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Abstract

In the present study, the synergic effects of cementitious materials in the ternary binder containing cement,
silica fume, fly ash on the workability and compressive strength were evaluated by using the D-optimal design
of Design-Expert 7. The ternary binder composed of 65 vol.-% cement, 15 vol.-% SF and 20 vol.-% FA at the
W/Fv ratio of 0.50 is the optimum mixture proportions for the highest compressive strength of the UHPC. To
produce the sustainable UHPC, high-volume fly ash ultra high performance concrete with a good flowability
and 28-d compressive strength over 130 MPa can be produced with fly ash content up to 30 vol.-% in the binder.
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1. Introduction

Ultra-high performance concrete (UHPC) is a new type of concrete being researched and used
in many constructions [1, 2]. UHPC possesses good flowability, 28-d compressive strength over 130
MPa at the normal curing condition, very low porosity and high durability [3, 4]. To obtain these out-
standing properties, UHPC commonly consists of a low water to binder ratio, high amount of Portland
cement, silica fume (SF) and superplasticizer (SP) [3–5]. With high content of Portland cement and
silica fume, UHPC is not only very expensive compared with normal and high performance concrete
but also not environmentally friendly. In order to develop more sustainable and eco-efficient UHPC,
various pozzolanic materials have been used as partial cement replacement in UHPC [6–8].

Silica fume is commonly pozzolanic material used in UHPC. It plays three main functions: 1)
to fill the voids between particles to achieve a high packing density; 2) to improve the rheological
properties by lubrication effects resulting from small and perfect spherical particles; and 3) to produce
secondary hydration products by consumption of portlandite (the pozzolanic reaction). Hence, SF
strongly influences properties of concrete [9–11]. In a Portland cement concrete with water cement
ratio of 0.5, about 18.3% SF, referred to the weight of cement, is enough to totally consume Ca(OH)2
that is released from cement hydration [12]. However, the optimal SF content of UHPC is normally
about 20-30 wt.-% of cement to improve the filler effect [13–15]. However, the high price of SF
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makes it as a non-desired material in producing UHPC. The other pozzolanic materials such as fly
ash (FA), available in huge volume as a waste material with low cost and environmental problem can
be used in UHPC [8, 16, 17]. When FA partially replaces Portland cement, the workability of the
UHPC increases but its compressive strength decreases. When quartz powder is completely replaced
by FA, the workability of the UHPC dramatically decreases with coarse FA and is constant with finer
ones. The mixture containing fine FA to partially replace SF needs higher SP dosage and possesses
slower compressive strength development in water at 20˚C compared to the mixture containing SF.

The present study investigates synergic effects of SF and FA partially replacing cement on work-
ability and compressive strength of UHPC at the ages of 3 and 28 days by using statistical analysis
of the Design-Expert software. With the purpose of using FA as much as possible, workability and
compressive strength of UHPC containing different FA and water contents were also studied in this
study.

2. Materials and methods

2.1. Materials

Cementitious materials used in this study were ordinary Portland cement, fine fly ash (FA) and
undensified powder of SF. Quartz sand was utilized as aggregate. Chemical compositions and physical
properties of the materials are given in Table 1 and Table 2. Superplasticizer was a polycarboxylate
ether type.

Table 1. Chemical composition of cementitious materials, (%)

N◦ Materials SiO2 Fe2O3 Al2O3 CaO Na2O K2O MgO L.O.I

1 Cement 22.6 3.5 5.3 64.2 0.14 0.61 2.3 0.81
2 SF 92.6 1.85 0.9 0.32 0.39 1.20 0.85 1.60
3 FA 58.7 7.3 22.9 1.0 0.33 3.6 0.9 4.41

Table 2. Physical properties of materials

N◦ Items Cement SF FA Quartz sand

1 Specific density, (g/cm3) 3.1 2.2 2.24 2.64
2 Mean particle size (µm) 21.1 0.151 7.87 313.45
3 Compressive strength of cement (MPa) 3 days 28.7 28 days 47.9

2.2. UHPC compositions and testing methods

UHPC has two main parts which are paste and aggregate particles. Typical UHPC mixtures are
given in Table 3. The paste volume is 57 vol.-% of UHPC. W/Fv is the volume of water to the volume
of fine materials (cementitious materials) ratio. The pozzolanic admixtures partially replace cement
in volume. Superplasticizer (SP) dosage is 1.1% in solid content of cementitious materials.

UHPC was mixed with a total mixing time of 13 minutes based on the sequence shown in Fig. 1.
Mini-cone slump flow of UHPC mixtures was determined 12 minutes after water addition. The slump
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Table 3. Typical mix proportions of UHPC

N◦ Mixtures
Cement

Quartz
sand

SF FA Total Water
w/b W/Fv

[kg/m3]

1 75:15:10 855.0

1135.2

121.4

82.4

202.3

0.191

0.552 65:15:20 741.0 164.8 0.197

3 55:15:30 541.5 247.1 0.203

4 75:15:10 883.5

125.4

85.1

190.0

0.174

0.505 65:15:20 765.7 170.2 0.179

6 55:15:30 647.9 255.4 0.185

7 75:15:10 914.0

129.7

88.1

176.9

0.156

0.458 65:15:20 792.1 176.1 0.161

9 55:15:30 670.2 264.2 0.166

flow values were measured after further 2 minutes without stroking. Samples 50 x 50 x 50 mm3 were
formed without vibration, kept in moulds at 27˚C, 95% relative humidity (RH) for 24h and followed
by storing at 27˚C, 100% RH until examination. Compressive strength of samples was tested in
accordance with ASTM C109.
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Figure 1. Mixing procedure of UHPC

2.3. Mixture design model

Concrete is a multivariate system and normally needs more than one important objective function.
The classical method for optimizing mixture proportions is trial and error, or changing one ingredient
and studying the effect of the ingredient on the response. It will be inefficient and costly. More
importantly, they may not provide the economical mixture. Standard response surface designs, such
as factorial designs or central composite design can use for optimizing concrete mixture in which
the n mixture components have to be reduced to n − 1 independent factors by taking the ratio of two
components [18]. However, changing the proportion of one ingredient immediately influences the
proportion of the others because the mix proportions are limited to sum to 100%. Hence, different
method is required for choosing appropriate experimental design and analyzing final results for all
dependent variables of mixture. The mixture models are appropriate for these problems [18, 19].
Therefore, the mixture model with D-optimal design of Design-Expert 7 software was used in this
study to evaluate the synergic effects of SF, FA and cement on workability and compressive strength
at the ages of 3 and 28 days of UHPC.
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3. Results and discussion

3.1. Design of D-optimal for the mixture model
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Figure 2. 16-run D-optimal design.
Points with a (+) indicate replicates

Three cementitious materials: cement, SF and FA in vol-
ume content as mixture components of binder of UHPC.
The three binder components are designated as A, B, C, re-
spectively. The predicted responses, namely flowability and
compressive strength at the ages of 3 and 28 days are desig-
nated as R1, R2 and R3, respectively. All the other compo-
nents of UHPC, mixing procedure, casting, treatment, and
test methods were kept in constant for all mixtures. Based
on preliminary tests, the range of the binder components was
chosen:

A + B + C = 100%

47.5% ≤ A ≤ 82.5%

7.5% ≤ B ≤ 22.5%

10% ≤ C ≤ 30%

The D-optimal design was chosen and assumed that a mixture quadratic model should be satis-
factory to represent the effect of the mixture components on the predicted responses. The complete
mixture quadratic model is in Eq. (1).

R = f (A, B,C) = β1A + β2B + β3C + β12AB + β13AC + β23BC (1)

where β1, β2, β3 are linear coefficients; β12, β13, β23 are cross product coefficients.
The designing experiments produced by the Design-Expert 7 are shown in Fig. 2 and Table 4.

They are the actual mixture components. The complete model has 16 runs including 11 runs at
different contents of the binder and 5 replicated runs to provide an estimate of error. The W/Fv ratio
of 0.55 was used in 16 mixtures to make sure all the mixtures having sufficient flowability. The typical
mix proportions of mixtures can be found in Table 3. Experimental results of mini-cone flow (R1)
and compressive strength at the age of 3 days (R2) and 28 days (R3) of 16 mixtures are also given in
Table 4.

3.2. Statistical analysis

The 16 designed mixtures of UHPC in Fig. 2 and Table 4 were mixed and tested the slump
flow, 3-d and 28-d compressive strength. The 16-designed run data is analyzed by Design-Expert
7. The first step in the analysis is to identify a suitable model. Even though the design selected the
mixture quadratic model, other model may be suggested by the software to have a better fitness for
the experimental data. With the input data, the fit summary suggests the mixture quadratic model for
the responses of the slump flow and 28-d compressive strength, and the mixture special cubic model
for the responses of 3-d compressive strength. The complete models are as follows:

R1 (flowability) = 52.78A − 1052.84B + 55.79C + 2392.61AB + 960.66AC + 1236.61BC (2)

R2 (3d strength) = − 28.07A − 320.65B − 698.59C + 1173.44AB + 1619.68AC

+ 4624.61BC − 10027.21ABC (3)

R3 (28d strength) = − 11.0A − 911.16B − 606.19C + 1645.72AB + 1306.93AC + 2064.31BC (4)
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Table 4. 16-run D-optimal design with data

Run
Cement SF FA Experimental

A [%] B [%] C [%] R1 [mm] R2 [MPa] R3 [MPa]

1 60.0 15.0 25.0 292 56.2 110.3
2 55.0 15.0 30.0 305 52.3 102.1
3 47.5 22.5 30.0 283 51.4 92.3
4 70.0 15.0 15.0 262 66.1 109.5
5 72.5 7.5 20.0 260 76.5 101.5
6 62.5 7.5 30.0 290 70.7 95.9
7 57.5 22.5 20.0 280 57.7 109.2
8 67.5 22.5 10.0 263 79.1 104.8
9 65.0 15.0 20.0 273 63.2 120.5
10 82.5 7.5 10.0 200 61.3 79.5
11 82.5 7.5 10.0 205 62.5 81.5
12 47.5 22.5 30.0 280 52.1 94.8
13 67.5 22.5 10.0 257 78.8 106.9
14 62.5 7.5 30.0 285 69.3 93.8
15 72.5 7.5 20.0 272 74.2 103.8
16 75.0 15.0 10.0 258 69.9 104.8

The adequacy of the complete regression models (Eqs. (2), (3) and (4)) is assessed by using
some standards. Firstly, the analysis of variance (ANOVA) is used to check the significance of the
models. All of the models are significant. Their lacks of fit are not significant (Table 5, 6 and 7). The

Table 5. ANOVA for the complete mixture quadratic model of the workability

Source
Sum of
Squares

Df
Mean
Square

F Value
p-value
Prob ¿ F

Model 11604.88 5 2320.98 40.50 ¡ 0.0001 significant

Linear Mixture 8466.01 2 4233 73.87 ¡ 0.0001

AB 584.73 1 584.73 10.20 0,0096

AC 277.63 1 277.63 4.84 0.0523

BC 121.57 1 121.57 2.12 0.1759

Residual 573.06 10 57.31

Lack of Fit 453.56 5 90.71 3.8 0.0848 Not significant

Pure Error 119.50 5 23.90 SD 7.57

Cor total 12177.94 15 Mean 266.56

R-Squared 0.9529 Adj R-Squared 0.9294 C.V% 2.84

Pred R-Squared 0.8885 Adeq Precision 19.987 PRESS 1357.34
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Table 6. ANOVA for the complete mixture special cubic model of the 3d strength

Source
Sum of
Squares

Df
Mean
Square

F Value
p-value
Prob ¿ F

Model 1335.83 6 222.64 154.39 ¡ 0.0001 significant

Linear Mixture 435.53 2 217.76 151.01 ¡ 0.0001

AB 1.69 1 1.69 1.17 0,3075
AC 136.86 1 136.86 94.91 ¡ 0.0001

BC 0.63 1 0.63 0.44 0.5248

ABC 175.90 1 175.90 121.98 ¡ 0.0001

Residual 12.98 9 1.44

Lack of Fit 8.34 4 2.09 2.25 0.1987 Not significant

Pure Error 4.64 5 0.93 SD 1.20

Cor total 1348.80 15 Mean 65.08

R-Squared 0.9904 Adj R-Squared 0.9840 C.V% 1.85
Pred R-Squared 0.9643 Adeq Precision 34.599 PRESS 48.13

adjusted R-squared and the predicted R-squared of the responses are suitable. Hence, these models
are adequate. Some of the coefficients in the complete models (Eqs. (2), (3) and (4)) are insignificant
and could be eliminated. In this case, there is no advantage to the reduced models because the adjusted
R-squared is only slightly changed. Moreover, the interactions should not be removed in the mixture
model, especially with the mixture quadratic model [18, 19]. Therefore, the complete models in the
Eqs. (2), (3) and (4) should be used for further navigations.

Table 7. ANOVA for the complete mixture quadratic model of the 28d strength

Source
Sum of
Squares

Df
Mean
Square

F Value
p-value
Prob > F

Model 1642.45 5 328.49 47.06 < 0.0001 significant

Linear Mixture 254.23 2 127.12 18.21 0.0005

AB 276.65 1 276.65 39.63 < 0.0001

AC 513.84 1 513.84 73.61 < 0.0001

BC 338.78 1 338.78 48.53 < 0.0001

Residual 69.81 10 6.98

Lack of Fit 57.63 5 11.53 4.73 0.0566 Not significant

Pure Error 12.18 5 2.44 SD 2.64

Cor total 1712.26 15 Mean 100.70

R-Squared 0.9592 Adj R-Squared 0.9388 C.V% 2.62

Pred R-Squared 0.9061 Adeq Precision 21.322 PRESS 160.81
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3.3. Influence of cementitious materials on the flowability of UHPC

To interpret the influence of the cementitious materials on the mini-cone slump flow of UHPC,
3D response surface and contour plots of the flowability response in dependence of cement, SF and
FA contents have been plot in Fig. 3.

Results in Fig. 3 show that increasing the FA content improves the workability of UHPC at all
levels of SF. At the low FA contents, the flowability of UHPC strongly increases when SF content
increases. But at the higher contents of FA, the flowability of UHPC increases initially and then
decreases when the SF content increases. Therefore, with the aim to obtain the maximum slump flow
of UHPC, it needs adjusting the variables to a high content of FA with an optimum content of SF
(Fig. 3).
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3.4. Influence of cementitious materials on compressive strength of UHPC

Similar to the flowability response, 3D response surface and contour plots of the 3-day and 28-day
compressive strength responses in dependence of cement, SF and FA contents have been present in
Figs. 4 and 5, respectively.
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The results in Fig. 4 illustrate that at the low content of FA, i.e C = 10%, the compressive
strength at the age of 3 days of UHPC increases when the content of SF increases. Meanwhile, at
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the SF content of 7,5%, the 3-d strength of UHPC initially increases and then decreases during the
increase of the content of FA. But at high contents of SF or FA, the increase of the other mineral
admixture will induce low 3-d compressive strength of UHPC (Fig. 4).

3D response surface and contour plots of the 28-day compressive strength response in Fig. 5 show
that at any content of FA, compressive strength of UHPC initially increases and then decreases when
the content of SF increases. And at any content of SF, there is an optimized content of FA which
enables UHPC containing SF to obtain the highest compressive strength at the age of 28 days. It
means that the highest compressive strength comes from a ternary binder composed of cement, SF
and FA (Fig. 5).

3.5. Optimization of mix proportions of UHPC containing SF and FA

The optimization tool of the Design-Expert 7 software is inducted to find the optimal proportions
of UHPC containing SF and FA. The input criteria are present in Table 8. The program offers some
solutions. The best solution is chosen in terms of the highest compressive strength (Table 8).

The results of the slump flow, compressive strength of the experimental mixture and Design-
Expert’s mixture in Table 8 are similar. Thus, UHPC with the binder containing 15 vol.-% SF and 20
vol.-% FA is selected as the optimal mix proportions.

Table 8. Experimental proportions versus optimized proportions

N◦ Material Variable Goal Constrains Unit
The mix proportions having

the highest strength

Design-Expert Experimental

1 Cement A
In range

47.5-82.5
[vol.-%]

63.4 65

2 SF B 7.5-22.5 17.3 15

3 FA C 10.0-30.0 19.3 20
4 Slump flow In range 200-305 [mm] 283 273
5 Comp. strength at 3d In range 51.4-79.1 61.0 63.2
6 Comp. strength at 28d Maximum 79.5-120.5 [MPa] 116.8 120.5

3.6. High-volume fly ash UHPC

The compressive strength at the age of 28 days of the selected UHPC in section 3.3 is still lower
than 130 MPa. This mixture has a W/Fv of 0.55 with very high mini-cone slump flow. With the
purpose of producing UHPC containing high volume of FA, workability and compressive strength of
UHPC containing 15% SF with different contents of FA and W/Fv ratios are shown in Table 9 and
Fig. 6.

The results in Table 9 and Fig. 6(a), (b), (c) show that at the same water content, the more the FA
content, the higher the flowability and the lower the compressive strength at the ages of 3 and 7 days.
At the W/Fv ratios of 0.55 and 0.50, UHPC possesses the highest 28-d compressive strength at the FA
content of 20%. Meanwhile, the 28-d strength of mixture with the W/Fv ratio of 0.45 still increases
when the FA content increases (Table 9 and Fig. 6(d)). Normally, when the water content decreases,
the workability of the mixture reduces. The flowability of the mixtures dramatically decreases at
the W/Fv ratio of 0.45. With the same cementitious content, UHPC has the maximum strength at
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Table 9. Workability and compressive strength of UHPC at different FA and water contents

N◦ Mixture W/Fv Workability, mm
Compressive strength, MPa

3 days 7 days 28 days

1 75:15:10

0.55

258 69.9 92.6 104.8

2 65:15:20 273 63.2 83.5 120.5

3 55:15:30 305 52.3 75.8 102.1

4 75:15:10

0.50

245 79.1 118.7 132.8

5 65:15:20 270 73.7 104.0 142.7

6 55:15:30 295 68.5 96.8 135.5

7 75:15:10

0.45

190 74.8 101.6 107.2

8 65:15:20 235 68.3 80.5 115.3

9 55:15:30 245 55.9 72.3 121.3
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the W/Fv ratio of 0.50. At the W/Fv ratio of 0.50, the 28-d compressive strength of the mixture
containing 20%FA obtains over 140 MPa and the mixture containing 30% FA has the strength of
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135.5 MPa. Therefore, the high-volume fly ash ultra-high performance concrete can be produced
from a ternary binder containing 15 vol.-% SF and 30 vol.-% FA at the W/Fv ratio of 0.50.

4. Conclusions

The following conclusions can be drawn from the results of this study:
- The mixture models of flowability and compressive strength of UHPC with the binder containing

three mixture components of cement, fly ash and silica fume using D-optimal design of Design-Expert
7 fitted well with the experimental data. It can be analyzed the influence of the variables on the
workability and compressive strength of UHPC by using 3D response surface and contour plots.

- Fly ash improves flowability and reduces compressive strength of UHPC at the early age of 3
days. At the age of 28 days, the ternary binder composed of 65 vol.-% cement, 15 vol.-% SF and 20
vol.-% FA at the W/Fv ratio of 0.50 is the optimum mixture proportions for the highest compressive
strength of the UHPC in this study.

- With the purpose of using as much as FA in UHPC, high-volume fly ash ultra high performance
concrete with a good flowability and 28-d compressive strength over 130 MPa can be produced with
fly ash content up to 30 vol.-% in the binder.
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