimizers such as Adadelta, Adam, Nadam, RMSprop and SGD and five
activation functions such as ELU, LeakyReLU, Sigmoid, Softplus, and Tanh are considered. Based on analysis
results, it is proven that DL algorithm shows very high accuracy in the regression of the ultimate load factor of
the planar 39-bar nonlinear inelastic steel truss. The number of layers can be selected with a small value such
as 1, 2 or 3 layers and the number of neurons in each layer can be chosen in the range [Ni, 3Ni] with Ni is the
number of input variables of the model. The activation functions ELU and LeakyReLU have better convergence
speed of the training process compared to Sigmoid, Softplus and Tanh. The optimizer Adam works well with
all activation functions considered and produces better MSE values regarding both training and test data.

Keywords: deep learning; artificial neural networks; nonlinear inelastic analysis; steel truss; machine learning.
https://doi.org/10.31814/stce.nuce2019-13(3)-11 c© 2019 National University of Civil Engineering

1. Introduction

Classical methods for design of steel structures are based on two main steps, where an elastic anal-
ysis is used first to calculate the forces in each structural member and then the safety of each member
is checked using strength equations, that are inelastic analyses to account for nonlinear effects, by
assuming each member as an isolated member. Obviously, these methods do not consider directly
structural nonlinear behaviors and their member separate check cannot make sure the compatibility
between the members and whole structure. Therefore, although these methods yield acceptable solu-
tions for design of structure and save lots of computational efforts, they have been gradually being
replaced by advanced analysis methods [1–4] which can account for geometric and material nonlin-
earities directly and model complex contact conditions. Advanced analysis methods can also predict

∗Corresponding author. E-mail address: truongviethung@tlu.edu.vn (Hung, T. V.)

113

https://doi.org/10.31814/stce.nuce2019-13(3)-11
mailto:truongviethung@tlu.edu.vn

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

the load-carrying capacity of whole structure that allows elimination of the tedious individual mem-
ber check approach used in the classical methods. However, advanced analysis methods are excessive
computing times to solve the design problems which require lots of structural analyses such as op-
timization or reliability analysis of the structure [5–8]. In such cases, using metamodels based on
machine learning (ML) techniques are considered as an efficient solution.

Metamodel is an approximate mathematical representation used to perform the complicated rela-
tionship between input and output data. In light of this, nonlinear inelastic responses of the structure
are predicted without performing advanced analysis. Some popular ML methods are Support Vector
Machine (SVM) [9], Kriging [10], Random Forest (RF) [11], Gradient Tree Boosting (GTB) [12],
Decision Tree (DT) [13], and so on. The applications of ML methods into structural design are quite
diverse but focused primarily on damage detection [14, 15] and health monitoring [16, 17]. Besides,
researchers have been applying ML methods for structural optimization [18], reliability analysis [19],
prediction of structural ultimate strength [20], etc.

The performance of traditional ML methods largely depends on the data representation choice
of the users since these methods cannot automatically detect the representations or features needed
for classification or detection from the raw input data. The pattern-recognition often requires com-
plex techniques with high expertise. Therefore, using ML methods is complicated. On the contrary,
modern ML methods are called representation learning methods because the data presentations can be
automatically discovered. This not only improves the efficiency and accuracy of ML methods but also
makes the use of these methods simpler. A review of the representation learning methods is provided
by Bengio et al. [21].

Deep learning (DL) in Artificial Neural Network (ANN), one of the best branch of the ML meth-
ods, has been commonly used in various structural design and analysis problems such as damage
detection [22], health monitoring [23], etc. Several studies also listed by LeCun et al. [24] to demon-
strate the efficiency of DL with other ML methods such as image and speed recognitions, natural lan-
guage understanding, regression, classification, etc. Recently, by solving a well-known ten-bar truss
problem, Lee et al. [25] showed the efficiency and accuracy of the DL comparing to the conventional
neural networks in structural analysis. It is noted that most DL models are based on an ANN that con-
sists of multiple levels of representation by utilizing simple but nonlinear interconnected layers with
many neurons per layer. In DL models, the presentation at the following layers have higher abstrac-
tion levels than the previous one. Important information is amplified whilst non-critical information is
gradually decreased and excluded through the layers. With such a complex and flexible organization
system, as a result, DL can handle complicated and high-dimensional data. Additionally, developing
and using of a DL model do not need a high expertise of the users. For this reason, these methods can
be effectively applied in many fields of technology, medical, business, and science.

This paper presents a DL-based procedure for estimating the ultimate load-carrying capacity of
nonlinear inelastic steel truss. Firstly, advanced analysis is presented to capture the structure nonlinear
inelastic behaviors. Then, data consisting of inputs and outputs are collected from advanced analyses.
The inputs are the cross-section of members and the output is the ultimate load factor of the truss
structure. In order to demonstrate the efficiency and accuracy of DL algorithm, an example of a
planar 39-bar steel truss is taken into consideration. In addition, sensitivity analyses are performed
to examine the influences of Nh, the Nn, activation functions, and optimizers on the accuracy of DL
method for the regression of the ultimate load factor of this structure.

114

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

 = asymptotic lower stress limit.

 and = parameters based on () of compressive member.

Fig. 1. Stress-strain constitutive model
The incremental form of equilibrium equation for a truss element is expressed

as [27]

 , (10)

in which and are the initial nodal element forces at previous and current

configurations, respectively; and are the elastic and geometric

stiffness matrices, respectively; and, , and are the higher-order

stiffness matrices. The detail of these matrices can be found in Ref. [4].

3. Deep learning in artificial neural network
As mentioned above, DL algorithms or deep neural networks (DNN) are

effectively used in handling both regression and classification problems. Due to

the training data features, DNN model can be classified as (1) supervised learning,

s l

1X 2X /L r

[] [] [] [] []() 1 2
1 2 3 { }E Gk k s s s d f f+ + + + + =

1 f 2 f

[]Ek []Gk
[]1s []2s []3s

Figure 1. Stress-strain constitutive model

2. Advanced analysis for calculating ultimate load factor of steel trusses

The stress-strain curve proposed by Blandford [26] presented in Fig. 1 is employed to perform the
constitutive model since it includes most important behaviors of material such as: elastic, elastic and
inelastic post-buckling, unloading and reloading. Compressive stress is positive in this figure. The
equations of the parts of the stress-strain curve in Fig. 1 as follows:

- Part (a):
σ = Eε, ε < εk (1)

- Part (b):
σ = σk, εk ≤ ε < εib (2)

- Part (c):
σ = σl + (σk − σl) e−(X1+X2

√
ε−εib)(ε−εib), ε ≥ εib (3)

- Part (d):
σ = σ1 +

ε − ε1
1

0.5E +
(

1
σ2−σ1

− 1
0.5E(ε2−ε1)

)
(ε − ε1)

(4)

- Part (e):
σ = Eε for |ε| <

∣∣∣εy
∣∣∣ (5)

- Part (f):
|σ| = σy for |ε| ≥

∣∣∣εy
∣∣∣ (6)

- Part (g):
|σ| = E

(
|ε| −

(
|ε3| −

∣∣∣εy
∣∣∣)) (7)

115

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

The notations in the above equations are defined as follows: σ is axial stress; ε is axial strain;
E is elastic modulus; εib is axial strain at the beginning point of inelastic post-buckling; σy is yield

stress; εy is yield strain; σcr is Euler critical buckling stress, σcr =
π2EI
AL2 ; εcr is Euler critical buckling

strain, εcr =
σcr

E
; A is cross-section; I is inertia moment of weak axis; L is length of the member; σk

= σy if yielding occurs and σk if the elastic buckling occurs; εk = εy if yielding occurs and εk if the
elastic buckling occurs; σl is asymptotic lower stress limit; X1 and X2 are parameters based on (L/r)
of compressive member.

The incremental form of equilibrium equation for a truss element is expressed as [27]

([kE] + [kG] + [s1] + [s2] + [s3]) {d} + 1 f = 2 f (8)

in which 1 f and 2 f are the initial nodal element forces at previous and current configurations, respec-
tively; [kE] and [kG] are the elastic and geometric stiffness matrices, respectively; and, [s1], [s2] and
[s3] are the higher-order stiffness matrices. The detail of these matrices can be found in [4].

3. Deep learning in artificial neural network

As mentioned above, DL algorithms or deep neural networks (DNN) are effectively used in han-
dling both regression and classification problems. Due to the training data features, DNN model can
be classified as (1) supervised learning, (2) unsupervised learning, and (3) semi-supervised learn-
ing. For the estimation problems of steel trusses considered in this study, the supervised learning is
employed since the input and output data are determined. In the supervised learning algorithm, feed-
forward neural networks (FNN) using backpropagation (BP) algorithm are commonly used. The FNN
basic issues using BP algorithm are indicated in the following sections.

3.1. Supervised learning

In supervised learning form, the training data is given in an expression as follows:

T = {(Xi,Yi)}Ni=1 (9)

where Xi is the input vector of the data ith or the feature vector of the data ith; Yi is the output vector
or the label of the data ith; N is the number of data samples. In the supervised learning algorithm, the
correct answers are given; therefore, the training process results can be controlled by minimizing the
error between the predicted and exact values. As an example, with the input Xi, the predicted result
Y ′i is given by the training model. To enhance the training model, the optimization process is used to
minimize the mean-square error function which is given as follows:

EMS E =
1
N

N∑
i=1

(
Yi − Y ′i

)2
(10)

3.2. Feedforward neural network

In the FNN, there are many layers and each layer has many units. Each layer includes connections
to the next layer. The first layer plays the role of the input layer where each unit in this layer is a data
feature. The last layer plays the role of the output layer, in which each unit is a data label. Remaining
layers are the hidden layers and they play the role of transferring the important features from the input

116

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

Fig. 2. An FNN with two hidden layers

The input of an unit is computed based on the weight function, which can be

mathematically stated as follows:

 , (13)

where is the input of the unit of the layer; is the weight at the

connection between the unit of the layer and the unit of the

layer; is the number of units of the layer. In each layer, to transform

the input signal to the output signal in the unit, an activation function is

employed as below:
 (14)

where is the output of the unit in the layer. It is noted that the users

should choose the suitable activation functions to obtain the best result for their

problems.

 In the supervised learning algorithm, to evaluate the accuracy of the training

model, loss functions, which are computed based on the predicted output and the

exact output of the model, are employed. Several common loss functions are

mean_squared_error, mean_absolute_error, mean_absolute_perccentage_error,

etc. In the present work, we use mean_squared_error loss function which is

x1

x2

xi

xI

......
...

u1
f ()(1) v1

(1)

ui
f ()(1) vi

(1)

uJ
f ()(1) vJ

(1)

......
......

u1
f ()(2) v1

(2)

ui
f ()(2) vi

(2)

uK
f ()(2) vK

(2)

......
......

y1'

yH'

yi'

......
......

w11
(1)

w11
(2)

wIJ
(1)

wJK
(2) wKH

(3)

w11
(3)

Input layer Hidden layer 1 Output layerHidden layer 2

y1

yH

yi
......

......

Exact output

(1)

() ()

1

-

=

= å
j

unitN
j j
i li

l
u w

()j
iu

thi thj ()j
liw

thl ()1- thj
thi thj

(1)-j
unitN ()1- thj

()f

()() ()=j j
i iv f u

()j
iv

thi thj

Figure 2. An FNN with two hidden layers

layer to the output layer. An example of a fully connected FNN with 2 hidden layers is described in
Fig. 2.

The input of an unit is computed based on the weight function, which can be mathematically
stated as follows:

u(j)
i =

N(j−1)
unit∑
l=1

w(j)
li (11)

where u(j)
i is the input of the ith unit of the jth layer; w(j)

li is the weight at the connection between
the unit lth of the (j − 1)th layer and the ith unit of the jth layer; N(j−1)

unit is the number of units of the
(j − 1)th layer. In each layer, to transform the input signal to the output signal in the unit, an activation
function f () is employed as below:

v(j)
i = f

(
u(j)

i

)
(12)

where v(j)
i is the output of the ith unit in the jth layer. It is noted that the users should choose the

suitable activation functions to obtain the best result for their problems.
In the supervised learning algorithm, to evaluate the accuracy of the training model, loss func-

tions, which are computed based on the predicted output and the exact output of the model, are em-
ployed. Several common loss functions are mean_squared_error, mean_absolute_error,
mean_absolute_perccentage_error, etc. In the present work, we use mean_squared_error loss function
which is expressed in Eq. (10). The objective of a training process of an DNN model is to minimize
the loss function.

3.3. Backpropagation algorithm

In the BP algorithm, the objective function is loss function, while design variables are the weight
parameters. The purpose of an DNN model training process is to find the optimal weight parameters
in which the loss function is minimum. In order to optimize the weight parameters, the BP algorithm
is commonly utilized based on the gradient descent method. In multilayer FNN, an BP algorithm is
employed to compute the effect of each weight corresponding to loss function. The weight parameters
can be revised in the BP algorithm based on the gradient descent method given as follows:

W(j+1) = W(j) − ε∂W(j) + µ∆W(j−1) (13)

117

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

where W(j) is the weight parameters matrix of the jth epoch; ε is a learning rate employed to con-
trol the weights ratio adjusted; µ is a momentum parameter utilized to maintain the influence of the
previous changes of the weights on the current movement direction in weight space.

4. Deep learning model for estimating ultimate load factor of steel trusses

The main steps of the DNN model for estimating the ultimate load factor of steel trusses as follows:
- Step 1: Definition of problem and generation of data
Cross-sectional areas of structural members are considered as the inputs, while the ultimate

load factor of the structure is the output. Generation of data starts by creating m input samples,
(X1,X2, . . . ,Xm), where X = (x1, x2, . . . , xn) is the vector of structural cross-sectional areas. xi is the
cross-section area of the structural member group ith which is generated randomly in the predefined
range

[
xlowb

i , xupb
i

]
. Corresponding to each input vector X, the ultimate load factor of the structure, l fi,

is calculated by using advanced analysis.
- Step 2: Data scale
To improve the performance of the DNN training process, all the data is scaled down in the range

(0,1] by using the “MinMaxScaler” method as follows:

xscale
i =

xi − xlowb
i

xupb
i − xlowb

i

(14a)

l f scale
i =

l fi −min
(
l fi

)
max

(
l fi

)
−min

(
l fi

) (14b)

All scaled data is now divided into two groups of training data set, (Xtrain,Ytrain), and test data
set, (Xtest,Ytest). The training data and test data are used to develop and check the DNN model,
respectively.

- Step 3: Definition of a DNN model structure
The DNN model is developed using sequential model where the layers are defined from the input

layer, through the hidden layers, to the output layer. In each layer, the number of units and the type
of activation function are chosen. Notes that, the number of units in the input layer can be equal
or different to the number of input variables, but the number in the output layer must be equal to
the number of output variables. The activation function of each layer can be chosen as the same
or different. The connections between the units in two adjacent layers are fully connected or using
dropout to prevent overfitting in training the model. The number of hidden layers and units in each
layer affect the computation time and accuracy of training model. Therefore, several values of number
of hidden layers and units in each layer should be tried to find the acceptable DNN structure.

- Step 4: Compile and train the DNN model
To compile the DNN model, the loss function and optimizer are defined first. Some popular

regression loss functions are mean_squared_error, mean_absolute_error, mean_absolute_perccent-
age_error, etc. And, some optimizers are stochastic gradient descent (SGD), Adagrad, RMSprop,
Adam, etc. Different loss functions and optimizers need to be tried in order to find the acceptable
ones for the studied problem.

To train the DNN model, the ‘fit()’ function is used with the main parameters as: training data, test
data, mini-batch, the number of epochs. The training and test data are presented in Step 2. Mini-batch
method has been proposed as a way to speed-up the convergence of the model training by dividing the

118

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

training data into several smaller batches and then training the model through these batches in turn.
Epoch is a time that all training data is passed forward and backward through the neural network only
once. The more epochs are used, the more the model is improved, up to a certain point where the
model is converged and stops improving during each epoch.

After this step, the DNN model is obtained. It can be used for predicting the ultimate load factor
of structure if a new input data is given.

5. Numerical examples

Epoch is a time that all training data is passed forward and backward through the

neural network only once. The more epochs are used, the more the model is

improved, up to a certain point where the model is converged and stops improving

during each epoch.

 After this step, the DNN model is obtained. It can be used for predicting the

ultimate load factor of structure if a new input data is given.

Fig. 3. Planar 39-bar steel truss

5. Numerical examples
In this section, the planar 39-bar steel truss presented in Fig. 3 is studied. The

cross-sectional areas of 39 structural members are divided into 39 groups that have

the same design range [645.16,11290.3] (mm2). Steel material has the yield

strength of 172.375 (MPa) and the elastic modulus of 68.95 (GPa). The horizontal

applied loads according to the X-axis at all nodes are equal to 136 (KN), and the

gravity loads at all nodes equal 170 (KN). For developing the DNN model, the

programming language Python and the open-source software libraries Tensorflow

Figure 3. Planar 39-bar steel truss

In this section, the planar 39-bar steel truss
presented in Fig. 3 is studied. The cross-sectional
areas of 39 structural members are divided into 39
groups that have the same design range [645.16,
11290.3] (mm2). Steel material has the yield
strength of 172.375 (MPa) and the elastic modulus
of 68.95 (GPa). The horizontal applied loads ac-
cording to the X-axis at all nodes are equal to 136
(KN), and the gravity loads at all nodes equal 170
(KN). For developing the DNN model, the pro-
gramming language Python and the open-source
software libraries Tensorflow and Keras are em-
ployed, while PAAP program [4] is used for per-
forming advanced analysis. Fig. 4 shows the his-
togram of ultimate load-factor of the truss with the
number of samples of 50,000.

and Keras are employed, while PAAP program [4] is used for performing advanced

analysis. Fig. 4 shows the histogram of ultimate load-factor of the truss with the

number of samples of 50,000.

Fig. 4. Histogram of ultimate load factor of the truss with 50,000 samples

In the current section, parameters consisting of Nh, Nn, activation functions,

optimizers are taken into consideration to investigate their influence on the

accuracy of the DL model for estimation of the truss structure. It is noted that the

accuracy of the DL model is evaluated by using average MSE in all training

samples over 30 independent runs. In addition, the number of training and test data

is chosen to be 5,000 and 10,000 respectively, and the number of epochs is fixed

at 10,000 for all cases. In addition, it is noteworthy that training and test data are

generated from advanced analyses of PAAP software with a similar computational

time of approximately 10s for each sample.

5.1 Effect of the number of hidden layers and neurons
 In this section, the effect of Nh on the accuracy of the developed DL model

is investigated by considering various Nh, while the activation function is chosen

to be LeakyReLU and the optimizer is selected to be Adam. Nh is varied from 1 to

5, while Nn is considered to be Ni/2 (20), Ni, 2Ni, 3Ni, 4Ni (Ni is the number of

input variables, Ni = 39). Tables 1 and 2 present the average MSE for training and

test data after 10,000 epochs, respectively. It appears from Table 1 that the accuracy

of the training model significantly increases when Nh increases from 1 to 5 with

respect to the increase of Nn (i.e., with Nn increases from 20 to 156, the accuracy

increases from 1.4 to 26.74 times, respectively). It is apparent that the DL model

0.0

10.0
20.0
30.0

40.0
50.0
60.0

70.0
80.0
90.0
100.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

M
or

e

C
um

ul
at

iv
e

(%
)

Fr
eq

ue
nc

y
(%

)

Ultimate load factor

Frequency

Cumulative

Figure 4. Histogram of ultimate load factor of the truss with 50,000 samples

In the current section, parameters consisting of Nh,Nn, activation functions, optimizers are taken
into consideration to investigate their influence on the accuracy of the DL model for estimation of
the truss structure. It is noted that the accuracy of the DL model is evaluated by using average MSE
in all training samples over 30 independent runs. In addition, the number of training and test data is
chosen to be 5,000 and 10,000 respectively, and the number of epochs is fixed at 10,000 for all cases.
In addition, it is noteworthy that training and test data are generated from advanced analyses of PAAP
software with a similar computational time of approximately 10s for each sample.

119

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

5.1. Effect of the number of hidden layers and neurons

In this section, the effect of Nh on the accuracy of the developed DL model is investigated by
considering various Nh, while the activation function is chosen to be LeakyReLU and the optimizer is
selected to be Adam. Nh is varied from 1 to 5, while Nn is considered to be Ni/2 (20), Ni, 2Ni, 3Ni, 4Ni

(Ni is the number of input variables, Ni = 39). Tables 1 and 2 present the average MSE for training and
test data after 10,000 epochs, respectively. It appears from Table 1 that the accuracy of the training
model significantly increases when Nh increases from 1 to 5 with respect to the increase of Nn (i.e.,
with Nn increases from 20 to 156, the accuracy increases from 1.4 to 26.74 times, respectively). It
is apparent that the DL model with Nh equal to 5 always has the best accuracy in regression of the
ultimate load factor regardless of Nn. This means that when the number of hidden layers and nodes
increase, the DNN model more well recognize the features of the data. It is observed from Table 2
that the accuracy of the DL model for test data is similar in all cases. This implies that the model is
not overfitting, furthermore the number of layers can be chosen small such as 1, 2 or 3 layers and the
number of nodes is in the range [Ni, 3Ni] in the light of the accuracy of the model for test data.

Table 1. Average MSE of the DNN model for training data

Hidden nodes in each layer Ni/2 = 20 Ni = 39 2 Ni = 78 3 Ni = 117 4 Ni = 156

Number of hidden layers MSE Time (s) MSE Time (s) MSE Time (s) MSE Time (s) MSE Time (s)

1 1.28E-03 106.8 9.06E-04 152.7 4.23E-04 193.2 3.03E-04 224.2 1.42E-04 240.8
2 1.21E-03 137.1 6.53E-04 193.1 2.46E-04 257.4 8.24E-05 312.4 5.20E-05 342.2
3 1.11E-03 174.9 5.07E-04 242.8 1.26E-04 326.4 5.06E-05 401.6 2.50E-05 444.8
4 1.00E-03 214.3 4.60E-04 289.6 1.08E-04 387.4 4.09E-05 496.7 1.08E-05 555.4
5 9.04E-04 272.8 3.72E-04 368.4 7.77E-05 516.6 2.79E-05 648.3 5.31E-06 711.2

Table 2. Average MSE of the DNN model for test data

Hidden nodes in each layer Ni/2 = 20 Ni = 39 2 Ni = 78 3 Ni = 117 4 Ni = 156

Number of hidden layers
1 4.20E-03 4.40E-03 4.38E-03 4.26E-03 4.48E-03
2 4.16E-03 4.39E-03 4.15E-03 4.21E-03 4.39E-03
3 4.19E-03 4.42E-03 4.05E-03 4.42E-03 3.92E-03
4 4.02E-03 4.26E-03 4.35E-03 4.19E-03 3.60E-03
5 4.05E-03 4.02E-03 4.05E-03 3.92E-03 3.63E-03

5.2. Effect of the activation function

In order to investigate the effect of activation functions on the performance of a developed DL
model, five activation functions consisting of ELU, LeakyReLU, Sigmoid, Softplus, and Tanh are
taken into consideration, where ELU and LeakyReLU are advanced activation functions. It is noted
that Nh is fixed at 3, while Nn is 117 in all analyses since this case gives the best accuracy reported in
Section 5.1. Figs. 5 and 6 display the comparison among various activation functions (in combination
with the Adam optimizer) based on convergence history of MSE of the ultimate load factor of the
truss corresponding to training and test data. As can see in Fig. 5, for training data, the model using
Tanh has the best convergence rate, while the model using Sigmoid has the least convergence rate
compared with other models. At the final iteration, the average MSE of the model using Tanh is
smallest (1.55 × 10−5), while the average MSEs of the models using ELU, LeakyReLU, and Softplus
are close each other which is much lower than that of the model using Sigmoid. For test data, using

120

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

Sigmoid has the smallest MSE among other activation functions as can be observed from Fig. 6.
Using Tanh activation function provides the highest MSE value compared to using other ones. It is
noteworthy from Figs. 5 and 6 that the use of Sigmoid gives the worst results for training data but it
provides the best accuracy for test data.

Fig. 5. History of model training process with different activation functions for

training data

Fig. 6. History of model training process with different activation functions for

test data

5.3 Effect of the optimizer
 In order to examine the influence of optimizers on the efficiency and

accuracy of a developed DL model, five optimizers consisting of Adadelta, Adam,

Nadam, RMSprop, and SGD are considered, while Nh and Nn are 3 and 117,

respectively. Table 3 illustrates the comparison of various optimizers (in

combination with the various activation functions) based on average MSEs of the

ultimate load factor of the truss structure. It can be seen from this table that the

combinations between activation functions and optimizers provide a high accuracy

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

0 2000 4000 6000 8000 10000
M

S
E

 o
f

th
e
 m

o
d
e
l

Epochs

ELU

LeakyReLU

Sigmoid

Softplus

Tanh

1.00E-03

1.00E-02

0 2000 4000 6000 8000 10000

M
S

E
 o

f
th

e
 m

o
d
e
l

Epochs

ELU

LeakyReLU

Sigmoid

Softplus

Tanh

Figure 5. History of model training process with different activation functions for training data

Fig. 5. History of model training process with different activation functions for

training data

Fig. 6. History of model training process with different activation functions for

test data

5.3 Effect of the optimizer
 In order to examine the influence of optimizers on the efficiency and

accuracy of a developed DL model, five optimizers consisting of Adadelta, Adam,

Nadam, RMSprop, and SGD are considered, while Nh and Nn are 3 and 117,

respectively. Table 3 illustrates the comparison of various optimizers (in

combination with the various activation functions) based on average MSEs of the

ultimate load factor of the truss structure. It can be seen from this table that the

combinations between activation functions and optimizers provide a high accuracy

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

0 2000 4000 6000 8000 10000

M
S

E
 o

f
th

e
 m

o
d
e
l

Epochs

ELU

LeakyReLU

Sigmoid

Softplus

Tanh

1.00E-03

1.00E-02

0 2000 4000 6000 8000 10000

M
S

E
 o

f
th

e
 m

o
d
e
l

Epochs

ELU

LeakyReLU

Sigmoid

Softplus

Tanh

Figure 6. History of model training process with different activation functions for test data

5.3. Effect of the optimizer

In order to examine the influence of optimizers on the efficiency and accuracy of a developed DL
model, five optimizers consisting of Adadelta, Adam, Nadam, RMSprop, and SGD are considered,
while Nh and Nn are 3 and 117, respectively. Table 3 illustrates the comparison of various optimizers
(in combination with the various activation functions) based on average MSEs of the ultimate load
factor of the truss structure. It can be seen from this table that the combinations between activation
functions and optimizers provide a high accuracy of the model for training and test data in most cases.

It appears that AdaDelta, Adam and Nadam can work well with all activation functions considered.
However, Nadam produces higher MSE for test data than AdaDelta and Adam, while AdaDelta has
greater MSE for training data than Adam and Nadam in all cases. SGD does not work well with
Sigmoid and SoftPlus since they yield a high MSE for both training and test data. Similarly, RMSprop
does not work well with Tanh. Adam optimizer has the lowest value of average MSE for training data
regardless of the activation function used. This was also found by Lee et al. [25] for the linear 10-bar

121

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

Table 3. Average MSE of the DNN model for various activation functions and optimizers

Activation ELU LeakyReLU Sigmoid SoftPlus Tanh

Optimizer Train Test Train Test Train Test Train Test Train Test

AdaDelta 6.56E-4 3.71E-3 5.79E-4 3.65E-3 3.54E-3 3.91E-3 3.21E-3 3.75E-3 1.29E-3 3.21E-3
Adam 3.40E-5 3.78E-3 4.26E-5 3.62E-3 1.22E-4 2.86E-3 3.56E-5 3.59E-3 1.55E-5 3.86E-3
Nadam 1.10E-4 5.23E-3 6.08E-4 6.01E-3 4.77E-4 4.56E-3 8.61E-5 4.91E-3 2.91E-5 5.27E-3

RMSprop 1.34E-4 6.25E-3 1.38E-4 6.02E-3 1.58E-3 3.03E-3 6.63E-4 4.05E-3 8.96E-5 1.17E-2
SGD 3.67E-4 3.37E-3 3.87E-4 3.45E-3 5.53E-2 5.53E-2 5.64E-2 5.64E-2 1.73E-3 2.72E-3

truss problem. In addition, the combination of Adam optimizer and Tanh activation function gives
the best accuracy for training data. The combination of SGD optimizer and Tanh activation function
provides the best accurate results for test data. On the other hand, it is also found that the computational
times for training the DNN model for various activation functions and optimizers are almost similar
to each other (approximately 400 seconds).

6. Conclusions

In the current study, an efficient method is proposed for estimation of nonlinear inelastic steel
truss using DL algorithm, one of the most powerful branch of ML methods. Datasets include training
and test data, which are collected from advanced analyses of steel truss. In this data, inputs are cross-
sections of members and the outputs are the ultimate load-factor of the truss structure. The number
of training data is chosen to be 5,000, while the number of test data is 10,000 in datasets. A planar
39-bar steel truss is taken into account for demonstration of the performance of the DL algorithm.
Based on the analysis results, it is demonstrated that DL has a very high accuracy in the regression
of the ultimate load-factor of the nonlinear inelastic steel truss. Additionally, sensitivity analyses are
carried out to investigate the influences of the number of hidden layers, the number of neurons in
each layer, activation functions, and optimizers on the accuracy of DL algorithm for the regression of
the ultimate load factor of this structure. It is concluded that most of combination of optimizers and
activation functions give a high accuracy of the model. The number of layers can be selected with a
small value such as 1, 2 or 3 layers and the number of nodes can be chosen in the range [Ni, 3Ni] to
reduce the running time but still have a high accuracy of the model. The activation functions ELU and
LeakyReLU improve the convergence speed of the training process compared to Sigmoid, Softplus
and Tanh. The optimizer Adam is recommended to use since it works well with all activation functions
considered and produces the better MSE values with both training and test data.

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Develop-
ment (NAFOSTED) under grant number 107.01-2018.327

References

[1] Chiorean, C. G. (2017). Second-order flexibility-based model for nonlinear inelastic analysis of 3D semi-
rigid steel frameworks. Engineering Structures, 136:547–579.

[2] Barros, R. C., Pires, D., Silveira, R. A. M., Lemes, Í. J. M., Rocha, P. A. S. (2018). Advanced inelastic
analysis of steel structures at elevated temperatures by SCM/RPHM coupling. Journal of Constructional
Steel Research, 145:368–385.

122

https://doi.org/10.1016/j.engstruct.2017.01.040
https://doi.org/10.1016/j.engstruct.2017.01.040
https://doi.org/10.1016/j.jcsr.2018.03.001
https://doi.org/10.1016/j.jcsr.2018.03.001

Hung, T. V., et al. / Journal of Science and Technology in Civil Engineering

[3] Uddin, M. A., Sheikh, A. H., Brown, D., Bennett, T., Uy, B. (2018). Geometrically nonlinear inelastic
analysis of steel–concrete composite beams with partial interaction using a higher-order beam theory.
International Journal of Non-Linear Mechanics, 100:34–47.

[4] Thai, H. T., Kim, S. E. (2009). Practical advanced analysis software for nonlinear inelastic analysis of
space steel structures. Advances in Engineering Software, 40(9):786–797.

[5] Truong, V. H., Kim, S. E. (2018). A robust method for optimization of semi-rigid steel frames subject to
seismic loading. Journal of Constructional Steel Research, 145:184–195.

[6] Truong, V. H., Kim, S. E. (2018). Reliability-based design optimization of nonlinear inelastic trusses
using improved differential evolution algorithm. Advances in Engineering Software, 121:59–74.

[7] Ha, M. H., Vu, Q. A., Truong, V. H. (2018). Optimum design of stay cables of steel cable-stayed bridges
using nonlinear inelastic analysis and genetic algorithm. Structures, 16:288–302.

[8] Truong, V. H., Kim, S. E. (2017). An efficient method for reliability-based design optimization of non-
linear inelastic steel space frames. Structural and Multidisciplinary Optimization, 56(2):331–351.

[9] Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks,
10(5):988–999.

[10] Zhang, Y., Hu, S., Wu, J., Zhang, Y., Chen, L. (2014). Multi-objective optimization of double suction
centrifugal pump using Kriging metamodels. Advances in Engineering Software, 74:16–26.

[11] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
[12] Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4):

367–378.
[13] Safavian, S. R., Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transac-

tions on Systems, Man, and Cybernetics, 21(3):660–674.
[14] Worden, K., Lane, A. J. (2001). Damage identification using support vector machines. Smart Materials

and Structures, 10(3):540.
[15] Worden, K., Manson, G. (2006). The application of machine learning to structural health monitoring.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
365(1851):515–537.

[16] Ataei, N., Padgett, J. E. (2015). Fragility surrogate models for coastal bridges in hurricane prone zones.
Engineering Structures, 103:203–213.

[17] Hasni, H., Alavi, A. H., Lajnef, N., Abdelbarr, M., Masri, S. F., Chakrabartty, S. (2017). Self-powered
piezo-floating-gate sensors for health monitoring of steel plates. Engineering Structures, 148:584–601.

[18] Yang, I. T., Hsieh, Y. H. (2013). Reliability-based design optimization with cooperation between support
vector machine and particle swarm optimization. Engineering with Computers, 29(2):151–163.

[19] Rocco, C. M., Moreno, J. A. (2002). Fast Monte Carlo reliability evaluation using support vector machine.
Reliability Engineering & System Safety, 76(3):237–243.

[20] Kordjazi, A., Nejad, F. P., Jaksa, M. B. (2014). Prediction of ultimate axial load-carrying capacity of piles
using a support vector machine based on CPT data. Computers and Geotechnics, 55:91–102.

[21] Bengio, Y., Courville, A., Vincent, P. (2013). Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.

[22] Pathirage, C. S. N., Li, J., Li, L., Hao, H., Liu, W., Ni, P. (2018). Structural damage identification based
on autoencoder neural networks and deep learning. Engineering Structures, 172:13–28.

[23] Rafiei, M. H., Adeli, H. (2018). A novel unsupervised deep learning model for global and local health
condition assessment of structures. Engineering Structures, 156:598–607.

[24] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553):436.
[25] Lee, S., Ha, J., Zokhirova, M., Moon, H., Lee, J. (2018). Background information of deep learning for

structural engineering. Archives of Computational Methods in Engineering, 25(1):121–129.
[26] Blandford, G. E. (1996). Progressive failure analysis of inelastic space truss structures. Computers &

Structures, 58(5):981–990.
[27] Yang, Y. B., Kuo, S. R. (1994). Theory and analysis of nonlinear framed structures. Singapore: Prentice

Hall.

123

https://doi.org/10.1016/j.ijnonlinmec.2018.01.002
https://doi.org/10.1016/j.ijnonlinmec.2018.01.002
https://doi.org/10.1016/j.advengsoft.2009.02.001
https://doi.org/10.1016/j.advengsoft.2009.02.001
https://doi.org/10.1016/j.jcsr.2018.02.025
https://doi.org/10.1016/j.jcsr.2018.02.025
https://doi.org/10.1016/j.advengsoft.2018.03.006
https://doi.org/10.1016/j.advengsoft.2018.03.006
https://doi.org/10.1016/j.istruc.2018.10.007
https://doi.org/10.1016/j.istruc.2018.10.007
https://doi.org/10.1007/s00158-017-1667-7
https://doi.org/10.1007/s00158-017-1667-7
https://doi.org/10.1109/72.788640
https://doi.org/10.1016/j.advengsoft.2014.04.001
https://doi.org/10.1016/j.advengsoft.2014.04.001
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/s0167-9473(01)00065-2
https://doi.org/10.1109/21.97458
https://doi.org/10.1088/0964-1726/10/3/317
https://doi.org/10.1098/rsta.2006.1938
https://doi.org/10.1016/j.engstruct.2015.07.002
https://doi.org/10.1016/j.engstruct.2017.06.063
https://doi.org/10.1016/j.engstruct.2017.06.063
https://doi.org/10.1007/s00366-011-0251-9
https://doi.org/10.1007/s00366-011-0251-9
https://doi.org/10.1016/s0951-8320(02)00015-7
https://doi.org/10.1016/j.compgeo.2013.08.001
https://doi.org/10.1016/j.compgeo.2013.08.001
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1016/j.engstruct.2018.05.109
https://doi.org/10.1016/j.engstruct.2018.05.109
https://doi.org/10.1016/j.engstruct.2017.10.070
https://doi.org/10.1016/j.engstruct.2017.10.070
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s11831-017-9237-0
https://doi.org/10.1007/s11831-017-9237-0
https://doi.org/10.1016/0045-7949(95)00217-5

	Introduction
	Advanced analysis for calculating ultimate load factor of steel trusses
	Deep learning in artificial neural network
	Supervised learning
	Feedforward neural network
	Backpropagation algorithm

	Deep learning model for estimating ultimate load factor of steel trusses
	Numerical examples
	Effect of the number of hidden layers and neurons
	Effect of the activation function
	Effect of the optimizer

	Conclusions

