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Abstract

A corotational finite element for large-displacement elastic analysis of semi-rigid planar steel frames is pro-
posed in this paper. Two zero-length rotational springs are attached to the ends of the Euler-Bernoulli element
formulated in corotational context to simulate the flexibility of the beam-to-column connections and then the
equilibrium equations of the hybrid element, including the stiffness matrix which contains the stiffness terms
of the rotational springs, are established based on the static condensation procedure. The linear and Kishi-Chen
three-parameter power models are applied in modelling the moment-rotation relation of beam-column connec-
tions. The arc-length nonlinear algorithm combined with the sign of displacement internal product are used
to predict the equilibrium paths of the system under static load. The analysis results are compared to previous
studies to verify the accuracy and effectiveness of the proposed element and the applied nonlinear procedure.

Keywords: corotational context; Euler-Bernoulli element; large displacement; semi-rigid connection; steel frame;
static analysis.
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1. Introduction

In structural nonlinear analysis, there are two main finite element formulations depending on
the way of updating the system kinematics during the analysis process such as the Lagrangian and
corotational models. Among these models, the latest developed corotational approach is more simple
and effective than the Lagrangian type in the prediction of the large displacement behaviour of the
structures.

Recent studies based on the corotational formulation for large displacement analysis are briefly
presented as follows. Battini [1] proposed the Bernoulli and Timoshenko beam elements for large
displacement analysis of the 2D and 3D structure under static load with the consideration of material
nonlinearity via von Mises criterion with isotropic hardening at numerical integration points. Yaw
et al. [2] proposed the meshfree formulation for large displacement and material nonlinear analysis
of two-dimensional continua under static load by using maximum-entropy basic functions. Le et al.
[3] derived the elastic force vector and tangent stiffness matrix as well as the inertia terms by using
the cubic interpolation function for lateral displacement for dynamic nonlinear analysis of 2D arches
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and frames. Doan-Ngoc et al. [4] proposed the beam-column elements for second-order plastic-hinge
analysis of planar steel frames by using the approximate seventh-order polynomial function for the
beam-column deflection solutions.

The actual behaviour of the real beam-to-column connections is basically semi-rigid. This con-
nection flexibility affects the response and ultimate strength of the steel frames significantly and
therefore needs be considered in the frame analysis for practical design. So far, many studies have
been done to predict the large displacement response of semi-rigid frames under static and dynamic
loads. However, most of them are related to Lagrangian type formulation, such as the studies of Chan
and Zhou [5], So and Chan [6], Tin-Loi and Misa [7], Park and Lee [8], Ngo-Huu et al. [9], Saritas
and Koseoglu [10], etc. In this study, a corotational finite element is formulated by using the ap-
proximate third-order and first-order Hermitian polynomial functions for lateral deflection and axial
deformation, respectively, for large displacement analysis of planar steel frames under static load. An
effective strain is applied to avoid membrane locking as discussed by Crisfield [11]. The semi-rigid
connection is modelled as rotational springs attached at the ends of corotational element to simulate
the moment-rotation relation. Then, the static condensation algorithm is applied to eliminate the in-
ternal degrees of freedom between element ends and rotational springs at the same positions. As the
result, a new element stiffness matrix considering the connection flexibility is formulated with the
same size as normal finite element. The linear rotational spring or the Kishi-Chen three-parameter
power model (Lui and Chen [12]) is used to describe the beam-to-column flexibility. The arc-length
nonlinear algorithm is combined with the sign of displacement internal product proposed by Posada
[13] in order to solve the nonlinear equilibrium systems. The analysis results are compared to the
previous studies to verify the accuracy and effectiveness of the proposed element.

2. Finite element formulation

2.1. Corotational finite element

The original undeformed and current deformed configurations of the element in the global coor-
dinate system (X,Y) are shown in Fig. 1. A local coordinate system (XL,YL) is attached to the element
at the left node and it continuously moves with the element.
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The global displacement vector is defined by 
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The local displacement vector is defined by 
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The vectors of global and local internal force are respectively given by 
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The components of  are computed by 
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where  and  are original and current length of the element respectively and  is the 
rigid rotation.  
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Figure 1. Kinematic model of corotational element
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The global displacement vector is defined by

d =
[

u1 w1 q1 u2 w2 q2
]T

(1)

The local displacement vector is defined by

dL =
[

uL qL1 qL2
]T

(2)

The vectors of global and local internal force are respectively given by

f =
[

N1 Q1 M1 N2 Q2 M2
]T

(3)

fL =
[

NL ML1 ML2
]

T (4)

The components of dL are computed by

uL = l − l0, θL1 = θ1 − θr, θL2 = θ2 − θr (5)

where l0 and l are original and current length of the element respectively and θr is the rigid rotation.
By equating the virtual work in both local and global coordinate system, the relation between the local
internal force vector fL and global one f is obtained as follows

f = BT fL (6)

where B =
∂dL

∂d
is the corotational transformation matrix.

The global tangent stiffness matrix is obtained through differentiation of the internal force vector
f , δ f = Kδd in combination with Eq. (6) [2], as follows

K = BT KLB + A1NL + A2 (ML1 + ML2) (7)

where

KL =
∂ fL

∂dL
(8)

A1 =
∂2uL

∂d2 (9)

A2 =
∂2θr

∂d2 (10)

According to Crisfield [11], an effective strain εe f is applied to avoid membrane locking. In Euler-
Bernoulli assumption, the strain ε is defined as

ε = εe f − yκ =
1
2

∫
L

∂u
∂ξ

+
1
2

(
∂w
∂ξ

)2 dξ − yκ (11)

where u and w are the axial and lateral displacements using a linear interpolation function and cubic
one, respectively.

The principle of virtual work is used to calculate the local internal forces as follows

V =

∫
V

σδεdV = NLδuL + ML1δθL1 + ML2δθL2 (12)

The components of fL are calculated from Eq. (12). Then, the local tangent stiffness matrix is deter-
minated from Eq. (8) and the global one is easily determined from Eq. (7). For elastic analysis, the
Gauss quadrature with two Gauss points is exact enough to calculate the numerical values of fL, KL

and K.
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2.2. Hybrid corotational element

The initial corotational finite element has to satisfy the equilibrium equation K
6×6

d
6×1

= P
6×1

. Be-

cause K is the global tangent stiffness matrix, both of d and P must be formed in global coordinate
system. The nodal load vector in the global coordinate system is

P = T P′ (13)

where T is the transformation matrix and P′ is nodal load vector in the local coordinate system

P′ =
{

P′1 V ′1 M′1 P′2 V ′2 M′2
}T

(14)

In semi-rigid beam-to-column connection, only rotational deformation is considered due to negli-
gible axial and shear strains. An assembly procedure is described in Fig. 2. The semi-rigid connections
are modelled as a zero-length rotational springs attached to nodes A and B of the element. The equi-
librium equation at element level K∗

8×8
d∗
8×1

= f ∗
8×1

has 8 degrees of freedom. Then, a static condensation

algorithm proposed by Wilson [14] is used to eliminate the first and second degrees of freedom. As
a result, a 6-DOFs hybrid element is formulated as normal finite element. The hybrid element sig-
nificantly reduces the computational cost because the rotational displacements at nodes A and B are
not included in the global stiffness matrix. However, an updated displacement procedure at nodes A
and B must be required at each nonlinear solution iteration to find the rigid rotations of semi-rigid
connection.
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2.3 Algorithm of nonlinear equation solution 
At each iteration loop, the out of balance vector is defined as 
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where is the internal force vector which is assembled from vector ,  is the 
reference load vector and  is the load factor. In order to find the equilibrium path of 
system at snapback and snapthrough point, the spherical arc-length nonlinear 
algorithm is used in combination with the scalar product criterion proposed by Posada 
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Figure 2. Formulation of hybrid corotational element

2.3. Algorithm of nonlinear equation solution

At each iteration loop, the out of balance vector is defined as

Ri−1
j = Fin

i−1
j − λ

i−1
j Fex (15)

where Fin is the internal force vector which is assembled from vector f , Fex is the reference load vector
and λ is the load factor. In order to find the equilibrium path of system at snapback and snapthrough
point, the spherical arc-length nonlinear algorithm is used in combination with the scalar product
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criterion proposed by Posada [13]. The sign of incremental load factor ∆λ1
j at the first iteration of

each incremental load level is

∆λ1
j = ±

∆s j√(
δû1

j

)T (
δû1

j

) (16)

sign
(
∆λ1

j

)
= sign

((
{∆u}satisfied

j−1

)T
{δû}1j

)
(17)

where ∆λ1
j and {∆u}satisfied

j−1 are the incremental load factor at jth loadstep and the previous converged
incremental displacement vector, δû1

j = K0
j Fex is the current tangential displacement vector.

3. Numerical examples

A structural analysis program written in MATLAB programming language is developed to predict
the large displacement responses of rigid and semi-rigid planar members and frames under static
load based on the above-mentioned algorithm. Its accuracy is verified through following numerical
examples.

3.1. Pinned-fixed square diamond frame

The geometric and material properties of the diamond frame and its equivalent system are shown
in The geometric and material properties of the diamond frame and its equivalent system are shown in
Fig. 3. The variations of the analysis results with different number of proposed elements in modeling
each member shown in Fig. 4 indicate that the analysis result is converged by the use of three proposed
elements per member. It can be seen that the results using three proposed elements per member are
almost identical to Mattiasson’s elliptic integral solution [15] in two cases of tensile and compressive
loads as shown in Fig. 5.
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Figure 4. Analysis results using different number of proposed element per member Figure 4. Analysis results using different number of
proposed element per member
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Figure 5. Load-deflection curves of diamond frame 

3.2 Lee’s frame Figure 5. Load-deflection curves of diamond frame
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3.2. Lee’s frame

The geometric and material properties of Lee’s frame are shown in Fig. 6. Park and Lee [8]
used ten linearized finite elements while Le et al. [2] used twenty Timoshenko corotational elements
in analysis. The equilibrium path of the frame with three proposed elements per member (Fig. 7)
converges in good agreement with the results obtained by Park and Lee [8] and Battini [1] as shown
in Fig. 8. The analysis results also show that the developed program can handle the critical points
as snap-back and snap-through and draw entire load-displacement curve with the least number of
elements in comparison to the above-mentioned authors.
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Figure 8. Displacement at point load 

3.3 Eccentrically loaded column with linear semi-rigid connection Figure 8. Displacement at point load

3.3. Eccentrically loaded column with linear semi-rigid connection

An eccentrically loaded column with geometric and material properties shown in Fig. 9 was anal-
ysed by So and Chan [6] using 3-node element which is established by fourth-order polynomial func-
tion for lateral displacement v and the minimum residual displacement algorithm. The convergence
of the equilibrium path according to number of proposed elements is shown in Fig. 10. It can be seen
that the column must be modelled at least three proposed elements in two cases in order to have the
results identical to those of So and Chan [6] using two fourth-order elements as shown in Fig. 11.

3.4. Cantilever beam with a semi-rigid connection

A cantilever beam subjected to a point load at free end shown in Fig. 12(b) was studied by
Aristizábal-Ochoa [16] using the classical algorithm of Elastica and the corresponding elliptical func-
tions. Kishi-Chen three-parameter power model is applied in modelling semi-rigid behaviour of end
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Figure 11. Displacements at free end 

 

3.4 Cantilever beam with a semi-rigid connection 

Figure 11. Displacements at free end

connection shown in Fig. 12(a). The analysis results with eight proposed elements per member show
good convergence with Aristizábal-Ochoa’s solution as shown in Fig. 13.
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3.5. Williams’ toggle frame

The Williams’ toggle frame shown in Fig. 14 was analysed with three cases of different support
conditions: (1) rigid connection; (2) linear semi-rigid connection; (3) hinge connection. In the first
case, the analysis results of the proposed program well converge to Williams’ analytical solution [17]
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Figure 15. Load-deflection curves according to number of elements 

 

Figure 16. P-d relation curves 
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Figure 16. P-d relation curves 
 Figure 16. P-δ relation curves

4. Conclusions

A hybrid corotational finite element for large-displacement elastic analysis of semi-rigid planar
steel frames is presented in this study. The semi-rigid connections are modelled by zero-length ro-
tational springs with linear or nonlinear behaviour of moment-rotation relation. A Matlab computer
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program using arc-length method combined the sign of displacement internal product is developed to
solve nonlinear equilibrium equation system. The results of numerical examples prove that the pro-
posed hybrid element can accurately predict the large displacement behaviour of semi-rigid planar
steel frames subjected to static load.
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