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Abstract

In this article, an efficient numerical approach for weight optimisation of functionally graded (FG) beams in the
presence of frequency constraints is presented. For the analysis purpose, a finite element (FE) solution based
on the first order shear deformation theory (FSDT) is established to analyse the free vibration behaviour of FG
beams. A four-parameter power law distribution and a five-parameter trigonometric distribution are used to de-
scribe the volume fraction of material constituents in the thickness direction. The goal is to tailor the thickness
and material distribution for minimising the weight of FG beams while constraining the fundamental frequency
to be greater than a prescribed value. The constrained optimisation problem is effectively solved by a novel
differential evolution (DE) algorithm. The validity and efficiency of the proposed approach is demonstrated
through two numerical examples corresponding to the four-parameter distribution and the five-parameter dis-
tribution.
Keywords: FGM beam; lightweight design; frequency constraint; differential evolution.
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1. Introduction

In recent decades the development of a new kind of materials, functionally graded materials
(FGMs), has opened great opportunities for optimal structural design. FGMs are advanced materi-
als composed of two or more constituents that have continuous and smooth spatial variation of the
relative volume fraction and microstructure [1]. With advantageous characteristics such as high tem-
perature resistant and elimination of stress concentration, FGMs are increasingly and widely used in
different fields such as aerospace, marine, mechanical and structural engineering. In an FGM, ma-
terial composition can be tailored to derive maximum benefits from its inhomogeneity [2]. Thus,
optimisation of material distribution for structures made of FGMs has drawn considerable research
attention.

On the other hand, frequency constraints are essential in structural design to improve the perfor-
mance of a structure and to prevent the resonance phenomenon [3]. The optimal structural design
under frequency constraints is a well-known optimisation problem, whereas the weight or an objec-
tive function value corresponding to the minimal cost of a structure is minimised while satisfying
frequency constraints. There have been numerous researches on the optimal design of FG beams in
the dynamic regime (e.g. [2, 4–10]). However, most of the published works considered the optimal
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design for maximising/minimising the fundamental frequency. Studies have rarely been conducted on
the lightweight design of FG beams. Therefore, the aim of the present study is to optimise the thick-
ness and material distribution to minimising the weight of FG beams in the presence of frequency
constraints.

The considered optimisation problem is highly nonlinear and difficult to solve by conventional
gradient-based techniques. Metaheuristics (MHs), which do not rely on the function derivative and
are suitable for nonlinear, non-convex, multimodal optimisation problems, have become dominant in
the optimisation of FG beams. Some well-established MHs have been applied, including the genetic
algorithm (GA) [2, 4, 9], differential evolution (DE) [7, 8, 10], and the firefly algorithm [6]. To effec-
tively solve the optimisation problem of FG beams, a new optimisation algorithm based on differen-
tial evolution, termed modified differential evolution with directional mutation and nearest neighbour
comparison (DErdn), is introduced in this article. DE is a simple population-based, stochastic opti-
miser which has shown good global search ability for various optimisation problems. However, like
many population-based MHs, one of the main issues in applying DE is its expensive computation re-
quirement. The proposed enhancements in the present work attempt to reduce the computation burden
and enhance the search ability of DE. These enhancements are relatively simple and do not introduce
additional control parameters as often appeared in other modified DE variants.

The determination of the natural frequencies requires the solution of the free vibration problem.
There have been many published works on the analysis of the free vibration of FG beams using an-
alytical approaches (e.g. see [11–15]). In this study, to accommodate different boundary conditions,
the finite element (FE) method is utilised. The formulation of the FG beam element is based on the
first order shear deformation theory (FSDT) and linear elastic analysis. It is noted that FSDT has been
used to develop the finite element solution for the vibration analysis of FG beams by Chakraborty et
al. [16] using the simple power law for the volume fraction. Here, this finite element formulation is ex-
tended for FG beams with a four-parameter power law distribution and a five-parameter trigonometric
distribution of the volume fraction in beam’s thickness direction. These distribution formulations are
supposed to permit more diverse material distributions for optimisation purpose. The four-parameter
and five-parameter distributions have been used by some researchers for material distribution through
the longitudinal direction to maximise the fundamental frequency of FG beams [9] and arches [10].

2. Free vibration of FG beam

Consider an FG beam composed of two materials with the length L and rectangular cross section
b × h, where b is the width and h is the height (Fig. 1). The x, y and z-coordinates are taken along the
length, width and height of the beam, respectively.
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Figure 1 Functionally graded beam 
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where  represents the effective material property such as Young’s modulus , and mass 
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Figure 1. Functionally graded beam

2.1. Formula for volume fraction

The material properties are assumed to vary continuously along the thickness of the beam (in the
z-direction) and governed by the volume fraction of its constituents according to the linear rule of
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mixtures:
P(z) = P1V1(z) + P2V2(z); V2(z) = 1 − V1(z) (1)

where P represents the effective material property such as Young’s modulus E, and mass density ρ;
V is the volume fraction; subscripts 1 and 2 represent the constituent 1 and constituent 2, respec-
tively. Possible distribution laws for volume fraction are the power law [17], the sigmoid law [18], the
exponential law [19] and the three-parameter law [20]. In this study, to spatially tailor the material
properties, it is proposed that the volume fraction of constituent 1 follows a four-parameter power law
distribution or a five-parameter trigonometric distribution as given in Table 1.

Table 1. Volume fraction of constituent 1

Four-parameter power law distribution Five-parameter trigonometric distribution
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The parameters a, b, c, d, and p are the model parameters and are treated as design variables. The
proposed formulas are supposed to allow diverse material distributions for optimisation purpose. It
is noted that the four-parameter power law distribution can be transformed to the simple power law
distribution of Eq. (2) by setting a = 1 and b = 0.

V1 =

[
1
2

+
z
h

]p

(2)

2.2. FE solution for free vibration of FG beam

a. Governing equations
Based on the first-order shear deformation theory (or the Timoshenko beam theory), the displace-

ment field is given as
u(x, z, t) = u0(x, t) − zφ(x, t)

w(x, z, t) = w0(x, t)
(3)

where u and w are the displacements at a point along x and z directions; u0 and w0 are the axial and
transverse displacement on the mid-surface, respectively; φ is the rotation of the cross section about
the y-axis. Assuming linear elastic material behaviour, the strains are determined as:

εx =
∂u
∂x

=
∂u0

∂x
− z

∂φ

∂x

γxz =
∂u
∂z

+
∂w
∂x

=
∂w0

∂x
− φ

(4)

and stresses are of the form:

σx = E(z)εx

τxz =
E(z)

2(1 + ν)
γxz = G(z)γxz; G(z) =

E(z)
2(1 + ν)

(5)

where σx and εx are the normal stress and normal strain in the x direction; τxz and γxz are the shear
stress and shear strain in the x − z plane; E(z) and G(z) are the Young’s modulus and shear modulus,
with E(z) is computed from the mixture rule of Eq. (1).
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Applying the principle of virtual work to the free vibration problem of the beam leads to:

b

L∫
0

h/2∫
−h/2

(σxδεx + τxzδγxz)dzdx + b

L∫
0

h/2∫
−h/2

ρ(z)
(
∂2u
∂t2 δu +

∂2w
∂t2 δw

)
dzdx = 0 (6)

where the symbol δ denotes the variation operator. By substituting Eqs. (4) and (5) into Eq. (6),
integrating by parts and noting that the variation δu0, δw0 and δφ can be arbitrary, we obtain the
following governing equations:

− A11
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(7)

where the coefficients A11, B11, D11, A55, I0, I1, and I2 are given by:

(A11, B11,D11) = b

h/2∫
−h/2

E(z)(1, z, z2)dz

A55 = kb
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−h/2

G(z)dz
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(8)

The stress resultants are

Nx = b

h/2∫
−h/2

σxdz = A11
∂u0

∂x
− B11

∂φ

∂x

Qx = kb
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)
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∂φ

∂x

(9)

In Eqs. (8) and (9), k is the shear correction factor (k = 5/6), which is required to compensate for the
error due to the assumption in FSDT.
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b. Finite element formulation

According to Ref. [16], the interpolation functions for the displacement field of a finite beam
element have the form:

u0 = c1 + c2x + c3x2

w0 = c4 + c5x + c6x2 + c7x3

φ = c8 + c9x + c10x2

(10)

Substituting Eqs. (10) into the static part of the governing equations given by Eq. (7), the following
relations can be derived

c3 = c10
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3
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c9

2
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A11A55

2(A11D11 − B2
11)

(c8 − c5) (11)

The interpolation functions are then rewritten as
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1
2
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2
x2 +

1
6
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1
2
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(12)

where α =
B11A55

(A11D11 − B2
11)
, β =

A11A55

(A11D11 − B2
11)

, or in matrix form

{u} = {u0,w0, φ}
T = [N(x)]{c},

{c} =
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(13)

The vector of independent constants {c} can be expressed in terms of nodal displacements by using
boundary conditions for each node, (at x = 0 and x = L):{

u(0)
u(L)

}
=

[
N(0)
N(L)

]
{c}, {c} =

[
N(0)
N(L)

]−1 {
u(0)
u(L)

}
= [G]{û} (14)

where {û} = {u1,w1, φ1, u2,w2, φ2}
T is the vector of nodal displacements of the element.

The displacements of a point in the element can be expressed in terms of nodal displacements:

{u} = [N(x)][G]{û} = [ℵ(x)]{û} (15)

where the matrix [ℵ(x)] = [ℵu(x) ℵw(x) ℵφ(x)]T , with ℵu(x), ℵw(x) and ℵφ(x) being the exact
shape functions for axial, transverse and rotational degrees of freedom, respectively [16]. The expres-
sion for the shape functions are given in Appendix A.
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Now, the force resultants in Eq. (9) can be written in terms of the nodal displacements:

Nx =

(
A11

∂ℵu

∂x
− B11

∂ℵφ

∂x

)
{û}

Qx = A55

(
∂ℵw

∂x
− ℵφ

)
{û}

Mx =

(
−B11

∂ℵu

∂x
+ D11

∂ℵφ

∂x

)
{û}

(16)

Using Eq. (16), we can derive the element force vector as:

{F} = {−Nx(0),−Qx(0),−Mx(0),Nx(L),Qx(L),Mx(L)}T = [K]{û} (17)

where [K] is the element stiffness matrix, and its explicit form is given in Appendix B.
The consistent element mass matrix is expressed as summation of four sub-matrices [16]

[M] = [Mu] + [Mw] + [Mφ] + [Muφ] (18)

where the components of the consistent mass matrix are determined as follows

[Mu] =

L∫
0

I0[ℵu]T [ℵu]dx

[Mw] =

L∫
0

I0[ℵw]T [ℵw]dx

[Mφ] =

L∫
0

I2[ℵφ]T [ℵφ]dx

[Muφ] = −

L∫
0

I1
(
[ℵu]T [ℵφ] + [ℵφ]T [ℵu]

)
dx

(19)

The system equations are obtained by assembly of element matrices, implementation of boundary
conditions, and introduction of loads. The free vibration behaviour of the beam is obtained by solving
the following eigenproblem

([K] − ω2[M]){u} = {0} (20)

where [K], [M] and {u} are the system stiffness matrix, system mass matrix and system nodal dis-
placement vector; ω is the circular natural frequency of the beam. The eigenvalues are determined
from the condition that the determinant of the system of equations given by Eq. (19) must vanish.

2.3. Verification of FE solution

To verify the FE solution, an FG beam made of aluminium (Al; Em = 70 GPa, ρm = 2702 kg/m3,
νm = 0.3) and alumina (Al2O3; Ec = 380 GPa, ρc = 3960 kg/m3, νc = 0.3) taken from Ref. [12] is
considered. The volume fraction of alumina follows the simple power-law given by Eq. (2). Beams
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with various support condition (SC), including pinned-pinned (PP), clamped-clamped (CC), clamped-
pinned (CP), and clamped-free (CF) are examined. For comparison purpose, the non-dimensional
frequency [12], Ω = (ωL2

√
ρm/Em)/h, is utilised.

Table 2 shows the convergence of the non-dimensional fundamental frequency with various num-
bers of elements of the FG beam with h = 0.1 m, L/h = 5, and p = 1. It is seen from Table 2 that
numerical accuracy of the frequencies is satisfactory when the number of elements is 50. Using 50

Table 2. Convergence study for FG beams with L/h = 5, and p = 1

Number of elements PP CC CP CF

10 3.9721 7.9096 5.8440 1.4628
20 3.9712 7.9022 5.8410 1.4628
30 3.9710 7.9008 5.8405 1.4628
40 3.9709 7.9004 5.8403 1.4628
50 3.9709 7.9001 5.8402 1.4628
100 3.9709 7.8998 5.8401 1.4628

equal elements, the non-dimensional frequencies are calculated and compared with those in Ref. [12]
obtained by analytical solution using FSDT for L/h = 5 and 20 in Tables 3 and 4, respectively. As seen
from Tables 3 and 4, the results from FE analysis (FEA) agree well with the results by Simsek [12]
and the difference between the frequencies of the two studies is very small (less than one percent).

Table 3. Comparison of non-dimensional fundamental frequencies with L/h = 5

SC Method
p

0 0.5 1 2 5 10

PP
FSDT [12] 5.15247 4.40830 3.99023 3.63438 3.43119 3.31343

FEA 5.1526 4.3989 3.9709 3.6047 3.4023 3.2961

CC
FSDT [12] 10.0344 8.70047 7.92529 7.21134 6.66764 6.34062

FEA 9.9981 8.6709 7.9001 7.1883 6.6432 6.3152

CF
FSDT [12] 1.89479 1.61737 1.46300 1.33376 1.26445 1.22398

FEA 1.8944 1.6169 1.4628 1.3335 1.2642 1.2237

3. Optimisation problem

The optimisation problem considered in this study is the minimisation of the weight of an FG
beam while keeping its fundamental frequency to be greater than a prescribed value. The material
distribution and the thickness are optimised simultaneously. The problem is formulated as

Minimise W(a, b, c, d, p, h) =

h/2∫
−h/2

ρ(z)dz

Subject to f1 ≥ fmin

(21)
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Table 4. Comparison of non-dimensional fundamental frequencies with L/h = 20

SC Method
p

0 0.5 1 2 5 10

PP
FSDT [12] 5.46032 4.65137 4.20505 3.83676 3.65088 3.54156

FEA 5.4603 4.6503 4.2037 3.8347 3.6488 3.5403

CC
FSDT [12] 12.2235 10.4263 9.43135 8.60401 8.16985 7.91275

FEA 12.2202 10.4229 9.4292 8.6021 8.1676 7.9102

CF
FSDT [12] 1.94957 1.66044 1.50104 1.36968 1.30375 1.26495

FEA 1.9495 1.6603 1.5010 1.3697 1.3037 1.2649

where W is the weight per unit length; f1 is the fundamental frequency; and fmin is a frequency lower
limit. In the above optimisation problem, the design variables a, b, c, d, p and h must be chosen such
that the volume fraction at any point along the height will stay within the permissible physical limits,
that is 0 ≤ V1 ≤ 1. To assure that, an additional set of constraints is introduced as:

0 ≤ V1,top,V1,bottom ≤ 1

0 ≤ V1,min; V1,max ≤ 1
(22)

where V1,top,V1,bottom are the volume fraction values at the boundaries (at the top and the bottom); and
V1,min,V1,max are the minima and maxima within the structure domain. The maxima/minima point zopt

can be obtained by solving:
V ′1(z) = 0 (23)

For the four-parameter power law distribution, we obtained:

zopt =
h
2

(
1 − 2e

− log[b]−log[c]
c−1

)
(24)

For the five-parameter trigonometric distribution, we obtained:

zopt =



h (2d − π + cπ)
2cπ

h (2d + π + cπ)
2cπ

h
2cπ

2d + cπ − 2 arcsin

1 − 20
1
−1+p

b




(25)

The values of the volume fraction at the points in the structure domain corresponding to these
extrema should satisfy the permissible limits.

4. Modified differential evolution

In this section, a novel differential evolution algorithm, termed as DErdn, is presented for solving
the above optimisation problem. The enhancement is established through two modifications to the
conventional DE, which are: 1) The random directional mutation for increasing the possibility of
creating improved solutions; and 2) the nearest neighbour comparison method to prejudge a solution
so that unpromising solution will be skipped without evaluating it.
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4.1. Basic differential evolution

Differential evolution (DE) invented by Storn and Price [21] is a population-based optimiser. DE
uses a population of NP candidate vectors of the design variables xk, k = 1, 2, ...,NP, (individuals),
and an individual is defined as xk = (xk1, xk2, ..., xkD), where xki, i = 1, 2, ...,D, are the design vari-
ables and D is the dimension of the optimisation problem. The population is then restructured by
survival individuals evolutionally. First, an initial population is randomly sampled from the solution
space as shown in Eq. (26):

xki = xl
i + rand[0, 1] × (xu

i − xl
i), i = 1, 2, ...,D (26)

where xl
i and xu

i are the lower and upper bounds of the i-th design variable xi, respectively, and
rand[0, 1] is a uniformly distributed random real value in the range [0, 1].

Then, each individual xk (called the target vector) of the current population is compared with a
newly generated vector (called the trial vector) and the better one will be selected as a new member
of the population of next generation. The evolution proceeds until a termination criterion is met.

Two operators, named as ‘mutation’ and ‘crossover’, are used for producing trial vectors and they
are described as follows.
Mutation: For each target vector xk, a mutant vector yk is first generated. Various mutation strategies
can be employed to create the mutant vector. The most popular one in classical DE is the so-called
‘DE/rand/1’, where the mutant vector is determined as:

yk = xr1 + F × (xr2 − xr3) (27)

where xr1 , xr2 , xr3 are three mutually different individuals randomly selected from the current popu-
lation, that is r1 , r2 , r3 , k; F is a scaling factor, a real and constant factor usually chosen in the
interval [0, 1] which controls the amplification of the differential variation. In Eq. (26), xr1 is called
the base vector, while the others are called the difference vectors.
Crossover: Crossover is introduced to exchange the information of the mutant vector with the target
vector xk, creating a trial vector zk with its elements determined by:

zki =

{
yki, if (rand[0, 1] ≤ Cr) or (r = i)
xki, otherwise

(28)

where r is a randomly chosen integer in the interval [1,D] to ensure that the trial vector has at least
one element from the mutant vector; Cr is the crossover rate predefined in [0, 1], which control the
fraction of elements copied from the mutant vector.

4.2. Modification in mutation: the random directional mutation

In the mutation operator of Eq. (26), a random variation is derived from the difference of two
randomly selected different individuals. Consequently, it has no bias to any special search directions.
To take advantage of guiding information of the population, the differential variation is multiplied by
a ‘directed’ factor d, which takes either value 1 or −1 depending on the order relation between the
difference vectors xr2 and xr3 ,

d =

{
1, if xr2 is better than xr3

−1, otherwise
(29)

56



Anh, P. H., Duong, T. T. / Journal of Science and Technology in Civil Engineering

This kind of directional mutation has the same concept of the well-known opposition based
method presented for improving the DE performance in the literature [22, 23]. This rule guaran-
tees that the differential variation is oriented toward a better vector, thus increasing the possibility of
creating an improved solution.

Furthermore, random scaling factors are introduced to increase the diversity of the trial vector.
The new mutation, named as ‘random directional mutation’, operator has the form

yki = xr1i + d × rand[0, 1] × (xr2i − xr3i) (30)

4.3. Modification in selection: the nearest neighbour comparison

In conventional DE, function evaluations are required for all trial vectors and many of them do not
survive in the selection phase. Thus, many evaluations are useless. It is desirable that trial vectors that
might produce no better fitness should not be evaluated. It is particularly important in problems where
function evaluation is costly. A method called ‘Nearest neighbour comparison’ (NNC) is a recently
developed method by Pham [24], which can effectively reduce the number of function evaluations for
various unconstraint benchmark optimisation problems. In this study, the NNC method is employed
to reduce unnecessary function evaluations in solving constrained optimisation problem. The method
is briefly described as follows.

Firstly, for each trial vector zk, a vector znn
k in the current population which is closest to zk is

sought using the normalised Euclidean distance measure:

d(x, zk) =

√√√ D∑
i=1

 xi − zki

xmax
i − xmin

i

2

(31)

where d(x, zk) is the distance measure between two vectors x and zk; xmax
i and xmin

i are the current
maximum and minimum values of the corresponding design variable xi of all solutions in the popu-
lation. Thus, znn

k is the vector in the current population with the smallest distance to the trial vector
zk.

Secondly, znn
k is compared with the target vector xk. If znn

k is worse than xk, the trial vector is likely
worse than the target vector and it will be skipped. Otherwise, the trial vector is evaluated for further
selection decision. In this way, several unpromising trial vectors are omitted and useless function
evaluations can be reduced during the searching process.

4.4. Handling of constraints and comparison of solutions

The considered optimisation problem has inequality constraints, which can be expressed in the
form

c j(xk) ≤ 0, j = 1, 2, ...,NC (32)

where NC is the number of constraints of the optimisation problem and c j(xk) is the j-th constraint
function. The constraint violation of a solution xk is then determined as

Ck = max
{

max
j
{0, c j(xk)}

}
, j = 1, 2, ...,NC (33)

Deb’s rules [25] are employed in this study to handle inequality constraints and to compare two
solutions. Deb’s constraint rules have been successfully applied to the GA and several MHs, and are
described as:
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1) A feasible solution is better than any infeasible one.
2) Of two feasible solutions or two solutions with equal constraint violations, the one having a

smaller objective function value is the better one.
3) Of two infeasible solutions, the one having a smaller constraint violation is the better one.

5. Illustration examples

To demonstrate the efficiency of the proposed numerical approach, the lightweight design opti-
misation of an FG beam with length L = 1 is performed. The beam has the material properties similar
as those given in Section 2.3. Two optimisation problems are considered. In the first problem (Prob-
lem 1), the volume fraction of alumina follows the four-parameter distribution. In the second problem
(Problem 2), the five-parameter distribution is utilised. For both problems, the lower bound for the
fundamental frequency of the beam is 500 Hz. The ranges of the design variables for each problem
are given in Table 5. These ranges are chosen based on a preliminary investigation of the proposed
models of volume fraction given in Table 1, which ensure a wide range of possibilities for material
distribution.

Table 5. Design variable ranges

Design variable a b c d p

Problem 1 [0, 1] [0, 20] [0, 20] NA [0, 20]
Problem 2 [0, 1] [0, 1] [-2, 2] [−π, π] [0, 20]

First, to better understand the performance of DErdn, the influence of each modification intro-
duced in DErdn is investigated. Four different algorithms, including the conventional ‘DE/rand/1’
(DE), the DE with random scaling factor (DEr), the DE with random scaling factor and the direc-
tional mutation (DErd), and the DE with all proposed modifications, i.e. DErdn, are examined for
this purpose. The parameter setting is as follows: the population size NP = 50; the maximum itera-
tion Tmax = 300 for Problem 1 and 200 for Problem 2; the scaling factor F = 0.8 (applicable only
for ‘DE/rand/1’); the cross-over rate Cr = 0.9 for ‘DE/rand/1’ and 1 for the other algorithms. Each
algorithm is run 20 times to obtain statistical results.

Tables 6 and 7 present the optimisation results for Problems 1 and 2 with pinned-pinned supports,
respectively. The statistical results include the best solution, the best, mean, worst, standard deviation
(SD) values of optimal weights and the average number of function evaluations (NFEs). It is seen
that DEr, DErd and DErdn produce better results than DE does, while DErd gives the best results.
It is obvious that the DErdn with the nearest neighbour operator reduces the number of function
evaluations considerably.

Fig. 2 plots the average convergences of the best-found weight over the number of function eval-
uations for different algorithms. Clearly, all the modified DE algorithms converge faster than the
classical DE does, and DErdn is the fastest algorithm. Fig. 2 also shows that the directional mutation
does have considerable influence on the convergence rate.

Now, DErdn is used to optimise beams with different support conditions. The best optimal results
in 20 random runs are presented for Problems 1 and 2 in Tables 8 and 9, respectively. As expected, the
optimised beam with fixed ends has the lightest weight while the optimised cantilever beam has the
largest weight, and all the optimised beams have the fundamental frequency satisfied the constraint.
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Table 6. Optimisation results of Problem 1 obtained by different algorithms

DE DEr DErd DErdn

a 0.9978 0.9999 1.0000 0.9996
b 1.0000 1.0000 1.0000 1.0001
c 2.4989 2.5246 2.4358 2.4692
p 4.6675 4.5262 4.7531 4.7027
h [m] 0.1295 0.1291 0.1292 0.1293
Best W [kg/m] 410.1711 410.0551 410.0488 410.0498
f1 (Hz) 500.0015 500.0002 500.0047 500.0010
Mean W [kg/m] 417.5693 414.7205 410.0940 412.1080
Worst W [kg/m] 434.9078 435.9859 410.3107 428.9328
SD 9.6828 8.5115 0.0658 5.6677
NFEs 15000 15000 15000 8065

Table 7. Optimisation results of Problem 2 obtained by different algorithms

DE DEr DErd DErdn

a 0.9994 1.0000 1.0000 1.0000
b 0.9998 1.0000 1.0000 1.0000
c −1.9995 −1.9998 2.0000 −2.0000
d −1.5733 −1.5665 −1.5705 -1.5714
p 2.1086 2.0444 2.0123 2.0439
h [m] 0.1205 0.1202 0.1201 0.1202
Best W [kg/m] 381.1445 381.0108 381.0033 381.0057
f1 (Hz) 500.0709 500.0004 500.0012 500.0011
Mean W [kg/m] 381.9820 381.0617 381.0137 381.0196
Worst W [kg/m] 384.2704 381.2963 381.0365 381.0728
SD 0.7220 0.0632 0.00756 0.0158
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Now, DErdn is used to optimise beams with different support conditions. The best optimal 
results in 20 random runs are presented for Problem 1 and Problem 2 in Tables 8 and 9, 
respectively. As expected, the optimised beam with fixed ends has the lightest weight while 
the optimised cantilever beam has the largest weight, and all the optimised beams have the 
fundamental frequency satisfied the constraint. With the same boundary condition, the five-
parameter distribution can provide smaller optimal weight than that obtained by the four-
parameter distribution. 

Furthermore, it is found that material distributions obtained for the beams with different 
boundary conditions are quite similar, except those corresponding to the clamped-free 
condition. It can be explained that the beams with support at both ends (PP, CC, CP) have a 
similar fundamental vibration mode, while the cantilever beam has totally different 
fundamental vibration behaviour. This observation is different from that of the frequency 
maximisation problem for FG beams conducted by Roque and Martins [7], in which optimised 
material distributions through thickness were the same regardless boundary conditions. 

The optimised volume fraction distribution along thickness is plotted for different support 
conditions in Fig.  3.  
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With the same boundary condition, the five-parameter distribution can provide smaller optimal weight
than that obtained by the four-parameter distribution.

Table 8. Optimisation results of Problem 1 with different support conditions

PP CC CP CF

a 0.9996 0.9993 0.9999 0.9993
b 1.0001 1.0001 1.0000 1.0002
c 2.4692 2.4868 2.4532 2.5729
p 4.7027 4.7532 4.6716 3.1583

h [m] 0.1293 0.0568 0.0826 0.3833
W [kg/m] 410.0498 179.8114 262.5041 1268.4540

f1 (Hz) 500.0010 500.0015 500.0008 500.0006

Table 9. Optimisation results of Problem 2 with different support conditions

PP CC CP CF

a 1.0000 1.0000 1.0000 1.0000
b 1.0000 1.0000 1.0000 1.0000
c −2.0000 −2.0000 2.0000 2.0000
d −1.5714 −1.5711 −1.5699 −1.5754
p 2.0439 2.0626 1.9949 1.4312

h [m] 0.1202 0.0528 0.0769 0.3634
W [kg/m] 381.0057 167.1621 244.0095 1179.7298

f1 (Hz) 500.0011 500.0003 500.0009 500.0017

Furthermore, it is found that material distributions obtained for the beams with different bound-
ary conditions are quite similar, except those corresponding to the clamped-free condition. It can be
explained that the beams with support at both ends (PP, CC, CP) have a similar fundamental vibration
mode, while the cantilever beam has totally different fundamental vibration behaviour. This observa-
tion is different from that of the frequency maximisation problem for FG beams conducted by Roque

Tạp chí Khoa học Công nghệ Xây dựng NUCE 2018 

 

15 
 

Table 9 Optimisation results of Problem 2 with different support conditions 
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 -1.5714 -1.5711 -1.5699 -1.5754 
 2.0439 2.0626 1.9949 1.4312 
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6. Conclusion 

A numerical approach for weight optimisation of FG beams subjected to frequency constraints 
is presented. The proposed approach is a combination of the finite element method with an 
enhanced differential evolution algorithm. The approach is capable of accommodating 
different boundary conditions for FG beams. Simultaneously optimisation of the thickness and 
material distribution is considered. Numerical results indicate that the proposed methodology 
is able to solve the weight minimisation problem of FG beams under frequency constraints 
effectively. Moreover, the proposed DE is relatively simple and it is shown efficient for this 
highly non-linear optimisation problem. The superiority of the modified DE algorithm is its 
much less requirement for function evaluations in comparison with the conventional DE. 
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and Martins [7], in which optimised material distributions through thickness were the same regardless
boundary conditions.

The optimised volume fraction distribution along thickness is plotted for different support condi-
tions in Fig. 3.

6. Conclusion

A numerical approach for weight optimisation of FG beams subjected to frequency constraints is
presented. The proposed approach is a combination of the finite element method with an enhanced
differential evolution algorithm. The approach is capable of accommodating different boundary con-
ditions for FG beams. Simultaneously optimisation of the thickness and material distribution is con-
sidered. Numerical results indicate that the proposed methodology is able to solve the weight min-
imisation problem of FG beams under frequency constraints effectively. Moreover, the proposed DE
is relatively simple and it is shown efficient for this highly non-linear optimisation problem. The
superiority of the modified DE algorithm is its much less requirement for function evaluations in
comparison with the conventional DE.
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Appendix A

α =
B11A55

(A11D11 − B2
11)
, β =

A11A55

(A11D11 − B2
11)
, ψ =

1
12 + βL2

The elements of the shape functions for axial degrees of freedom are:

ℵu,1 = 1 −
x
L
, ℵu,2 =

6x (x − L)α
L

ψ, ℵu,3 = 3x (x − L)αψ,

ℵu,4 =
x
L
, ℵu,5 =

6 (L − x) xα
L

ψ, ℵu,6 = 3x (x − L)αψ

The elements of the shape functions for transverse degrees of freedom are:

ℵw,1 = 0, ℵw,2 =
(L − x)

(
12 + L2β + Lxβ − 2x2β

)
L

ψ, ℵw,3 =
(L − x) x

(
6 + L2β − Lxβ

)
L

ψ,

ℵw,4 = 0, ℵw,5 =
x
(
12 + 3Lxβ − 2x2β

)
L

ψ, ℵw,6 = −
(L − x) x (6 + Lxβ)

L
ψ
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The elements of the shape functions for rotational degrees of freedom are:

ℵφ,1 = 0, ℵφ,2 =
6x (−L + x) β

L
ψ, ℵφ,3 =

(L − x)
(
12 + L2β − 3Lxβ

)
L

ψ,

ℵφ,4 = 0, ℵφ,5 =
6 (L − x) xβ

L
ψ, ℵφ,6 =

x
(
12 − 2L2β + 3Lxβ

)
L

ψ

Appendix B

The coefficients Ki j of the element stiffness matrix in Eq. (16) are given as follows:

K11 = −K14 =
A11

L
, K12 = K15 = 0, K13 = −K16 =

−B11

L

K22 = −K25 =
12A55

12L + L3β
, K23 = K26 =

6A55

12 + L2β
, K24 = 0

K33 =
D11

L
+

3A55L
12 + L2β

, K34 = K16, K35 = −K23, K36 = −
D11

L
+

3A55L
12 + L2β

K44 = K11, K45 = 0, K46 = K13

K55 = K22, K56 = −K23, K66 = K33
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