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Abstract

The mineral composition of calcium aluminate cements is traditionally based on CA (monocalcium aluminate
- CaO ·Al2O3). Recently, a new cement with the main compound of C12A7 (Mayenite) has been developed for
rapid hardening binder. This cement is used in conjunction with a sulfate binder to form a new type binder called
ettringite binder due to the high quantity of ettringite in the hydration product, opened new possibilities for
mortar and concrete formulations. This paper focuses on some microstructure characteristics of the ettringite
binder based on a C12A7 rich cement and a hemihydrate at early age. Some important characteristics of this
binder were found, such as: short setting time (about 40–50 minutes), rapid expansion just after initial setting
time, rapid evolution of porosity and bound water during the first 5 hours of hydration. The correlation between
bound water and porosity of hardened binders was also found in this paper.
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1. Introduction

Within the last few decades, the number of bridges, roads, houses damaged or degraded has
been being increased [1, 2]. Therefore, rapid hardening repair materials are in high demand for
these applications as they allow for minimizing traffic delays, road closures and timesaving, etc. . .
[2, 3]. Calcium aluminate cement (CAC), whose mineral composition is traditionally designed around
monocalcium aluminate - CaO ·Al2O3 (CA), is a rapid hardening binder and usually used for special
applications where high early strength and increased durability are desired. Their setting time is
close to that of OPC, typically around 3 hours, but their hardening rate is in the range of 10 MPa to
20 MPa (compression) per hour from setting. This rapidity is compatible with applications that require
compressive strength from 10 MPa to 30 MPa after 4h to 6h, such as industrial floor repairs [4–6]. For
applications requiring higher rapidity, the hydration has to be accelerated. The most common way to
accelerate hydration of CAC is adding lithium salts (Li2CO3 or Li2SO4 for example) [7–9]. Recently,
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a new cement with C12A7 (12 CaO · 7 Al2O3) as a major mineral compound, has been developed.
Increasing the amount of the C12A7 phase of the CAC is another way to accelerate the hydration rate
since this phase is more active than CA and contributes greatly to the setting time of the cement.
Too much of this phase can cause flash setting in the mortar and concrete, however, its percentage is
typically regulated in the manufacturing process. A new blended cement systems incorporating both
CAC and calcium sulfate (C$Hx) have been developed to utilize the rapid hardening characteristics of
rich C12A7 CAC but at a reduced cost because of the ratio of CaO/Al2O3 in C12A7 increased closer to
the one of ettringite [10–13], which leads to the quick formation of ettringite with a higher content.

The hydration of an ettringite binder containing calcium aluminate cement (CAC) and calcium
sulfate (C$Hx) induces ettringite (C6A$3H32) and aluminum hydroxide (AH3) as follows [14–16]:

C12A7 + 12 C$Hx + (137−12x) H −−−→ 4 C6A$3H32 + 3 AH3 (1)

In order to have more understandings about the hydration of ettringite binder consisting rich
C12A7 cement, some important characteristics were investigated such as setting time, chemical shrink-
age, endogenous shrinkage, porosity and pore distribution by Mercury intrusion porosimetry (MIP)
and bound water by DTA-TG analysis. In addition, the relationship of these properties is also dis-
cussed.

2. Materials and test methods

2.1. Materials

The binder used in this research consists of 75% by weight of the rich C12A7 calcium aluminate
cement and 25% by weight of hemihydrate C$H0.5. The amount of C12A7, CA, C3A, C4A3$, C2S
and Ferrite in CAC was 57.2%, 2.1%, 0.4%, 0.3% and 18.1% by weight, respectively, which were
determined by the Rietveld quantitative phase analysis. This binder has a water/binder ratio of 0.3.

2.2. Test methods

After mixing, the Vicat penetration according to EN 196-3 and chemical shrinkage as per ASTM
C1608 of the pastes were determined.

The endogenous shrinkage of the paste was measured as described in detail in [17]. A rubber
membrane containing binder paste was submerged in water. The change of volume of the cement
paste was measured by the amount of liquid displaced by the immersed sample, typically by measur-
ing its weight change. This method is also referred as the buoyancy method.

The binder paste was cast in small closed plastic bottles. After being cured for 2h, 3h, 5h, 10h,
24h, the solid binder then was crushed and immediately immersed in the acetone solution in further
two days to stop hydration. After that, the pieces of samples with a size of about 1 cm3 were placed
in a desiccator to remove the acetone and ensure that no further hydration could be taken place. The
specimens then were used for pore structure analysis or bound water analysis.

The pore structure of specimens was determined by mercury intrusion porosimetry. This mea-
surement was performed with the Micromeritics Auto Pore IV. The specimen was placed in a glass
tube and filled with a non-wetting liquid (mercury) under vacuum conditions with a pressure of less
than 50 µm/Hg. The glass tube with the specimen and mercury was subsequently placed in a high-
pressure analysis port. The high-pressure analysis port utilized oil to continue pressing mercury into
the specimen, with a pressure ranging from 14.7 psi to 60,000 psi, and the intrusion mercury volume
was recorded at each pressure point.
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The hardened binders were also ground into small powder (< 50 µm) to determine the bound
water in binder by heating samples to 1000˚C at a heating rate of 10˚C/min. The content of bound
water in binder was calculated based on the weight of samples at 30˚C and 300˚C as presented in the
Fig. 1:
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Figure 1. Calculation scheme of bound water in binder

3. Results and discussion

3.1. Vicat penetration of paste with time

The setting time presented by the Vicat penetration is an indicator presenting the liquid - solid
transition, which is very important in assessing practical construction operations, such as finishing,
sawcutting and curing, etc. . . The results of Vicat penetration with time of the binder consisting of
75% rich C12A7 cement and 25% hemihydrate are shown the Table 1.

Table 1. Setting time of ettringite binder paste

Time (minutes) Vicat penetration (mm)

0 40
5 40

10 40
15 40
20 40
25 40
30 40
35 40
38 39
39 36
40 33
41 29

Time (minutes) Vicat penetration (mm)

42 25
43 22
44 20
45 19
46 17
47 13
48 9
49 6
50 3
51 1
52 0.5
53 0.5

The research results showed that after 38 minutes of hydration, the setting process of paste was
started. At this moment, the hydration products, especially ettringite and AH3, were generated more
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and more and begin to create a skeleton structure in the paste. With progress of hydration process,
hydration products were crystallized and enlarged, and this leads to the liquid-solid transition process.

3.2. Chemical shrinkage, autogenous shrinkage

The correlation between autogenous shrinkage and chemical shrinkage during the early ages is
depicted in Fig. 2. Overall, it is observed that this relationship is not linear to chemical shrinkage, and
that no simple relationship exists between them. It is caused by the change of the macroscopic volume
that occurs concurrently with chemical shrinkage, can be observed either expansively or contractively.
The expansion of ettringite binder paste is due to the formation of ettringite but this shrinkage reaction
is accompanied by chemical shrinkage.
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 In the first stage before initial setting time, about 40 minutes of hydration, the binder is very fluid and all volume change of binder 
paste is attributed to chemical shrinkage. It should be noted that the liquid stage the binder paste with high plasticity does not cause any 
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Figure 2. Chemical shrinkage and endogenous shrinkage of binder
a) During the first 24h (1400 minutes); b) During the first 200 minutes
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skeleton, while the continuing chemical shrinkage stresses induce a strain in the binder as autogenous shrinkage. The binder begins to 
expand after the initial setting time, but expansion rate will not increase any more after 300 minutes (5 hours) of hydration. This proves 
that the binder after 5h has sufficiently strength to resist the expansion stress caused by ettringite formation.  

3.3. Pore distribution  

 The experimental results of the specimens were determined by MIP methods and were shown in the Figs. 3-5. Fig. 3 shows the 
total porosity and Figs. 4-5 present the relationship between mercury intrusions and pore sizes.  

 

Figure 3. Total porosity of binder with time 

 

Figure 4. Accumulated pore volume of hardened binder for 
different curing time  

Figure 5. Pore size distribution of hardened binder for 
different curing time 
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at 5h, but with a slight decrease from 5h to 24h due to the rapid hydration rate of CAC and hemihydrate. In figure 4 and figure 5, it is 
easily observed that both capillary pore (>0.01µm) and gel pore (<0.01µm) increased significantly during the first 5 hours of hydration 
and that most pore diameters of the specimens are distributed between 0.01 µm to 2 µm.  

 The pore size distribution differential curve is obtained by taking the slope of the pore size distribution curve the Log Differential 
Intrusion against pore sizes in Fig. 5. The peaks in Fig. 5 represent the pore diameters corresponding to the higher rate of mercury 
intrusion per change in pressure. These peaks are called “threshold” pore diameters. The peak at around 1 µm could be found on the curve 
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In the first stage before initial setting time,
about 40 minutes of hydration, the binder is very
fluid and all volume change of binder paste is at-
tributed to chemical shrinkage. It should be noted
that the liquid stage the binder paste with high
plasticity does not cause any stress in the paste. In
Fig. 2, the autogenous shrinkage curve is coincid-
ing with the chemical shrinkage as long as there
is insufficient binder stiffness to resist the forces.
This means that autogenous shrinkage is nearly
equal to chemical shrinkage for a short period be-
fore the initial setting time. In the next stage,
at about 53 minutes after hydration, the binder
paste begins to stiffen and forms an initial skele-
ton, while the continuing chemical shrinkage stresses induce a strain in the binder as autogenous
shrinkage. The binder begins to expand after the initial setting time, but expansion rate will not in-
crease any more after 300 minutes (5 hours) of hydration. This proves that the binder after 5h has
sufficiently strength to resist the expansion stress caused by ettringite formation.

3.3. Pore distribution

The experimental results of the specimens were determined by MIP methods and were shown in
the Figs. 3–5. Fig. 3 shows the total porosity and Figs. 4–5 present the relationship between mercury
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intrusions and pore sizes.
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The results in the Fig. 5 show that total pore volume of samples decreased at different curing
time, from 44.34% at 2h to 32.32% at 5h, but with a slight decrease from 5h to 24h due to the rapid
hydration rate of CAC and hemihydrate. In Figs. 4 and 5, it is easily observed that both capillary pore
(> 0.01 µm) and gel pore (< 0.01 µm) increased significantly during the first 5 hours of hydration and
that most pore diameters of the specimens are distributed between 0.01 µm to 2 µm.

The pore size distribution differential curve is obtained by taking the slope of the pore size distri-
bution curve the Log Differential Intrusion against pore sizes in Fig. 5. The peaks in Fig. 5 represent
the pore diameters corresponding to the higher rate of mercury intrusion per change in pressure. These
peaks are called “threshold” pore diameters. The peak at around 1 µm could be found on the curve
of sample at 2h and 3h and more finer peak (around 0.2 µm) at later age. This may be caused by the
enlargement of gel pore due to the hydration evolution.

3.4. Bound water in hardened binder

The evolution of bound water in hardened binder determined by DTA-TG method is shown in
Fig. 6 and the total porosity as a function of bound water is shown in Fig. 7.

It can be observed that the amount of bound water increases rapidly from 2h to 5h due to the rapid
hydration of the binder and then decreased. The binder also exhibits the same behavior as porosity
characteristic. This is not surprising since the binders are dominated by rapid formation of ettringite.
This further implies that bound water can represent the hydration of ettringite binder at early age. It
is confirmed by comparing bound water with porosity of hardened binder paste in the Fig. 7.

The results of the bound water versus its porosity in Fig. 7 show a linear relation. Any inter-
polation point at porosity can find the value of bound water. This comes with no surprise since the
hydration products, which are proportional to bound water, form the more and more and fill into the
pores and decreases the total porosity of system.

4. Conclusions

From the tested results of the microstructure properties of quick hardening binder based on rich
C12A7 calcium aluminate cement, some conclusions can be withdrawn as below:
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hydration evolution. 

3.4. Bound water in hardened binder  

 The evolution of bound water in hardened binder determined by DTA-TG method is shown in Fig. 6 and the total porosity as a 
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 It can be observed that the amount of bound water increases rapidly from 2h to 5h due to the rapid hydration of the binder and 
then decreased. The binder also exhibits the same behavior as porosity characteristic. This is not surprising since the binders are 
dominated by rapid formation of ettringite. This further implies that bound water can represent the hydration of ettringite binder at early 
age. It is confirmed by comparing bound water with porosity of hardened binder paste in the Fig. 7. 

 The results of the bound water versus its porosity in Fig. 7 show a linear relation. Any interpolation point at porosity can find the 
value of bound water. This comes with no surprise since the hydration products, which are proportional to bound water, form the more 
and more and fill into the pores and decreases the total porosity of system. 

4. Conclusions 

From the tested results of the microstructure properties of quick hardening binder based on rich C12A7 calcium aluminate cement, some 
conclusions can be withdrawn as below: 

 - The setting time of binder containing the rich C12A7 calcium aluminate cement and hemihydrate takes place earlier when 
compared to that of OPC or standard CAC, only 40-50 minutes after mixing with water. 

 - The binder paste begins to expand rapidly just after the initial setting time. This expansion period prolongs until 5h of hydration.  

 - The porosity and bound water varied dramatically during the first 5 hours of hydration. There is also a good correlation between 
bound water and porosity and these two parameters showed the same development at early-age. 
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of sample at 2h and 3h and more finer peak (around 0.2 µm) at later age. This may be caused by the enlargement of gel pore due to the 
hydration evolution. 

3.4. Bound water in hardened binder  

 The evolution of bound water in hardened binder determined by DTA-TG method is shown in Fig. 6 and the total porosity as a 
function of bound water is shown in Fig. 7. 

 
 It can be observed that the amount of bound water increases rapidly from 2h to 5h due to the rapid hydration of the binder and 
then decreased. The binder also exhibits the same behavior as porosity characteristic. This is not surprising since the binders are 
dominated by rapid formation of ettringite. This further implies that bound water can represent the hydration of ettringite binder at early 
age. It is confirmed by comparing bound water with porosity of hardened binder paste in the Fig. 7. 

 The results of the bound water versus its porosity in Fig. 7 show a linear relation. Any interpolation point at porosity can find the 
value of bound water. This comes with no surprise since the hydration products, which are proportional to bound water, form the more 
and more and fill into the pores and decreases the total porosity of system. 

4. Conclusions 

From the tested results of the microstructure properties of quick hardening binder based on rich C12A7 calcium aluminate cement, some 
conclusions can be withdrawn as below: 

 - The setting time of binder containing the rich C12A7 calcium aluminate cement and hemihydrate takes place earlier when 
compared to that of OPC or standard CAC, only 40-50 minutes after mixing with water. 

 - The binder paste begins to expand rapidly just after the initial setting time. This expansion period prolongs until 5h of hydration.  

 - The porosity and bound water varied dramatically during the first 5 hours of hydration. There is also a good correlation between 
bound water and porosity and these two parameters showed the same development at early-age. 
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- The setting time of binder containing the rich C12A7 calcium aluminate cement and hemihydrate
takes place earlier when compared to that of OPC or standard CAC, only 40–50 minutes after mixing
with water.

- The binder paste begins to expand rapidly just after the initial setting time. This expansion
period prolongs until 5h of hydration.

- The porosity and bound water varied dramatically during the first 5 hours of hydration. There is
also a good correlation between bound water and porosity and these two parameters showed the same
development at early-age.
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