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Abstract

In this paper, an efficient computational approach is developed to investigate the free-vibration behavior of
functionally graded plates. The problem is developed based on a three-dimensional elasticity theory, which is
expected to capture the structural response accurately. Isogeometric analysis is employed as a discretion tool to
solve the problems. The accuracy of the proposed approach is verified by comparing the obtained results with
those available in the literature. In addition, various examples are also presented to illustrate the efficiency of
the proposed approach. There are five types of plates with different configurations of material gradations. The
benchmark results for those are also given for future investigations.
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1. Introduction

In the field of engineering structures, macroscopically inhomogeneous materials are widely em-
ployed for practical applications [1]. One of those materials is laminated composites, whose material
properties are piecewise constant in the thickness through the thickness of structures. In mechani-
cal perspective, the use of laminated composite is susceptible to locally failure. This is due to the
effect of discontinuous distribution of material properties in the interfaces between laminate, which
could result in a locally large plastic deformation and micro-crack propagation. The adverse features
of traditional laminated composite materials are eliminated in a different class of composite mate-
rials, which is termed Functionally Graded Materials (FGMs) and dates back to the pioneer studies
by Koizumi [2, 3]. FGMs are widely considered as spatial composites, in which the gradual changes
of volume fractions of the constituent materials in defined directions results in a smooth transition
of material properties. Normally, FGMs are made from two distinct material constituents (ceramic
and metal constituents). The combination of these materials results in a new type of composite ma-
terial that inherits the preferable features of both, such as high-ductility and high-thermal resistance.
Thanks to this feature, FGMs are now widely applied in various industrial fields such as aerospace,
piezoelectric sensor, nuclear plants and etc.

As indicated in a review study [4], the majority of previous studies on Functionally Graded (FG)
plates only focused on those made from uni-directional FGMs. However, it was also pointed out by
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Nemat-Alla [5] that the use of uni-directional FGMs might not be effective when the structures are
exposed to severe conditions, especially in the case of thermal problems. Therefore, it is necessary
to investigate for a more complex variation of material constituents in FGMs besides thickness gra-
dations. This requirement might results in a new class of multi-directional FGMs, however, that the
studies for multi-directional FGMs are rare in the literature. Lü et al. [6] used the state space ap-
proach to conduct a semi-analytical analysis on the static behavior of multi-directional FG plates. Nie
and Zhong [7] also employed a similar semi-analytical approach to investigate the dynamic problems
of multi-directional FG annular plates. The free-vibration behavior of multi-directional FG circular
plates resting on elastic foundations was also examined by Shariyat and Alipour [8]. The authors em-
ployed the differential transformation method to obtain a semi-analytical solution for the problem.
The multi-directional FGMs were also investigated for the thin-wall structures in [9, 10]. Recently,
Wang et al. [11] also presented a study on the free-vibration analysis of 3D multi-directional FG plate,
where the solutions are derived based on the quadrature element method. Overall, it is seen that the
solutions for the problems of multi-directional FG plates are not easy to obtained from an analytical
approach. This is due to the fact that the gradation of materials in spatial form requires a considerable
amount of computational effort. In addition, the use of simplified 2D plates theories might not cap-
ture all the behavior of a plate for the case of multi-directional FGMs [11]. Therefore, rigorous 3D
elastic solutions should be derived to be used as benchmark results for other studies, where simplified
models are used.

Isogeometric Analysis proposed by Hughes et al. [12] is widely considered as an advanced Finite
Element Method (FEM) that bridges the gap between CAD technologies and finite element method.
Since it was first introduced in 2005, the IGA has been widely developed to deal with computational
problems in different engineering fields [13]. In general, the IGA brings two prominent advantages
that are superior to traditional finite element methods. The first preferable feature comes from the
fact that the CAD tools are employed in the IGA approach, hence geometries with curves and ellip-
tical shapes are modeled accurately in the analysis model. The remaining feature is that the NURBS
functions in IGA can provide high-continuous interpolation, which is not straightforward in a tradi-
tional finite element approach. This feature is supported by an advanced technique called k-refinement
scheme, which is considered as a combination of h- and p-refinement schemes in traditional FEM and
is able to reduce the degree of freedoms for high-order elements. The efficiency of this approach on
the analysis of unidirectional FG 3D plates was addressed in the study of Nguyen and Nguyen-Xuan
[14]. In addition, the IGA-based models were also successfully developed to deal with optimization
problems of multi-directional FG plates by Lieu-Xuan and his colleagues [15–18].

In this study, the advanced features of IGA approach are employed to study the free-vibration
problems of multi-directional FG plates. The governing equations for the general 3D elastic solutions
are derived based on the virtual energy approach. NURBS basis functions from IGA approach are
employed as interpolations of geometric and displacement variables. Various numerical examples
of different plates’ geometries and material gradations area also presented to show the efficiency
of the approach. The solutions for multi-directional FG plates in this study could be considered as
benchmark results for further investigations.

2. Formulation of the 3D elasticity problem

Consider an elastic body in the Cartesian coordinate system, the constitutive equation and stress-
strain relations in case of infinitesimal strain problems are expressed as follows

σi j = 2µεi j + λεkkδi j (1)
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εi j =
1
2

(
ui, j + u j,i

)
(2)

where σi j is the stress tensor, εi j is the strain tensor, ui is the displacement of a point, δi j is the
Kronecker delta, µ and λ are Lame’s constant. The virtual strain energy and kinetic energy stored in
an elastic body having volume Ω are given by

δU =

∫
Ω

σi jδεi jdΩ (3)

δT = −

∫
Ω

ρüiδuidΩ (4)

where ρ is the mass density. The governing equation is obtained according to the principle of virtual
energy as follows ∫

Ω

(
σi jδεi j + ρüiδui

)
dΩ = 0 (5)

The double dot in Eq. (5) denotes the second derivative with respect to time t.

3. IGA-Based finite element formulations

3.1. A brief review of IGA and its elements

In the concept of IGA approach, a knot vector is fundamental component. It is a non-decreasing
coordinate in parameter space.

Ξ =
{
ξ1, ξ2, ξ3, ..., ξi, ..., ξn+p+1

}
, ξi ≤ ξi+1 (6)

where ξi is the ith knot, n is the number of knot function, and p is the order of B-spline basis function.
For a given knot, the formulation of B-spline basic functions are recursively starting with p = 0

Ni,0 (ξ) =

{
1 ξi ≤ ξ < ξi+1
0 otherwise

(7)

and for p ≥ 1

Ni,p =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni,p−1 (ξ) (8)

It is noted herein that the fraction 0/0 is assumed to be zero. The univariable NURBS basic functions
are constructed based on B-spline functions with a set of weight as follows

Rp
i (ξ) =

Ni,p (ξ) wi

W (ξ)
=

Ni,p (ξ) wi∑n
î=1

Nî,p (ξ)wî
(9)

in which wi is the weight value. The multivariate NURBS basic functions are defined based on the
tensor product

Rp,q,r
i, j,k (ξ, η, ζ) =

Ni,p (ξ) Mi,q (η) Lk,r (ζ) wi, j,k∑n
î=1

∑m
ĵ=1

∑k
k̂=1

Nî,p (ξ) M ĵ,q (η) Lk̂,r (ζ) wî, ĵ,k̂

(10)

To define a 3D NURBS geometry, the NUBRS functions are combined with the associated control
points in a linear combination as follows

Ω (ξ, η, ζ) =
∑n

î=1

∑m

ĵ=1

∑k

k̂=1
Rp,q,r

i, j,k (ξ, η, ζ) Bi, j,k (11)
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3.2. NURBS-based formulation for 3D elasticity problem

By using the NURBS basic functions as interpolations, the displacement variables can be ex-
pressed as follows

u =

n∑
i=1

Ridi (12)

where u =
{
u1 u2 u3

}T
is the displacement variable and d =

{
uc1 uc2 uc3

}T
is the degrees of

freedom associated with a control point, R is the interpolation function. The strain tensor can be
written as follows

ε =



εxx

εyy

εzz

γyz

γxz

γxy


=



R,x 0 0
0 R,y 0
0 0 R,z
0 R,z R,y

R,z 0 R,x
R,y R,x 0




u1
u2
u3

 = Bεd (13)

The stress tensor can be expressed in matrix form as

σ =



σx

σy

σz

σyz

σxz

σxy


=



Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66





εx

εy

εz

γyz

γxz

γxy


= Cε (14)

where

Q11 = Q22 = Q33 =
E (1 − ν)

(1 + ν) (1 − 2ν)
(15)

Q12 = Q13 = Q23 =
νE

(1 + ν) (1 − 2ν)
(16)

Q44 = Q55 = Q66 =
E

2 (1 + ν)
(17)

It is noted that the values of elastic modulus E, Poisson’s ratio ν and the mass density ρ are the
spatial functions of locations (x, y, z). The effective values of those material properties are calculated
as follows

E (x, y, z) = (Ec − Em) Vc + Em (18)

ν (x, y, z) = (νc − νm) Vc + νm (19)

ρ (x, y, z) = (ρc − ρm) Vc + ρm (20)

where the subscript m and c indicate the properties of metal and ceramic constituents, respectively. Vc

is the volume fraction of ceramic constituent and is defined based on a pre-defined distribution law.
By substituting Eqs. (13) and (14) into Eq. (5), the governing equation can be rewritten as∫

Ω

(
δdT BT

ε CBεd + ρδdT RT
u Rud̈

)
dΩ (21)
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Then, the system equation of IGA-based finite element model can be rewritten as(
K − ω2M

)
d = 0 (22)

where the stiffness matrix K and the mass matrix M are given by

K =

∫
Ω

BT
ε CBεdΩ (23)

M =

∫
Ω

ρRT
u RudΩ (24)

in which

Ru =

 R 0 0
0 R 0
0 0 R

 (25)

4. Numerical examples

In this section, the verification study is firstly conducted to validate the accuracy and efficiency of
the present approach to the free-vibration analysis of multi-directional FG plates. Then, various nu-
merical examples on the free-vibration responses of multi-directional FG plates with different shapes
and geometries are also presented. Different types of material gradations are also taken into account.
The results obtained from this subsection could be used as benchmark results for further investigation.

4.1. Verification and convergence studies

In this study, an Al/ZrO2-2 square plate addressed in the study of Hosseini-Hashemi et al. [19] is
revisited. The material properties of Al (metal) are E = 70 GPa, ν = 0.3, ρ = 2707 kg/m3, and those
for ZrO2-2 (ceramic) are E = 168 GPa, ν = 0.3, ρ = 5700 kg/m3. The constituents of the materials in
the plate is assumed to vary in the thickness direction with the distribution law of the volume fraction
of ceramic constituent is given as follows

Vc =

(
1
2
−

z
h

)n

(26)

where h is the thickness of the plate and h/a = 0.05. The boundary condition for this example is
SCSF, where S and C stand for simply supported boundary and clamped boundary, respectively. In
case of a rectangular plate, the simply supported boundary condition is given by

u2 = u3 = 0 at x = 0, a

u1 = u3 = 0 at y = 0, b
(27)

and the clamped boundary condition is given by

u2 = u3 = u3 = 0 (28)

where a and b are the side length of the plate. It is noted that the origin of the coordinate is located
in the middle plane of the plate. Table 1 compares the results obtained from this study and the exact
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solutions given by Hosseini-Hashemi et al. [19], where ω̄ = ω
(
a2/h

) √
ρM/EM. Overall, it is seen that

the present results are in good agreement with those provided in the referenced study. In addition, it is
seen that the convergence rate is faster with higher order p. Good convergence solutions are obtained
with p = 3 and the mesh size of 8 × 8 × 2, where 8 and 2 are the number of elements in the plane and
thickness direction, respectively. Therefore, this mesh size is used for the remaining examples in this
study.

Table 1. First four natural frequencies of SCSF Al/ZrO2-2 square plate

Study p-order Mesh ω̄1 ω̄2 ω̄3 ω̄4

Present 2 4 × 4 × 2 3.6811 10.0237 13.6277 19.3464
(0.1227)∗ (0.8993) (2.0697) (2.1694)

6 × 6 × 2 3.5901 9.3496 12.0275 17.6919
(0.0317) (0.2252) (0.4695) (0.5149)

8 × 8 × 2 3.5688 9.2139 11.6838 17.3441
(0.0104) (0.0895) (0.1258) (0.1671)

10 × 10 × 2 3.5611 9.1684 11.5925 17.2404
(0.0027) (0.0440) (0.0345) (0.0634)

12 × 12 × 2 3.5574 9.1473 11.5599 17.1974
(0.0010) (0.0229) (0.0019) (0.0204)

3 4 × 4 × 2 3.5717 9.2317 11.7667 17.4238
(0.0133) (0.1073) (0.2087) (0.2468)

6 × 6 × 2 3.5638 9.1664 11.5712 17.2249
(0.0054) (0.0420) (0.0132) (0.0479)

8 × 8 × 2 3.5603 9.1466 11.5511 17.1892
(0.0019) (0.0222) (0.0069) (0.0122)

10 × 10 × 2 3.5585 9.1364 11.5461 17.1743
(0.0001) (0.0120) (0.0119) (0.0027)

[13] 3.5584 9.1244 11.5580 17.1770
∗ The relative error between the results and exact solutions given by [13]

4.2. Free-vibration behavior of multi-directional FG plates

This subsection presents some examples of the free-vibration behavior of multi-directional FG
plates. Five types of plates are examined, they are rectangular plate, square plate with an internal
hole, plate with cut-out geometry, circular plate and annular plate. Details about the plane geometry
of the plates and the location of origin of coordinate are depicted in Fig. 1. All the plates are assumed
to be made from Al/Al2O3-2, with the material properties of Al (metal) being E = 70 GPa, ν = 0.3,
ρ = 2707 kg/m3, and those for Al2O3-2 (ceramic) are E = 380 GPa, ν = 0.3, ρ = 3800 kg/m3. For
rectangular plates, the distribution of ceramic volume fraction follows the law

Vc =

{
4x
a

(
1 −

x
a

)}n1
{

4y
b

(
1 −

y
b

)}n2
(

z
h

+
1
2

)n3

(29)

For square plates with an internal hole

Vc =

(
−

x
a

+ 0.5
)n1

(
−

y
b

+ 0.5
)n2

(
z
h

+
1
2

)n3

(30)
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For square plates with cut-out geometry

Vc =

( x
a

)n1
( y
b

)n2
(

z
h

+
1
2

)n3

(31)

For circular plates

Vc =

(
1 −
|r|
R

)n1
(

z
h

+
1
2

)n2

(32)

For annular plates

Vc =

(
R0 − |r|
R0 − Ri

)n1
(

z
h

+
1
2

)n2

(33)

where r =

√
x2 + y2 and n1, n2, n3 are the gradient indices that define the variation of material

constituent in the plates’ volume. For simplification, the following examples are conducted with
n = n1 = n2 = n3.

Figure 1. Plane geometries of the plates and locations of the origin of the coordinate system

In Tables 2 to 8, the natural frequencies obtained from different values of gradient indices n.
It is noted that the ω̄ = ω

(
a2/h

) √
ρM/EM for rectangular plates, square plates with an internal

hole, and square plates with cut-out geometry. The non-dimensional frequency for circular plates is
ω̄ = ω

(
R2/h

) √
ρM/EM and for annular plates is ω̄ = ω

(
R2

0/h
) √

ρM/EM. The thickness of the plate
in those cases is assumed to be h = a/10 and h = R/10, respectively.
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Table 2. First four natural frequencies of SSSS Al2O3-2 square plate

n

0 1 2 5 10 100

ω̄1 5.9219 3.9430 3.5680 3.2946 3.1488 3.0122
ω̄2 14.6199 9.7323 8.6701 7.8877 7.5824 7.4346
ω̄3 23.1084 14.9711 13.3670 12.3326 12.0006 11.7526
ω̄4 28.6674 19.1597 16.9738 15.4453 14.9425 14.5803

Table 3. First four natural frequencies of CCCC Al2O3-2 square plate

n

0 1 2 5 10 100

ω̄1 10.6742 6.6877 6.1573 5.8471 5.6593 5.4296
ω̄2 21.3315 13.7138 12.4436 11.5707 11.1270 10.8477
ω̄3 30.8881 19.7475 17.8457 16.5753 16.0799 15.7096
ω̄4 37.2134 24.3297 21.8867 20.1766 19.4620 18.9272

Table 4. First four natural frequencies of simply supported Al2O3-2 circular plate

n

0 1 2 5 10 100

ω̄1 1.4823 0.9720 0.8646 0.7881 0.7633 0.7538
ω̄2 4.0955 2.6103 2.3073 2.1228 2.0879 2.0826
ω̄3 7.3800 4.6399 4.1158 3.8353 3.7768 3.7529
ω̄4 8.5727 5.5736 4.9378 4.5676 4.4388 4.3594

Table 5. First four natural frequencies of clamped Al2O3-2 circular plate

n

0 1 2 5 10 100

ω̄1 3.0286 1.8231 1.6846 1.5950 1.5578 1.5401
ω̄2 6.1543 3.7863 3.4341 3.2017 3.1409 3.1296
ω̄3 9.8520 6.0906 5.4908 5.1333 5.0446 4.9960
ω̄4 11.1503 7.0793 6.3815 5.9408 5.7757 5.6702

Table 6. First four natural frequencies of clamped Al2O3-2 annular plate (Ri = 0.5R0)

n

0 1 2 5 10 100

ω̄1 5.2065 2.9737 2.7592 2.6853 2.6651 2.6477
ω̄2 6.2632 3.826 3.5048 3.3288 3.2479 3.1852
ω̄3 8.8712 5.7519 5.2077 4.8433 4.6613 4.5117
ω̄4 12.4579 8.2542 7.4261 6.8507 6.5761 6.3361
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Table 7. First four natural frequencies of clamped Al2O3-2 square plate with a hole

n

0 1 2 5 10 100

ω̄1 13.4083 7.8037 7.2315 6.8967 6.8272 6.8183
ω̄2 19.0978 11.2108 10.1927 9.7512 9.7129 9.7116
ω̄3 28.1772 16.7625 15.2027 14.4725 14.3508 14.3286
ω̄4 33.3183 19.7439 17.8890 17.0438 16.9483 16.9429

Table 8. First four natural frequencies of clamped Al2O3-2 square plate with cut-out geometry

n

0 1 2 5 10 100

ω̄1 16.0288 9.3676 8.5718 8.1975 8.1543 8.1509
ω̄2 27.6241 14.6379 14.2045 14.0991 14.0766 14.0473
ω̄3 27.7661 17.5253 15.9710 14.6033 14.1781 14.1195
ω̄4 33.6097 19.8190 18.1592 17.3422 17.1327 17.0911

As presented in Tables 2 to 8, the natural frequencies of the plates decrease with the increase of
gradient index n. This is due to the increase of metal constituent in the volume of the plate, which
tends to reduce to stiffness and consequently reduce the natural frequencies of the structures. It is
noted that the results presented in Tables 2 to 6 can be considered as benchmark results for other work
related to multi-directional FG plates in the future. For illustration purpose, the first four vibration
mode shapes are also depicted in Figs. 2 to 6.

Figure 2. First four free-vibration mode shapes of a SSSS square plate

Figure 3. First four free-vibration mode shapes of a simply supported circular plate

9
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Figure 4. First four free-vibration mode shapes of a simply supported annular plate

Figure 5. First four free-vibration mode shapes of a SSSS square plate with an internal hole

Figure 6. First four free-vibration mode shapes of a simply supported square plate with cut-out geometry

5. Conclusions

In this study, the free-vibration analysis of multi-directional FG plates is investigated based on the
framework of 3D elasticity analysis, whereby the governing equation is developed based on the theory
of infinitesimal elasticity theory. The IGA approach with NURBS basis functions are employed as a
discretization tool to solve the problems. A numerical example retrieved from literature is revisited
to verify the accuracy of the proposed approach. In addition, various examples are presented to show
the efficiency of the proposed approach in analyzing the response of multi-directional FG plates. The
results presented in this paper could be used as benchmark results for further investigation.
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