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Abstract

In this paper, the Timoshenko beam theory is developed for bending analysis of functionally graded beams
having porosities. Material properties are assumed to vary through the height of the beam according to a power
law. Due to unsymmetrical material variation along the height of functionally graded beam, the neutral surface
concept is proposed to remove the stretching and bending coupling effect to obtain an analytical solution.
The equilibrium equations are derived using the principle of minimum total potential energy and the physical
neutral surface concept. Navier-type analytical solution is obtained for functionally graded beam subjected to
transverse load for simply supported boundary conditions. The accuracy of the present solutions is verified
by comparing the obtained results with the existing solutions. The influences of material parameters (porosity
distributions, porosity coefficient, and power-law index), span-to-depth ratio and foundation parameter are
investigated through numerical results.
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1. Introduction

Functionally graded materials (FGMs) are novel generation of composites that have a continuous
variation of material properties from one surface to another. The earliest FGMs were introduced
by Japanese scientists in mid-1984 as thermal barrier materials for applications in spacecraft, space
structures and nuclear reactors. FGMs can be fabricated by gradually varying the volume fraction
of the constituent materials. Typically, FGMs are made of a combination of ceramics and different
metals. The gradation in the properties of the materials reduces thermal stresses, residual stresses and
stress concentration factors found in laminated and fiber-reinforced composites.

Recently, a lot of research on the dynamic and static analysis of functionally graded beams (FG
beams) have been conducted. Vo et al. [1] presented static and vibration analysis of functionally
graded beams using refined shear deformation theory, which does not require shear correction factor,
accounting for shear deformation effect and coupling coming from the material anisotropy. Using the
spectral finite element method, Chakraborty and Gopalakrishnan [2] studied wave propagation in FG
beams. Sankar [3] found out an elasticity solution for bending of FG beams using Euler–Bernoulli
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beam theory, in which Poisson’s ratio was considered to be constant, and Young’s modulus was as-
sumed to vary following an exponential function. Zhong and Yu [4] employed the Airy stress function
to develop an analytical solution for cantilever beams subjected to various types of mechanical load-
ings. The bending response of FG beams with higher order shear deformation was also investigated
by Kadoli et al. [5].

Due to micro voids or porosities occurring inside FGMs during fabrication, structures with graded
porosity can be introduced as one of the latest development in FGMs. When designing and analyzing
FG structures, it is important to take into consideration the porosity effect. Wattanasakulpong and
Ungbhakorn [6] investigated linear and nonlinear vibration characteristics of Euler FG beams with
porosities. The beams are assumed to be supported by elastic boundary conditions. Atmane et al. [7]
presented a free vibrational analysis of FG beams considering porosities using computational shear
displacement model. Vibration characteristics of Reddy’s FG beams with porosity effect and various
thermal loadings are investigated by Ebrahimi and Jafari [8]. Ebrahimi et al. [9] analyzed vibration
characteristics of temperature-dependent FG Euler’s beams with porosity considering the effect of
uniform, linear and nonlinear temperature distribution.

In FG beams, the material characteristics vary across the height direction. Therefore, the neutral
surface of the beams may not coincide with their geometric mid-surface. As a result, stretching and
bending deformations of FG beams are coupled. In this aspect, some studies [10–12] have shown
that there is no stretching-bending coupling in the constitutive equations if the reference surface is
selected accurately. Recently, Bouremana et al. [13] developed a new first shear deformation beam
theory based on neutral surface position for FG beams. A novel shear deformation beam theory for
FG beams including the so-called “stretching effect” was proposed by Meradjah et al. [14].

In this paper, the Timoshenko beam theory for FG beams having porosities is used to derive the
equations of motion based on the exact position of neutral surface together with principle of minimum
total potential energy. Two types of porosity distributions, namely even and uneven through the height
directions are considered. Numerical results indicate that various parameters such as power-law in-
dices, porosity coefficient and types of porosity distribution have remarkable influence on deflections
and stresses of FG beams with porosities.

2. Theoretical formulations

2.1. Physical neutral surface [10]

In this study, the imperfect FG beam is made up of a mixture of ceramic and metal and the
properties are assumed to vary through the height of the beam according to power law. The top surface
material is ceramic-rich and the bottom surface material is metal-rich. The imperfect beam is assumed
to have porosities spreading throughout its height due to defect during fabrication. For such beams,
the neutral surface may not coincide with its geometric midsurface. The coordinates x, y are along the
in-plane directions and z is along the height direction. To specify the position of neutral surface of FG
beams, two different planes are considered for the measurement of z, namely, zms and zns measured
from the middle surface and the neutral surface of the beam, respectively, as depicted in Fig. 1. It is
assumed that the beam is rested on a Pasternak elastic foundation with the Winkler stiffness of Kw

and shear stiffness of Ks.
The effective material properties of imperfect FG beam with two kinds of porosities distributed

identically in two phases of ceramic and metal can be expressed using the modified rule of mixture.
In this study, the neutral surface is chosen as a reference plane. The imperfect FGM has been

studied with two types of porosity distributions (even and uneven) across the beam height due to
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Figure 2. Cross-sectional area of FGM beam with even and uneven porosities

defect during fabrication. As can be seen from Fig. 2, the first type (FGM-I) has porosity phases
with even distribution of volume fraction over the cross section, while the second type (FGM-II) has
porosity phases spreading more frequently near the middle zone of the cross section and the amount
of porosity seems to linearly decrease to zero at the top and bottom of the cross section.

Thus, for even distribution of porosities (FGM-I), the effective material properties of the imperfect
FG beam are obtained as follows [9]:

P = Pm

(
Vm −

e0

2

)
+ Pc

(
Vc −

e0

2

)
(1)

where e0 denotes the porosity coefficient, (e0 � 1) , the material properties of a perfect FG beam can
be obtained when e is set to zero. Pc and Pm are the material properties of ceramic and metal such as:
Young’s modulus E, mass density ρ; Vc and Vm are the volume fraction of the ceramic and the metal
constituents, related by:

Vm + Vc = 1 (2)

The volume fraction of the ceramic constituent Vc is expressed based on zms and zns coordinates as

Vc =

(
zms

h
+

1
2

)p

=

(
zns +C

h
+

1
2

)p

(3)

From Eqs. (1) and (3), the effective material properties of the imperfect FG beam with even distribu-
tion of porosities (FGM-I) are expressed as [9]

P(zns) = Pm + (Pc − Pm)
(
zns +C

h
+

1
2

)p

− (Pc + Pm)
e0

2
(4)

where p is the power law index, which is greater or equal to zero, and C is the distance of neutral
surface from the mid-surface. The FG beam becomes a fully ceramic beam when p is set to zero and
fully metal for large value of p.
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For the uneven distribution of porosities (FGM-II), the effective material properties of the imper-
fect FG beam are replaced by following form [9]:

P(zns) = Pm + (Pc − Pm)
(
zns +C

h
+

1
2

)p

− (Pc + Pm)
e0

2

(
1 −

2 |zns +C|
h

)
(5)

The position of the neutral surface of the FG beam is determined to satisfy the first moment with
respect to Young’s modulus being zero as follows [15]:

h/2∫
−h/2

E(zms) (zms −C) dzms = 0 (6)

Consequently, the position of neutral surface can be obtained as:

C =

h/2∫
−h/2

E(zms)zmsdzms

h/2∫
−h/2

E(zms)dzms

(7)

From Eqs. (7), it can be seen that the parameter C is zero for homogeneous isotropic beams as
expected.

2.2. Kinematics and constitutive equations

Using the physical neutral surface concept and Timoshenko beam theory (TBT), the displace-
ments take the following forms [15–18]:

u(x, zns) = u0(x) + znsθx(x)

w(x, zns) = w0(x)
(8)

where u0 and w0 denote the displacements at the neutral surface of plate in the x and z directions,
respectively; θx is the rotation of the cross-section of the beam.

Then, the nonzero strains displacement relation of Timoshenko beam theory can be expressed as
follows:

εxx =
∂u
∂x
=
∂u0

∂x
+ zns

∂θx

∂x
= ε0

xx + znsκ
0
xx

γxz =
∂w
∂x
+
∂u
∂z
=
∂w0

∂x
+ θx = γ

0
xz

(9a)

where
ε0

xx =
∂u0

∂x
; κ0

xx =
∂θx

∂x
; γ0

xx =
∂w0

∂x
+ θx (9b)

The constitutive relations of the beam can be expressed using the generalized Hooke’s law as
follows:

σxx = Q11(zns)εxx

τxz = Q55(zns)γxz
(10)

where
Q11(zns) = E(zns); Q55(zns) =

E(zns)
2 [1 + ν(zns)]

(11)
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2.3. Equilibrium equations

The equilibrium equations and boundary conditions can be obtained using the principle of mini-
mum total potential energy [19, 20], i.e.,

δ (U + V) = 0 (12)

where δU is the variation of the strain energy of the beam-foundation system and δV is the variation
of the potential energy of external loads.

The variation of the strain energy of the beam is:

δU =

L∫
0

∫
A

(σxxδεx + τxzδγxz) dAdx +

L∫
0

(
Kwwδw − Ks

∂2w
∂x2 δw

)
dx

=

L∫
0

(
Nxxδε

0
xx + Mxxδκ

0
xx + Qxzδγ

0
xz

)
dx +

L∫
0

(
Kww0δw0 − Ks

∂2w0

∂x2 δw0

)
dx

=

L∫
0

[
Nxx

∂δu0

∂x
+ Mxx

∂δθx

∂x
+ Qxz

(
∂δw0

∂x
+ δθx

)]
dx +

L∫
0

(
Kww0δw0 − Ks

∂2w0

∂x2 δw0

)
dx

(13)

where Nxx,Mxx, and Qxz are the stress resultants defined as:

Nxx =

∫
A

σxxdA = A11
∂u0

∂x
+ B11

∂θx

∂x

Mxx =

∫
A

σxxzdA = B11
∂u0

∂x
+ D11

∂θx

∂x

Qxz = ks

∫
A

σxzdA = As
55

(
∂w0

∂x
+ θx

) (14)

in which

A11 =

∫
A

Q11(zns)dA = b

h/2−C∫
−h/2−C

E(zns)dzns

= b

h/2−C∫
−h/2−C

E(zns)dzns = b

h/2∫
−h/2

E(zms)dzms

B11 =

∫
A

znsQ11(zns)dA = b

h/2−C∫
−h/2−C

znsE(zns)dzns = 0

= b

h/2−C∫
−h/2−C

znsE(zns)dzns = b

h/2∫
−h/2

(zms −C) E(zms)dzms

= b

h/2∫
−h/2

zmsE(zms)dzms −Cb

h/2∫
−h/2

E(zms)dzms = 0

(15)
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D11 =

∫
A

z2
nsQ11(zns)dA = b

h/2−C∫
−h/2−C

z2
nsE(zns)dzns

As
55 = ks

∫
A

Q55(zns)dA = bks

h/2−C∫
−h/2−C

E(zns)
2 [1 − ν(zns)]

dzns

The shear correction factor ks =
5
6

is used in this study.
Substituting (15) into Eq. (14), the stress resultants for the imperfect FG beam can be rewritten as:

Nxx = A11
∂u0

∂x

Mxx = D11
∂θx

∂x

Qxz = As
55

(
∂w0

∂x
+ θx

)
Mxx = D11

∂θx

∂x

Qxz = As
55

(
∂w0

∂x
+ θx

)
(16)

The variation of the potential energy by the applied transverse load q can be expressed as:

δV = −

L∫
0

qδw0dx (17)

Substituting the expressions for δU and δV from Eqs. (13), and (17) considering Eq. (18) into Eq.
(12) and integrating by parts, we obtain:

0 =

L∫
0

[
Nxx

∂δu0

∂x
+ Mxx

∂δθx

∂x
+ Qxz

(
∂δw0

∂x
+ δθx

)]
dx

+

L∫
0

(
Kww0δw0 − Ks

∂2w0

∂x2 δw0

)
dx −

L∫
0

qδw0dx

0 = Nxxδu0
∣∣∣L
0 + Mxxδθx

∣∣∣L
0 + Qxzδw0

∣∣∣L
0

−

L∫
0

[
∂Nxx

∂x
δu0 +

(
∂Mxx

∂x
− Qxz

)
δθx +

(
∂Qxz

∂x
+ q − Kww0 + Ks

∂2w0

∂x2

)
δw0

]
dx

(18)

Collecting the coefficients of δu0, δw0 and δθx, the following equilibrium equations of the FG
beam are obtained as follows:
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δu0 :
∂Nxx

∂x
= 0

δw0 :
∂Qxz

∂x
+ q − Kww0 + Ks

∂2w0

∂x2 = 0

δθx :
∂Mxx

∂x
− Qxz = 0

(19)

The force (natural) boundary conditions for the Timoshenko beam theory involve specifying the
following secondary variables:

Nxx,Qxz and Mxx at x = 0, L (20a)

The geometric boundary conditions involve specifying the following primary variables:

u0,w0 and θx at x = 0, L (20b)

Thus, the pairing of the primary and secondary variables is as follows:

(u0,Nxx) , (w0,Qxz) , (θx,Mxx) (20c)

Only one member of each pair may be specified at a point in the beam.

2.4. Equilibrium equations in terms of displacements

By substituting the stress resultants in Eq. (16) into Eq. (19), the equilibrium equations can be
expressed in terms of displacements (u0,w0, θx) as:

A11
∂2u0

∂x2 = 0 (21a)

As
55
∂2w0

∂x2 + As
55
∂θx

∂x
+ q − Kww0 + Ks

∂2w0

∂x2 = 0 (21b)

D11
∂2θx

∂x2 − As
55
∂w0

∂x
− As

55θx = 0 (21c)

3. The Navier solution

The simply supported boundary conditions of FG beams are:

w0 = 0, Nxx = 0, Mxx = 0 at x = 0, L (22)

The above equilibrium equations are analytically solved for bending problems. The Navier solu-
tion procedure is used to determine the analytical solutions for a simply supported beam. The solution
is assumed to be of the form:

u0(x, t) =
∞∑

m=1

u0m cosαx; w0(x, t) =
∞∑

m=1

w0m sinαx; θx(x, t) =
∞∑

m=1

θxm cosαx (23)

where α =
mπ
L

; m is the half wave number in the x direction; (u0m,w0m, θxm) are the unknown maxi-
mum displacement coefficients.
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The transverse load q is also expanded in Fourier series as:

q(x) =
∞∑

m=1

qm sinαx (24a)

where qm is the load amplitude calculated from:

qm =
2
L

L∫
0

q(x) sinαxdx (24b)

The coefficients qm are given below for some typical loads:

qm = q0 for sinusoidal load (m = 1) (24c)

qm =
4q0

πm
for uniform load (24d)

Substituting the expansions of u0,w0, θx and q from Eqs. (23) and (24) into Eq. (21) and collecting
the coefficients, we obtain a 3 × 3 system of equations: s11 0 0

0 s22 s23
0 s32 s33




u0m

w0m

θxm

 =


0
qm

0

 (25)

for any fixed values of m and n.
In which:

s11 = A11α
2; s22 =

(
As

55 + Ks
)
α2 + Kw; s23 = s32 = As

55α; s33 = D11α
2 + As

55

The analytical solutions can be obtained from Eqs. (25), and are expressed in the following form:

u0m = 0; w0m =
s33qm

s22s33 − s2
23

; θxm =
−s23qm

s22s33 − s2
23

(26)

or
u0m = 0

w0m =

(
D11α

2 + As
55

)
qm

As
55D11α4 +

(
Ksα2 + Kw

) (
D11α2 + As

55

)
θxm =

−As
55αqm

As
55D11α4 +

(
Ksα2 + Kw

) (
D11α2 + As

55

)
(27)

4. Results and discussion

In the following section, after validation of the analytical solution based on neutral surface con-
cept, the influence of different beam parameters such as porosity distribution, porosity volume frac-
tion, power law exponent, and slenderness on the deflection and stress components of the imperfect
FG beam under uniform, and sinusoidal distributed loading will be perceived.
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The FG beams are made of aluminum (Al; Em = 70 GPa, νm = 0.3) and alumina (Al2O3; Ec = 380
GPa, νc = 0.3) and their properties vary throughout the height of the beam according to power-law.
For convenience, the following dimensionless forms are used [21]:

w̄ (L/2) = 100w (L/2)
EcI

q0L4 ; K̄w = Kw
L4

EI
; K̄s = Ks

L2

EI
(28)

where I =
bh3

12
is the second moment of the cross-sectional area.

Table 1 presents the comparisons of the non dimensional mid-span deflection w̄ (L/2) obtained
from the present analytical solution based on neutral surface concept with results of Chen et al. [22],
Ying et al. [23] using two-dimensional elasticity solution for two various values of height-to-length
ratio, and for different values of foundation parameters K̄w and K̄s. As can be seen, the present results
are in good agreement with previous ones

Table 1. Comparisons of the mid-span deflection w̄ (L/2) of an isotropic homogeneous beam on elastic
foundations due to uniform pressure

Foundation
parameters

L/h = 120 L/h = 5

K̄w K̄s
Ying et al.

[23]
Chen et al.

[22]
Present

Ying et al.
[23]

Chen et al.
[22]

Present

0 0 1.3023 1.3023 1.3023 1.4202 1.4203 1.4321
10 0 1.1806 1.1794 1.1806 1.2773 1.2826 1.2855

10 0.6133 0.6133 0.6133 0.6403 0.6464 0.6387
25 0.3557 0.3557 0.3557 0.3657 0.3721 0.3631

100 0 0.6401 0.6401 0.6401 0.6685 0.6961 0.6671
10 0.4256 0.4256 0.4256 0.4388 0.4593 0.4362
25 0.2829 0.2828 0.2828 0.2894 0.3052 0.2869

Table 2 contains the nondimensional deflections of perfect and imperfect FG beams under uniform
and sinusoidal distributed load for different values of power law index p (span-to-depth ratio L/h =
10, porosity coefficient e0 = 0.1; K̄w = 100, K̄p = 10). The results obtained for perfect FGM (e0 = 0),
even distribution of porosities (FGM-I), and uneven distribution of porosities (FGM-II).

Fig. 3 presents the variation of the non-dimensional deflections versus power law index p for three
types of porosity distribution. It can be deduced from this curve that the higher the power law index is,
the higher the deflection is, regardless the type of loading. So, by increasing the metal percentage and
decreasing the value of Young’s modulus in metal with respect to ceramic, the stiffness of the system
decreases. Besides, it is found that the nondimensional deflection of porous FG beams with evenly
distributed porosity (FGM-I) is lower than the FG beam with uneven distributed porosity (FGM-II),
and the nondimensional deflection of perfect FG beam is the lowest.

In Table 3, maximum non-dimensional deflections of the beam are presented for various values of
span-to-depth ratios L/h and different types of porous FG beams under uniform load. Table 4 shows
the maximum nondimensional deflections of perfect and imperfect FG beams under uniform load for
different values of porosity coefficients.

Fig. 4 depicts the variation of maximum non-dimensional transverse deflection of the different
types of FG beams versus span-to-depth ratios and porosity coefficients. It can be observed that the
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Table 2. Nondimensional deflections of FG beams under uniform and sinusoidal distributed load for different
values of power law index p

(
L/h = 10, e0 = 0.1, K̄w = 100, K̄s = 10

)
Loading Materials p

0 0.5 1 2 5 10

UL FGM 0.4283 0.4815 0.5081 0.5292 0.5414 0.5475
FGM-I 0.4365 0.4925 0.5213 0.5449 0.5578 0.5625
FGM-II 0.4304 0.4844 0.5118 0.5339 0.5463 0.5517

SL FGM 0.3405 0.3840 0.4061 0.4241 0.4349 0.4405
FGM-I 0.3471 0.3930 0.4173 0.4377 0.4495 0.4541
FGM-II 0.3422 0.3864 0.4093 0.4282 0.4393 0.4443

 FGM-II 0.4304 0.4844 0.5118 0.5339 0.5463 0.5517 

SL FGM 0.3405 0.3840 0.4061 0.4241 0.4349 0.4405 

 FGM-I 0.3471 0.3930 0.4173 0.4377 0.4495 0.4541 

 FGM-II 0.3422 0.3864 0.4093 0.4282 0.4393 0.4443 

 

  

Figure 3. Variation of nondimensional transverse deflection ( )/ 2w L   with respect 

to the power law index p for imperfect FG beams under uniform (UL) and 

sinusoidal distributed (SL) load. 
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Figure 3 presents the variation of the non-dimensional deflections versus power 

law index p for three types of porosity distribution. It can be deduced from this curve 

that the higher the power law index is, the higher the deflection is, regardless the type 

of loading. So, by increasing the metal percentage and decreasing the value of 

Young’s modulus in metal with respect to ceramic, the stiffness of the system 

decreases. Besides, it is found that the nondimensional deflection of porous FG beams 

with evenly distributed porosity (FGM-I) is lower than the FG beam with uneven 

distributed porosity (FGM-II), and the nondimensional deflection of perfect FG beam 

is the lowest.  

In Table 3, maximum non-dimensional deflections of the beam are presented 

for various values of span-to-depth ratios /L h  and different types of porous FG 

beams under uniform load. Table 4 shows the maximum nondimensional deflections 

of perfect and imperfect FG beams under uniform load for different values of porosity 

coefficients. 

Table 3. Maximum non-dimensional transverse deflection of the FG beam for various 

values of span-to-depth ratios L/h ( )02, 0.1, 100, 10w sp e K K= = = =  
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Figure 3. Variation of nondimensional transverse deflection w̄ (L/2) with respect to the power law index p for
imperfect FG beams under uniform (UL) and sinusoidal distributed (SL) load

Table 3. Maximum non-dimensional transverse deflection of the FG beam for various values of span-to-depth
ratios L/h

(
p = 2, e0 = 0.1, K̄w = 100, K̄s = 10

)
Materials L/h

5 10 15 20 25 30

FGM 0.5315 0.5292 0.5288 0.5287 0.5286 0.5286
FGM-I 0.5460 0.5449 0.5447 0.5446 0.5446 0.5446
FGM-II 0.5358 0.5339 0.5335 0.5334 0.5334 0.5334

maximum nondimensional transverse deflection decreases with increasing span-to-depth ratio, and
decreases significantly in range of L/h from 5 to 15. Also, it is concluded that increasing poros-
ity coefficient increases maximum nondimensional transverse deflection. Thus, as also known from
mechanical behavior of the beam, the deflection increases as the flexibility of a structure increases.
Furthermore, existence of porosity will cause a decrease of stiffness of the structure. In FGM I (even
distribution) the porosity has more significant impact on the non-dimensional deflection of FG beam
than that of FGM II (uneven distribution).

Maximum non-dimensional transverse deflections of the perfect and imperfect FG beams for
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Table 4. Maximum non-dimensional transverse deflection of the beam for various values of porosity
coefficients

(
p = 2, L/h = 10, K̄w = 100, K̄s = 10

)
Materials α

0 0.05 0.1 0.15 0.2 0.3

FGM 0.5292 0.5292 0.5292 0.5292 0.5292 0.5292
FGM-I 0.5292 0.5368 0.5449 0.5533 0.5624 0.5823
FGM-II 0.5292 0.5315 0.5339 0.5363 0.5388 0.5442

Materials 
L/h 

5 10 15 20 25 30 

FGM 0.5315 0.5292 0.5288 0.5287 0.5286 0.5286 

FGM-I 0.5460 0.5449 0.5447 0.5446 0.5446 0.5446 

FGM-II 0.5358 0.5339 0.5335 0.5334 0.5334 0.5334 

Table 4. Maximum non-dimensional transverse deflection of the beam for various 

values of porosity coefficients ( )2, / 10, 100, 10w sp L h K K= = = =  

Materials 
  

0 0.05 0.1 0.15 0.2 0.3 

FGM 0.5292 0.5292 0.5292 0.5292 0.5292 0.5292 

FGM-I 0.5292 0.5368 0.5449 0.5533 0.5624 0.5823 

FGM-II 0.5292 0.5315 0.5339 0.5363 0.5388 0.5442 

 

  

Figure 4. Variation of nondimensional transverse deflection ( )/ 2w L   with respect 

to the span-to-depth ratio L/h  and with respect to porosity coefficient for 

imperfect FG beams under uniform load 
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Figure 4 depicts the variation of maximum non-dimensional transverse 

deflection of the different types of FG beams versus span-to-depth ratios and porosity 

coefficients. It can be observed that the maximum nondimensional transverse 

deflection decreases with increasing span-to-depth ratio, and decreases significantly in 

range of L/h from 5 to 15. Also, it is concluded that increasing porosity coefficient 

increases maximum nondimensional transverse deflection. Thus, as also known from 
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Figure 4. Variation of nondimensional transverse deflection w̄ (L/2) with respect to the span-to-depth ratio
L/h and with respect to porosity coefficient for imperfect FG beams under uniform load

various values of Winkler foundation parameters, and for various values of Pasternak foundation
parameters are tabulated in Tables 5 and 6.

The variations of the maximum non-dimensional transverse deflections versus the foundation
parameter are plotted in Fig. 5. It can be deduced from these plots that the higher the Winkler (or
Pasternak) foundation parameter is, the lower the transverse deflection is, regardless of the type of
FG beams. This is because the beam gets stiffer with increasing foundation parameters (Winkler and
Pasternak).

Table 5. Maximum non-dimensional transverse deflection of the FG beam for various values of Winkler
foundation parameters

(
K̄s = 0; p = 2, L/h = 10, e0 = 0.1

)
Materials K̄w

0 10 50 100 200 300

FGM 3.4190 2.6896 1.4473 0.9143 0.5230 0.3642
FGM-I 4.2588 3.1832 1.5780 0.9634 0.5372 0.3699
FGM-II 3.6359 2.8219 1.4845 0.9286 0.5273 0.3660
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Table 6. Maximum non-dimensional transverse deflection of the FG beam for various values of Pasternak
foundation parameters

(
K̄w = 0; p = 2, L/h = 10, e0 = 0.1

)
Materials K̄s

0 5 10 15 20 25

FGM 0.9143 0.6706 0.5292 0.4370 0.3721 0.3240
FGM-I 0.9634 0.6962 0.5449 0.4475 0.3796 0.3296
FGM-II 0.9286 0.6781 0.5339 0.4401 0.3744 0.3257

  

Figure 5. Variation of the maximum non-dimensional transverse displacement of FG 

beam with Winkler foundation parameter wK  and Pasternak shear foundation 

parameter sK   

(Font chữ trong hình 5 để Times New Roman) 

5. Summary and conclusion  

In this paper, the Timoshenko beam theory based on neutral surface position is 

used for bending analysis of functionally graded perfect and imperfect beams resting 

on Winkler-Pasternak elastic foundation. Thus, membrane force and bending moment 

have no stretching–bending couplings, and governing equations have  simple forms, so 

the solution procedure is similar to that of homogeneous isotropic beam. 

The effective material properties are assumed to vary continuously in the height 

direction of the beam according to the rule of mixture, which is reformulated to assess 

the material characteristics with the porosity phases. The governing differential 

equations and related boundary conditions are derived by implementing the principle 

of minimum total potential energy. The Navier-type solution is used for simply-

supported boundary conditions, and exact formulas are proposed for the static 

deflections. Accuracy of the results is examined using available data in the literature.  

Numerical results show that the porosity distributions, porosity coefficient, 

power-law index and foundation parameter play a major role on the static response of 

the FG beam. In the design of functionally graded structures, by choosing a suitable 

power-law index, the material properties of the FG beam can be tailored to meet the 

desired goals of minimizing stresses and displacements in a beam-type structure. 
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Figure 5. Variation of the maximum non-dimensional transverse displacement of FG beam with Winkler
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5. Summary and conclusions

In this paper, the Timoshenko beam theory based on neutral surface position is used for bend-
ing analysis of functionally graded perfect and imperfect beams resting on Winkler-Pasternak elastic
foundation. Thus, membrane force and bending moment have no stretching–bending couplings, and
governing equations have simple forms, so the solution procedure is similar to that of homogeneous
isotropic beam.

The effective material properties are assumed to vary continuously in the height direction of the
beam according to the rule of mixture, which is reformulated to assess the material characteristics with
the porosity phases. The governing differential equations and related boundary conditions are derived
by implementing the principle of minimum total potential energy. The Navier-type solution is used
for simply-supported boundary conditions, and exact formulas are proposed for the static deflections.
Accuracy of the results is examined using available data in the literature. Numerical results show
that the porosity distributions, porosity coefficient, power-law index and foundation parameter play a
major role on the static response of the FG beam. In the design of functionally graded structures, by
choosing a suitable power-law index, the material properties of the FG beam can be tailored to meet
the desired goals of minimizing stresses and displacements in a beam-type structure.
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