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Abstract

In this study, the Ritz variational method is used to analyze and solve the bending problem of rectangular func-
tionally graded material plate with general boundary conditions and subject to some types of load distribution
over the entire plate domain. Based on the Kirchoff plate theory, the equilibrium equations are obtained by
minimizing the total potential energy. The material properties are assumed to be graded through the thickness
of the plates according to a power law with four parameters. The accuracy of the solution has been checked
and validated through different comparisons to that available literature. A wide variety of examples have been
carried out to reveal the influences of different geometrical parameters, FGM power law index, type of load
distribution and boundary conditions on the bending responses of the plates. The results show that the gradients
in material properties play an important role in determining the response of the FGM plates.
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1. Introduction

Functionally graded materials (FGMs) are a new generation of composite materials, in which the
material properties vary continuously and smoothly from one surface to another. This can be achieved
by gradually varying the volume power law of constituent materials. The typical FGMs are made of
ceramic and metal, the ceramic constituent provides the high-temperature resistance due to its low
thermal conductivity, while the ductile metal constituent prevents fracture due to its toughness. Due
to their superior physical and mechanical properties, functionally graded materials (FGMs) are widely
used in many structural applications such as mechanics, civil engineering, chemical, energy sources,
nuclear, automotive fields and shipbuilding industries.

In actual structural applications, functionally graded material may be incorporated in the form of
beams, plates or shells as the structural component. It is thus of importance to explore machenical re-
sponses of the structures made of FGM. Cheng and Batra [1] investigated the deflections of a simply
supported functionally graded polygonal plate by using the first-order shear deformation theory and
third-order shear deformation theory. Bending responses of axisymmetric functionally graded circular
and annular plates were reported by Reddy et al. [2] based on the first order shear deformation plate
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theory. Talha and Singh [3] studied free vibration and static behavior of functionally graded plates
using higher-order shear deformation theory. A continuous isoparametric Lagrangian finite element
with 13 degrees of freedom per node is employed for the modeling of functionally graded plates. Thai
and Choi [4] presented finite element formulation of various four-unknown shear deformation theories
for the bending and vibration analyses of functionally graded plates. Using perturbation techniques,
Obata and Noda presented a solution for the transient thermal stresses in a plate made of FGM [5]. The
bending analysis of a simply supported exponentially graded rectangular plates subjected to a sinu-
soidal pressure has been presented by Zenkour [6] using 2D trigonometric and 3D elasticity solutions.
Matsugana presented a 2D higher-order deformation theory for investigation of the vibration and sta-
bility problems of an FG plate [7] and this theory also used for the evaluation of displacements and
stresses in FG plates subjected to thermal and mechanical loadings [8]. Zhao et al. [9] have studied the
thermal and mechanical buckling analysis of FG plates according to the first-order shear deformation
theory by using the element-free Ritz method. Pradyumna and Bandyopadhyay [10] obtained the lin-
ear natural frequencies of FGM curved panels and plates using the finite element method neglecting
the heat conduction between ceramic and metal. They discussed the effect of volume fractions of the
constituent materials as well as geometry on the natural frequencies. Li et al. [11] studied free vibra-
tion of functionally graded material rectangular plates with simply supported and clamped edges in
the thermal environment based on the three-dimensional linear theory of elasticity. Kim [12] investi-
gated vibration characteristics of initially stressed FGM rectangular plates in the thermal environment
by using Rayleigh-Ritz method based on the third-order shear deformation plate theory to account for
rotary inertia and transverse shear strains. Wang et al. [13] presented a unified vibration analysis ap-
proach for the four-parameter functionally graded moderately thick doubly-curved shells and panels
of revolution with general boundary conditions. An efficient and simple refined shear deformation
theory is presented by Meziane et al. [14] for the vibration and buckling of exponentially graded ma-
terial sandwich plate resting on elastic foundations under various boundary conditions. Zenkour [15]
investigated the static response of a simply supported functionally graded rectangular plate subjected
to a transverse uniform load by a sinusoidal shear deformation theory and indicated that the gradients
in material properties play an important role in determining the response of the FGM plates. Using
Navier’s solutions and finite element models based on the third order shear deformation plate the-
ory, Reddy [16] studied through-thickness functionally graded plates. The formulation accounts for
the thermomechanical coupling, time dependency, and the von Karman-type geometric non-linearity.
Daouadji et al. [17] presented a Navier solution of rectangular plates based on a new higher order
shear deformation model for the static response of functionally graded plates (FGPs). In which, shear
correction factors are not required because a correct representation of transverse shearing strain is
given. Quoc et al. [18] studied the bending analysis of functionally graded cylindrical shell panel
under mechanical load and thermal effect by finite element method based on the first order shear
deformation plate theory. Long et al. [19] presented a new eight-unknow plate theory and investigated
the bending and vibration responses of FGM plate by finite element method.

As seen from the above literature survey and to the best of author’s knowledge, there are limited
investigations on bending analysis of FGM plates with four parameters. In this present study, the
mathematical model of four parameters FGM rectangular plates is developed based on Kirchhoff
plate theory. By applying the Ritz method, the governing equation can be solved to obtain the static
responses of FGM plate with general boundary conditions and subjects to the different types of load
distribution over the entire plate domain. The effects of the power-law exponent, length-to-thickness
ratio, type of load distribution, and boundary condition on the bending responses of the plates are
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examined in details.

2. Theoretical formulation

2.1. Functionally graded material plates

In general, the functionally graded materials are made of two or more constituent phases and their
mechanical behaviors are smooth and continuous in one or more directions. It is assumed that Young’s
modulus E(z), density ρ(z) and Poisson’s ratio µ(z) vary continuously through the thickness direction
and can be written in the form of a linear combination:

E (z) = (Ec − Em) Vc + Em

ρ (z) = (ρc − ρm) Vc + ρm

µ (z) = (µc − µm) Vc + µm

(1)

where the subscripts “c” and “m” represent the ceramic and metallic constituents, respectively, and
the volume fraction Vc follows the two general four-parameter power-law distributions [13]:
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Figure 1. Variations of the volume fraction  through the thickness of the plate 

2.2. Governing equation 

According to Kirchhoff plate theory, the displacement field can be given as: 
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where  are displacement components of a point located on the mid-plane of the 
plate (z=0) along the (x, y, z) directions, respectively. 

The strain-displacement relations of the FGM plate are given as: 
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where p is the power-law exponent and takes only positive values. The sum of the volume fractions
of the constituent materials should be equal to one, i.e.,

Vc + Vm = 1 (3)

When the value of p approaches zero or infinity, one special case of the functionally graded material,
namely, the homogeneous isotropic material is obtained. The variations of the volume fraction for
different values of the power-law exponent are depicted in Fig. 1.

2.2. Governing equation

According to Kirchhoff plate theory, the displacement field can be given as:

u(x, y, z) = u0 − z
∂w0

∂x

v(x, y, z) = v0 − z
∂w0

∂y
w(x, y, z) = w0

(4)

where u0, v0,w0 are displacement components of a point located on the mid-plane of the plate (z = 0)
along the (x, y, z) directions, respectively.

The strain-displacement relations of the FGM plate are given as:

εxx =
∂u0

∂x
− z

∂2w0

∂x2

εyy =
∂v0

∂y
− z

∂2w0

∂y2

γxy =
∂u0

∂y
+
∂v0

∂x
− 2z

∂2w0

∂x∂y

(5)

The constitutive relations can be written as:
σxx

σyy

τxy

 =

 Q11 Q12 0
Q12 Q22 0
0 0 Q66



εxx
εyy

γxy

 (6)

where
Q11 =

E (z)
1 − µ2 (z)

; Q12 =
E (z) µ (z)
1 − µ2 (z)

;

Q66 =
E (z)

2 (1 − µ (z))
; Q21 = Q12; Q22 = Q11

The total potential energy functional Π for a Kirchhoff plate is given by:

Π = U + V (7)
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where U is the strain energy functional for bending of the Kirchhoff plate and V is the potential energy
functional due to the applied transverse load q(x, y) which can be given as follow

U =

∫
Ω

h
2∫

− h
2

(
σxxεxx + σyyεyy + τxyγxy

)
dzdxdy (8)

V = −

∫
Ω

q (x, y)w (x, y) dxdy (9)

Substituting Eq. (4) and Eq. (5) into Eq. (8) and then substituting Eq. (8) and Eq. (9) into Eq. (7), the
total potential energy can be rewritten as:

Π =
A
2
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)2
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1
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∂v0

dx
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− B
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∂x2

∂v0

dy
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∂y2

∂u0

∂x
+
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+
∂v0

dx
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−

∫
Ω
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(10)
where
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E (z)
1 − µ2 (z)

dz, B =

h
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− h
2

E (z)
1 − µ2 (z)

zdz, C =

h
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− h
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E (z)
1 − µ2 (z)
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3. Analytical solutions

Consider a FGM rectangular plate with length a, width b and thickness h subjects to load contri-
bution q(x, y). The types of boundary condition are taken as Fig. 2.T.H. Quoc, H.T. Phuong, H.T. Hien./ Journal of Science and Technology in Civil Engineering  
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The boundary conditions for an arbitrary edge with simply supported and clamped 
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The above boundary conditions are satisfied by the following expansions of the 
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∞

∑ Xm x( )Yn y( )
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Xm 0( ) = Xm'' 0( ) = 0
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Figure 2. Types of boundary condition

The boundary conditions for an arbitrary edge with simply supported and clamped edge condi-
tions are:
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• Clamped (CCCC): u0 = v0 = w0 =
∂w0

∂x
=
∂w
∂y

= 0 at x = 0, a and y = 0, b

• Simply supported (SSSS): v0 = w0 =
∂w0

∂y
= 0 at x = 0, a;

u0 = w0 =
∂w0

∂x
= 0 at y = 0, b

The above boundary conditions are satisfied by the following expansions of the displacements:

u0 (x, y) =

∞∑
m=1

∞∑
n=1

Umn
∂Xm (x)
∂x

Yn (y)

v0 (x, y) =

∞∑
m=1

∞∑
n=1

VmnXm (x)
∂Yn (y)
∂y

w0 (x, y) =

∞∑
m=1

∞∑
n=1

WmnXm (x) Yn (y)

(11)

where Umn,Vmn,Wmn are arbitrary parameters. The functions Xm (x) and Yn (y) for the different types
of boundary conditions are listed in Table 1 noting that λm = mπ/a and βn = nπ/b.

Table 1. The admissible functions Xm (x) and Yn (y) [14]

Boundary conditions The functions Xm and Yn

at x = 0, a at y = 0, b Xm (x) Yn (y)

SSSS Xm (0) = X
′′

m (0) = 0 Yn (0) = Y
′′

n (0) = 0 sin (λmx) sin (βny)
Xm (a) = X

′′

m (a) = 0 Yn (b) = Y
′′

n (b) = 0

CCCC Xm (0) = X
′

m (0) = 0 Yn (0) = Y
′′

n (0) = 0 sin2 (λmx) sin2 (βny)
Xm (a) = X

′

m (a) = 0 Yn (b) = Y
′

n (b) = 0

CCSS Xm (0) = X
′

m (0) = 0 Yn (0) = Y
′

n (0) = 0 sin2 (λmx) sin (βmx)
Xm (a) = X

′′

m (a) = 0 Yn (b) = Y
′′

n (b) = 0

According to the Ritz method, the equilibrium equations are obtained by minimizing the total
potential energy functional Π with respect to the unknown displacement field. Hence, for an extremum
of Π with respect to Umn,Vmn,Wmn, the following conditions are imposed:

∂Π

∂Umn
=

∂Π

∂Vmn
=

∂Π

∂Wmn
= 0 (12)

This yields a system of algebraic equations: K11 K12 K13
K21 K22 K23
K31 K32 K33




Umn

Vmn

Wmn

 =


0
0

Fmn

 (13)
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where

K11 = A
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0

2Y2
n

(
d2Xm

dx2

)2

+ (1 − ν)
(
dXm

dx
dYn

dy

)2 dxdy

K12 = A
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0

2νXmYn
d2Xm

dx2

d2Yn

dy2 + (1 − ν)
(
dXm

dx
dYn

dy

)2 dxdy

K13 = −B
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0

Y2
n

(
d2Xm

dx2

)2

+ νXmYn
d2Yn

dy2

d2Xm

dx2 + (1 − ν)
(
dXm

dx
dYn

dy

)2 dxdy

K21 = A
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0

2νXmYn
d2Xm

dx2

d2Yn

dy2 + (1 − ν)
(
dXm

dx
dYn

dy

)2dxdy

K22 = A
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0

2X2
m

(
d2Yn

dy2

)2

+ (1 − ν)
(
dXm

dx
dYn

dy

)2dxdy

K23 = −B
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0

X2
m

(
d2Yn

dy2

)2

+ νXmYn
d2Yn

dy2

d2Xm

dx2 + (1 − ν)
(
dXm

dx
dYn

dy

)2dxdy

K31 = −B
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0

Y2
n

(
d2Xm

dx2

)2

+ νXmYn
d2Xm

dx2

d2Yn

dy2 + (1 − ν)
(
dXm

dx
dYn

dy

)2dxdy

K32 = −B
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0

X2
m

(
d2Yn

dy2

)2

+ νXmYn
d2Xm

dx2

d2Yn

dy2 + (1 − ν)
(
dXm

dx
dYn

dy

)2dxdy

K33 = 2C
∞∑

m=1

∞∑
n=1

b∫
0

a∫
0


Y2

n

(
d2Xm

dx2

)2

+ 2νXmYn
d2Xm

dx2

d2Yn

dy2 + X2
m

(
d2Yn

dy2

)2

+

+2 (1 − ν)
(
dXm

dx
dYn

dy

)2

dxdy

Fmn =

∞∑
m=1

∞∑
n=1

b∫
0

a∫
0

qXmYndxdy

(14)

4. Results and discussion

4.1. Comparison studies

In this section, the accuracy of the present model is verified by being compared with the literature
results. For numerical results, a P-FGM plate made by Al/Al2O3 under simply supported boundary
condition is considered. The material properties adopted here are:

Aluminum Young’s modulus: Em = 70 GPa, and Poisson’s ratio: µm = 0.3
Alumina Young’s modulus: Ec = 380 GPa, and Poisson’s ratio: µc = 0.3
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The following normalized parameters are used for presenting the numerical results.

w̄ = 10w0

(
a
2
,

b
2

)
Ech3

qa4 ; σ̄xx =
h
aq
σxx

(
a
2
,

b
2
,

h
2

)
σ̄yy =

h
aq
σyy

(
a
2
,

b
2
,

h
3

)
; τ̄xy =

h
aq
τxy

(
a
4
,

b
4
,

h
2

) (15)

Table 2. Normalized deflection w̄ and stress σ̄xx of FGM plates under uniform load

Parameters
Theory

NHPSDT [17] SSDPT [15] Reddy [16] Present

b/a = 1, p = 0 w̄ 0.4438 0.4438 0.4438 0.4436
σ̄xx 28.7342 28.7342 28.7341 28.7257

b/a = 3, p = 2 w̄ 3.4593 3.4353 3.45937 3.4345
σ̄xx 128.728 128.713 128.7283 129.416

The obtained central deflection w̄ and normal stress of square plates and rectangular FGM plates
under uniform loads are compared with Sinusoidal Shear Deformation Plate Theory (SSDPT) given
by Zenkour [15], those reported by Reddy [16] based on Parabolic Shear Deformation Plate Theory
(PSDPT) and results by New Hyperbolic Shear Deformation Theory (NHPSDT) by Daouadji et al.
[17] in Table 2. It can be seen that the good agreement between the results in this present study and
those in the literature has proven the accuracy of the developed approach.

4.2. Parametric studies

After verifying the accuracy of the present solution, the effects of power law index, type of load
distribution, side-to-thickness ratio on static responses of FGM plates are discussed in this section.

The material properties of Al/Al2O3 are shown as in the comparative example. The plates are
subjected to three types of load conditions as shown in Fig. 3.
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Material P     

FG
M

I(
a=

1/
b=

0.
5/

c=
2/

p)
 

0 -28.725 -28.725 19.461   -0.443 

0.5 -27.355 -26.92 3 18.659   -0.489    

1 -26.330 -25.590 18.054   -0.533    

2 -25.082 -23.973 17.315   -0.607    

5 -24.445 -23.118 16.947   -0.724    
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FG
M

II
(a

=

1/
b=

0.
5/

c=
2/

p)
 0 -28.725 -28.725 19.461   -0.443    

0.5 -30.989 -31.502 20.846   -0.489    

w σ xx ,σ yy ,τ xy( )

w σ xx ,σ yy ,τ xy( )
σ xx xyt w

σ yy

(a) Uniform distributed loading (UD)
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Table 3. Deflection w̄ and stresses
(
σ̄xx, σ̄yy, τ̄xy

)
of FGM plates under UD load

Material p σ̄xx σ̄yy τ̄xy w̄

FG
M

I(
a=

1/
b=

0.
5/

c=
2/

p) 0 −28.725 −28.725 19.461 −0.443
0.5 −27.355 −26.923 18.659 −0.489
1 −26.330 −25.590 18.054 −0.533
2 −25.082 −23.973 17.315 −0.607
5 −24.445 −23.118 16.947 −0.724
10 −25.195 −24.138 17.376 −0.788

FG
M

II
(a

=
1/

b=
0.

5/
c=

2/
p) 0 −28.725 −28.725 19.461 −0.443

0.5 −30.989 −31.502 20.846 −0.489
1 −33.089 −34.101 22.124 −0.533
2 −36.663 −38.519 24.301 −0.607
5 −43.001 −45.762 28.331 −0.724
10 −47.779 −50.057 31.709 −0.788

a. Effect of power law index

Table 3 contains the normalized deflection w̄ and stresses
(
σ̄xx, σ̄yy, τ̄xy

)
of FGM plates under

uniform load q0 = 104 N/m2 for different values of power-law index p.
It can be seen that increasing the power law index p will reduce the stiffness of the FGM plates,

and consequently, leads to an increase in the deflections and stresses. Table 3 also shows that the
FGMI plates and FGMII plates have the same deflections but different stresses when they have the
same parameters (a, b, c, p), this is because they have the same volume of ceramic and metal but the
form distribution of ceramic and metal constituents are different.

The distribution of normalized stresses across the thickness of FGMI plates and FGMII plates are
plotted on Figs. 4 to 9.

z/
h 

 σ xx 

Figure 4. Distribution of σ̄xx

(
a
2
,

b
2
, z

)
across the

thickness of FGMI(a=1/b=0.5/c=2/p) plates

z/
h 

σ xx  

Figure 5. Distribution of σ̄xx

(
a
2
,

b
2
, z

)
across the

thickness of FGMII(a=1/b=0.5/c=2/p) plates
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z/h

 

σ yy

Figure 6. Distribution of σ̄yy

(
a
2
,

b
2
, z

)
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thickness of FGMI(a=1/b=0.5/c=2/p) plates

z/h
 

σ yy

Figure 7. Distribution of σ̄yy

(
a
2
,

b
2
, z

)
across the

thickness of FGMII(a=1/b=0.5/c=2/p) plates

z/h
 

yσ x

Figure 8. Distribution of τ̄xy

(
a
2
,

b
2
, z

)
across the

thickness of FGMI(a=1/b=0.5/c=2/p) plates

z/h
 

σ xy

Figure 9. Distribution of τ̄xy

(
a
2
,

b
2
, z

)
across the

thickness of FGMII(a=1/b=0.5/c=2/p) plates

Figs. 4 to 9 show that the distribution of the normal stresses and shear stresses are linear through
the thickness of the isotropic plate with zero value at the mid-surface but those distribution in FGM
plates are nonlinear with zero value at the other point which depends on the gradient index. As the
distributions of volume fraction Vc in FGMI are in the turned direction of the distributions of volume
fraction Vc in FGMII leads to the distributions of stresses in FGMI and in FGMII are also in opposite
direction.

b. Effect of type of load distribution

Examination of the results displayed in Table 4 reveals the effect of the type of load distribution
on the static response of FGM plates.

According to the results, the type of load has so much influence on the central deflection and
stress of the plates. It is noticeable that the central deflections and stresses of plates subjected to UD
load may be twice those of plates subjected to HD load while those of plates subjected to TD are
highest. Table 4 also shows the great influence of the boundary conditions on analyzed deflections
and stresses of FGM plates subjected to the mechanical load.
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Table 4. Normalized deflection w̄ and stresses
(
σ̄xx, σ̄yy, τ̄xy

)
of FGM under UD, HD and TD load subjected to

various boundary conditions

Boundary conditions Type of load σ̄xx σ̄yy τ̄xy w̄

SSSS UD −25.082 −23.9731 7.1264 −0.607
HD −12.541 −11.986 3.5632 −0.303
TD −150.494 −143.834 42.7581 −3.642

CCCC UD −42.013 −40.155 4.3108 −0.211
HD −21.006 −20.077 2.1554 −0.105
TD −252.080 −240.933 25.8646 −1.267

CCSS UD −27.791 −15.167 4.524 −0.288
HD −13.895 −7.581 2.262 −0.144
TD −166.743 −90.975 27.146 −1.727

c. Effect of side-to-thickness ratio and material anisotropy
The effects of the side-to-thickness ratio (varying a/h from 50 to 100) on the normalized deflec-

tions of FGM plates for different values of p are shown in Fig. 10.
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Fig. 10 shows that the normalized deflection is maximum for the metallic plate 
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Figure 11. Effect of material anisotropy on the w̄ of
the FGM plates for different values of p

Fig. 10 shows that the normalized deflection is maximum for the metallic plate and minimum for
the ceramic plate while it is unchanged with the increase of side-to-thickness ratio.

Finally, the exact maximum deflections of FGM square plate with SSSS, CCCC and CCSS bound-
ary conditions are compared in Fig. 11 for various ratios of moduli, Em/Ec (for a given thickness,
a/h = 50). This means that the deflections are computed for plates with different ceramic-metal mix-
tures. It is clear that the deflections decrease smoothly as the volume fraction exponent decreases and
as the ratio of metal-to-ceramic moduli increases.

5. Conclusions

In summary, an analytical solution to investigate the static response of functionally graded plates
based on Kirchhoff theory and Ritz method is developed. The present numerical results show high
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accuracy when compared to those in the open literature. The effect of the power law index, plate side-
to-thickness, type of load distribution, and boundary conditions on the static response of FGM plates
are investigated. It is revealed that different plates show different stress profiles across the thickness
which depend on the variations of material properties in the thickness direction. Thus, the gradients
in material properties play an important role in determining the response of the FGM plates.
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