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Abstract

Identification of dynamic structural characteristics such as natural frequency based on measured vibration
responses at site is one of the important steps in the structural investigation work of loading test and structural
health monitoring. During the service stage, the dynamic characteristics can be changed due to the stiffness
reduction and nonlinear of structure under extrema excitation. Therefore, the identification of instantaneous
parameters of structure is very necessary in detecting and monitoring the structural deterioration continuously
by the time. This paper presents the data processing method using Hilbert Huang Transform (HHT) algorithm
in determining a time-dependent frequencies of steel frame. The vibration experiment for steel frame was
conducted in this study. The acceleration responses in time domain were recorded and analyzed by HTT to
determine the fundamental natural frequencies of frame. The instantaneous frequencies in the time domain of
steel frame are the main finding in this research. The traditional data processing method using a Fast Fourier
Transform (FFT) was conducted and compared with the HHT method.

Keywords: Hilbert Huang Transform (HHT); steel frame; Fast Fourier Transform (FFT); natural frequency.
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1. Introduction

Currently, a dynamic response analysis is a new efficient approach based on the site measurement
responses of structure using a signal processing technique to evaluate the behavior of structure more
realistically. The main signal processing technique includes Fast Fourier Transform (FFT), the Wavelet
Transform (WT), and the Hilbert Huang Transform (HHT) in identifying dynamic characteristics
of structure [1, 2]. However, as commented by Huang and Shen [3] the Fourier spectral analysis is
restricted to linear systems and signal data should be either periodic or stationary and only presents
the results in the energy-frequency space. Wavelet Transform (WT) allows a energy-time-frequency
resolution for non-stationary data, however it is established only based on the complete theory and is
suitable for linear signal data. More advantageously, HTT is a powerful technique for analyzing data
from nonlinear and non-stationary processes and its theoretical base is empirical. It has been used
extensively in the maintenance or structural health monitoring (SHM). There are a lot of theoretical
and practical studies that have been developed to this method for a wide variety of structures such as
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bridges, high buildings, offshore drilling platforms ... [4–6]. Mahato et al. [7] applied HHT to identify
the modal parameters of a reinforced concrete framed building and Kunwar et al. [8] and Reddy et al.
[9] proposed the damage detection for bridge structure using the HHT technique.

In Vietnam, dynamic response analysis is used to determine the fundamental natural frequencies
of the components such as beams, stay cables, suspension cables of bridges. In the offshore platform
structure, the dynamic response analysis has almost not conducted to identify the dynamic character-
istics. Trung [10] in 2010 also presented a study to determine the fundamental natural frequency of a
steel frame using the Fast Fourier Transform (FFT) based on acceleration measurement data, however
the FFT algorithm was limited in determining the time-dependent frequency. Therefore, this study
was conducted to evaluate the method of determining variation of the natural frequency in the time
domain for the steel frame structure using the Hilbert Huang Transform algorithm.

2. Signal processing methodology

2.1. Fast Fourier Transform (FFT)

 

  

by the displacement responses and in the case of the velocity data, while it is 180 degrees 
later than this by 90 degrees, [11]. 

 

Figure 6. Identification method of natural frequency based on [11])  

2.2. Huang Hilbert Transformation  

Hilbert Huang Transformation (HHT) is an algorithm developed by Huang from 
the Hilbert transform. The HHT method is a combination of two steps: (1) Decomposing 
the data into different simple intrinsic modes of oscillation (Empirical Mode 
Decomposition, EMD); (2) Performing Hilbert transform to each simple mode (Hilbert 
Spectrum Analysis, HAS) 

Because the Hilbert transform is limited to narrow band passed signals, it is not 
suitable for actual oscillation data in long band passed signal with a frequency range of 
nonlinear and non-stationary. Therefore, Huang et al. [1] introduced a new sifting 
process method denoted as an empirical model decomposition (EMD). The 
decomposition is based on the simple assumption that any data set consists of different 
simple intrinsic modes of oscillations. Each of these oscillation modes, an intrinsic mode 
function (IMF), is defined by the following conditions: (1) Over the entire data set, the 
number of extrema and the number of zero-crossings must be equal or differ at most by 
one; (2) At any points, the mean value of the envelope defined by the local maxima and 

Figure 1. Identification method of natural
frequency based on [11]

The Fourier series is made up of sines and
cosines; the Fourier transform is a generalization
of the Fourier series, and made up of exponentials
and complex numbers. The Fourier analysis indi-
cates wide applications in mathematics and engi-
neering, used in modeling diverse physical phe-
nomena.

Fast Fourier Transform (FFT) is an algorithm
using the discrete Fourier transform (DFT). The
discrete Fourier transform is to be converted from
the specific types of sequences of functions into
other types of representations.

x(t)
FT
−−→ X(F) =

∞∫
−∞

x(t)e− j2πFtdt (1)

where x(t) is the function in time domain (s); FT
is the fast Fourier Transfrom; X(F) is the function
in frequency domain.

By capturing the peak of power spectrum at
the phase of 90 degrees, the natural frequencies of
the structure can be determined, as shown in Fig. 1. The peak performs the resonance state (the state
where the frequency of the external force and the natural frequency of the structure are equal). The
phase difference is 90 degrees when measured by the displacement responses and in the case of the
velocity data, while it is 180 degrees later than this by 90 degrees, [11].

2.2. Huang Hilbert transformation

Hilbert Huang Transformation (HHT) is an algorithm developed by Huang from the Hilbert trans-
form. The HHT method is a combination of two steps: (1) Decomposing the data into different simple
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intrinsic modes of oscillation (Empirical Mode Decomposition, EMD); (2) Performing Hilbert trans-
form to each simple mode (Hilbert Spectrum Analysis, HAS).

Because the Hilbert transform is limited to narrow band passed signals, it is not suitable for actual
oscillation data in long band passed signal with a frequency range of nonlinear and non-stationary.
Therefore, Huang et al. [1] introduced a new sifting process method denoted as an empirical model
decomposition (EMD). The decomposition is based on the simple assumption that any data set con-
sists of different simple intrinsic modes of oscillations. Each of these oscillation modes, an intrinsic
mode function (IMF), is defined by the following conditions: (1) Over the entire data set, the number
of extrema and the number of zero-crossings must be equal or differ at most by one; (2) At any points,
the mean value of the envelope defined by the local maxima and the envelope defined by the local
minima is zero. An IMF represents a simple oscillation mode which is similar to a component in the
simple harmonic function, but it is more general because the amplitude and frequency are a function
of time.

Any function can be decomposed as follows:
1. Identify all the local extrema, and then connect all the local maxima by a cubic spline as the

upper envelope.
2. Repeat the procedure for the minima to produce the lower envelope. The upper and lower

envelopes should cover all the data.
If the mean is designated as m1 and the difference between the data and m1 is the first component

h1, then:
h1 = x (t) − m1 (2)

where h1 is an IMF, as shown in Fig. 2. The mean m1 is given by the sum of local extrema connected
by the cubic spline.
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Figure 1. The data (blue) upper and lower envelopes (green) defined by the local 
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To treat h1 as a new set of data, a new mean is computed: 

ℎ" − 𝑚"" = ℎ""      (2) 

After repeating the sifting process up to k times, k h1 becomes the IMF, that is:  

ℎ"(*+") − 𝑚"* = ℎ"*      (3) 

Figure 2. The data (blue) upper and lower envelopes (green) defined by the local maxima and minima,
respectively, and the mean value of the upper and lower envelopes given in red, [2]
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To treat h1 as a new set of data, a new mean is computed:

h1 − m11 = h11 (3)

After repeating the sifting process up to k times, kh1 becomes the IMF, that is:

h1(k−1) − m1k = h1k (4)

Let h1k = c1, the first IMF c1 from the data should contain the finest scale or the shortest period
component of the data. Now c1 can be separated from the rest of the data by:

x (t) − c1 = r1 (5)

Since r1 is the residue, it contains information on a longer period component; it is now treated as
the new data and subjected to the same sifting process. The procedure is repeated for all subsequent
ri and the result is:

r1 − c2 = r2 . . . rn−1 − cn = rn (6)

where c2 is now the second IMF of the data.
Any oscillation signals can be decomposed into n-empirical modes and a residue rn:

x (t) =

n∑
i=1

c1 (t) + rn (t) (7)

where ci is the ith IMF component, and rn is the nth residue.
Each simple harmonic IMF is suitable to apply Hilbert transform in computing the instantaneous

frequency. The Hilbert Transform representation of the ith IMF component, ci, is written as:

hi (t) =
1
π

PV
∫

ci (τ)
t − τ

(8)

where PV denotes the Cauchy principal value, and its analytic signal, z j(t), is defined as:

zi (t) = ci (t) + hi (t) i = ai (t) eiθi(t) (9)

where ai (t) =

√
ci(t)2 + hi(t)2 is the instantaneous amplitude, which describes the envelope of ci(t)

versus time; and the instantaneous phase of ci(t) versus time is defined as

θi (t) = arctan
[
hi (t)
ci (t)

]
(10)

The residue rn has been left out on purpose, the original data x(t) can be expressed as the real part
in the following form:

x (t) �
n∑
1

ci (t) = RP
n∑
1

ai (t) eiθi(t) = RP
n∑
1

[ci (t) + hi (t) i] (11)

In addition, the instantaneous frequency,ωi(t), for each IMF component can be defined as follows:

ωi (t) =
dθi (t)

dt
(12)

Eqs. (10) and (11) give both the amplitude ai(t) and frequency ωi(t), of each component as func-
tions of time.
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3. Vibration test

3.1. Physical model

The physical model of the steel frame structure is made in the factory. The first and second floors
are of the same height - 0.6 m, and the total height of the structure is 1.2 m. The width of the floors
is 0.35 m. The steel section is a rectangular tube of 0.13 m × 0.13 m in shape and 1.1 m in thickness.
The welded joints are joined together, the four columns are tightly joined to the heavy concrete slab
as shown in Fig. 3.

3.2. Equipments

Accelerometer sensors used in this experiment is 4507-B-004, manufactured in Denmark, as
shown in Fig. 4. The features of these sensors are designed with a small volume, in contrast to high
sensitivity and can be measured in three directions and tested under high temperature conditions, see
Fig. 3. Pulse LabShop ver.10.3 software was used in this experiment to process the response data of
steel frame, shown in Fig. 5.
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Main specifications are: the sensitivity of 10 mV/ms−2; the measuring range of 700 ms−2; the fre-
quency range of 0.3 - 6 kHz; the external resistance of < 2Ω; the temperature coefficient of sensitivity
of 0.09% ◦C.

The accelerometers were installed at positions A1 and A5, as shown in Fig. 4. Trung [10] pro-
posed that the natural oscillation responses in any points on the structure contained all of natural
vibration modes of structure including the natural frequency of component and the frequency of ex-
citation force. However, if the structure is excited in the higher amplitude then the identification of
the natural frequencies becomes more clearly. In this study, the point A1 was selected as a rigid joint
with a large response amplitude, meanwhile the point A5 located at the middle of the beam A1A9
was in the smaller amplitude and this point might contain more natural vibration of beam A1A9, ex-
cept for natural mode of whole structure. Therefore, A1 and A5 points were selected enough for the
identification and assessment of natural fundamental frequencies of steel frame structure based on the
vibration amplitude of response from excitation

3.3. Measurement methodology

The steps for measuring the structural vibration response are shown in Fig. 6. In this reasearch,
the excitation force was hammered at the A4 point, the vibration response signals from the accelerom-
eters were recorded at the specified points. The responses were processed by using the FFT or HTT
algorithm to identify the natural frequencies of structure.

Physical 
model 

Accelerometer 
sensors Transform 

Data 
base 

Progressing 
(FFT, HHT) 

Excitation Signals Signals 
Display 
(natural 
frequencies) 

Figure 6. Testing progress of dynamic response measurement

4. Results and discussions

4.1. Fast Fourier Transform

Figs. 7 and 8 show the acceleration response time histories at the A1 and A5 points. The data was
recorded at the physcial model. The duration is specified of about 16 seconds based on the oscillation
amplitude which gradually reduces to zero.

The FFT algorithm is used to identify the fundamental frequencies of the steel frame structure by
capturing the peaks of power spectrum density in a combination with the angle phase variation [11],
see Figs. 9 and 10.

From Fig. 9 of A1, it can be seen that the resonant frequencies are around 15.63 and 22.1 Hz,
respectively. These similar values are also observed in Fig. 10 of A5. Table 1 shows the results of
comparing the natural frequencies determined from the FFT method with the numerical method (ob-
taining the results from the author’s previous study, [10]).
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Table 1. Identified natural frequencies by FFT method

No Symbol
Determined

frequencies by
FEM (Hz) [6]

Idetified
frequency by

FFT (Hz)

Idetified
frequency by

HHT (Hz)
Note

1 f1 = f2 16.25 15.65 15.72 The first and second frequency
2 f3 21.24 22.64 20.85 The third frequency

4.2. Hilbert Huang Transform (HHT)

Fig. 11 shows the function obtained from the acceleration responses at A1, which includes eight
IMFs simple oscillation modes from c1 to c8. The data function from c1 to c8 was processed and
arranged in a high-to-low frequency range.

From these simple data, the instantaneous frequencies were obtained by using the Hilbert trans-
form. Fig. 12 shows the instantaneous frequency which was determined by the IMF c11 and was almost
constant of 21.31 Hz during the vibration time. This frequency is approximately the same as the third
natural frequency determined by FEM. Due to the excitation force is not large enough to explore the
nonlinear behavior of structure, the variation of frequency in the time domain is much insignificant.
Fig. 13 also presents the identified frequency of IMF c2 and its values, which varies around 15.66 Hz.
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From these simple data, the instantaneous frequencies were obtained by using the 
Hilbert transform. Fig. 12 shows the instantaneous frequency which was determined by
the IMF c1 and was almost constant of 21.31 Hz during the vibration time. This 
frequency is approximately the same as the third natural frequency determined by FEM. 
Due to the excitation force is not large enough to explore the nonlinear behavior of 
structure, the variation of frequency in the time domain is much insignificant. Fig.13 
also presents the identified frequency of IMF c2 and its values, which varies around 
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Figure 13. Instantaneous frequency of c2 (IMF2)

The obtained frequency is approximately the same as the first and second frequency in the FEM and
FFT method, as shown in Table 1.

Fig. 14 also presents the function obtained from the acceleration responses at A5, which includes
eleven IMFs simple oscillation modes from c1 to c11. The instantaneous frequency of the electric
power determined by the IMF c2 was almost constant of 52.09 Hz, as shown in Fig. 15. Figs. 16 and
17 show the instantaneous frequency determined by c3 and c4 and constantly keep the values by 20.4
and 15.78 Hz during the vibration time, respectively. These frequencies are approximately the same
as these natural frequencies determined by FEM, FFT as shown in Table 1 and at A1.

The number of intrinsic mode function at A5 was processed much more than at A1; however, the
instantaneous frequencies were identified by the acceleration response data from both the A1 and A4
points. The difference between them is not much significant. As a result, the HHT method could help
identify the time-dependent frequency (instantaneous frequency) of the steel frame.
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Figure 14. Intrinsic mode function from c1 to
c11 (IMF1-IMF11) obtained at A5
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5. Conclusions

The dynamic response measurement using Hilbert Huang Transform (HHT) to identify the dy-
namic characteristic of the steel frame was conducted in this study. There are some main findings as
follows:

(1) Identification of natural frequencies of the steel frame using the HHT method is almost the
same as these in the FFT and FEM method.

(2) HHT method could perform fundamental natural frequencies of the steel frame as a time-
dependent function. The instantaneous frequencies are well-used to perform a variation of frequency
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during and after the excitation. The effect of nonlinear properties and soil-structure interaction on the
variation of the global stiffness of the steel structure will be in the next research.
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