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Abstract

This paper studies the free vibration behavior of a sandwich beam resting on Winkler elastic foundation. The
sandwich beam is composed of two FGM face layers and a functionally graded (FG) porous core. A common
general form of different beam theories is proposed and the equations of motion are formulated using Hamil-
ton’s principle. The result of the general form is validated against those of a particular case and shows a good
agreement. The effect of different parameters on the fundamental natural frequency of the sandwich beam is
investigated.
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1. Introduction

Functionally graded (FG) porous material is a novel FGM in which porous property is character-
ized by the FG distribution of internal pores in the microstructure. Beside the common advantages
of FGM materials, the FG porous materials also present excellent energy-absorbing capability. The
advantages of this material type led to the development of many FG sandwich structures that have
no interface problem as in the traditional laminated composites. These structures become even more
attractive due to the introduction of FGMs for the faces and porous materials for the core. However,
shear strength is always a disadvantage of this type of structures. Thus, a study of the effect of shear
deformation on their behavior is necessary.

Based on great advantages of FG sandwich structures, many researchers have paid their attention
to investigate mechanical behavior of these structures. Queheillalt et al. (2000) studied the creep
expansion of porous sandwich structure in the process of hot rolling and annealing. In this process, the
porous core of the sandwich material is produced by consolidating argon gas charged powder [1]. This
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process was then simulated by the same authors in [2]. This idea was developed in the investigation of
compression property of sandwich beam with porous core by [3]. Mechanical behaviour of sandwich
structure with porous core is also interesting to the researchers. In 2006, Conde et al. investigated
the sandwich beams with metal foam core and showed a significant saving of weight generated by
the grading of porosity in the core in the yield-limited design [4]. The bending and forced vibration
analysis of the same type of sandwich beam were respectively considered by [5, 6]. The buckling and
free vibration analysis was more popular subject in numerous publications such as [6–9]. Specially
Moschini in [10] studied the vibroacoustic modeling of the sandwich foam core panels.

The beam theories can be classified into two main categories. The first one is the equivalent
single layer theory, which can be further divided into three groups. The first group based on the
Taylor expansion of the displacement field and is called the shear deformation theory. It was used in
numerous of studies and was reviewed in articles of [7, 9, 11, 12]. Another group uses the Carrera
unified formulation (CUF) in which the displacement field is expanded on a generic function basis.
This was used by Mashat and Filippi to study the mechanical behaviour of FGM beams in [12, 13].
The last group uses the parabolic or trigonometric type function to establish the displacement field
and was reviewed in works of [7, 9, 14]. The second main category is the layerwise theory, in which
the form of the displacement field of each layer is assumed differently. The application of this theory
was detailed in [7, 9, 11, 14]. A special case of the layerwise theory that uses the zigzag type function
to establish the different displacement field in the layers, was also used in [15].

This paper proposes a general form of displacement field for various single layer beam theories
and establishes the equations of motion using Hamilton’s principle. This general form of beam the-
ories is then employed to investigate the fundamental natural frequency of the sandwich beam with
FG core and FGM faces resting on Winkler elastic foundation, which, in our opinion, is less studied
so far.

2. Sandwich beam with functionally graded porous core and FGM face layers

Consider a L×b×h sandwich beam with the layers being numbered from bottom to top as shown
in Fig. 1. The FG sandwich beam is composed of two FG face layers and an FG porous core. The
top and bottom faces are at z = ±h/2 coordinates. The beam is assumed to be placed on Winkler
elastic foundation. It is numbered by layer thickness ratio from the bottom (z = h1 = −h/2) to the top
(z = h4 = +h/2), e.g. a 1-1-1 FG sandwich beam is the beam that has equal thickness for every layer.
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according to the following laws [8].

E(3)(z) = (Ec − Em)
(

z − h3

h4 − h3

)p

+ Em; ρ(3)(z) = (ρc − ρm)
(

z − h3

h4 − h3

)p

+ ρm with z ∈ [h3, h4]

E(2)(z) = Em

[
1 − e0 cos

(
πz

h3 − h2

)]
; ρ(2)(z) = ρm

[
1 − em cos

(
πz

h3 − h2

)]
with z ∈ [h2, h3]

E(1)(z) = (Ec − Em)
(

z − h1

h2 − h3

)p

+ Em; ρ(1)(z) = (ρc − ρm)
(

z − h1

h2 − h3

)p

+ ρm with z ∈ [h1, h2]

(1)

where E(z), ρ(z) are Young’s modulus and mass density at z coordinate; Em, ρm and Ec, ρc are Young’s
modulus and mass density respectively of metal and ceramic; e0, em represent the coefficients of
porosity and of mass density.

e0 = 1 − E2/E1, em = 1 − ρ2/ρ1 (2)

with E1, ρ1 and E2, ρ2 are the maximum and minimum values of Young’s modulus and of mass density
of the porous core.

3. General form of shear deformation beam theories

3.1. Displacement field

The displacement field of the beam is assumed having the following general form.

u(x, z, t) = u0(x, t) + f1(z)
∂w0

∂x
+ f2(z)θx , w(x, z, t) = w0(x, t) (3)

where u0,w0 are the in plane displacement components in the x, z directions; θx is the mid-plan
rotation of transverse normal; f1(z), f2(z) are the functions depending on the beam theory and shown
in Table 1.

Table 1. Detail of functions f1(z), f2(z) depending on the beam theory

Beam theory Notation f1(z) f2(z)

Euler–Bernoulli CBT −z 0

Timoshenko FSDBT −z z

Parabolic shear deformation beam theory [16] PSDBT −z z
[
1 − 4

3

( z
h

)2
]

Trigonometric shear deformation beam theory [14] TSDBT −z
h
π

sin
(
πz
h

)
Exponential shear deformation beam theory [17] ESDBT −z ze−2(z/h)2

3.2. Strain and stress fields

The strain field is obtained from the general displacement field using the following relations.

εxx =
∂u
∂x

=
∂u0

∂x
+ f1(z)

∂2w0

∂x2 + f2(z)
∂θx

∂x
γxz =

∂u
∂z

+
∂w
∂x

=
(
1 + f ′1(z)

) ∂w0

∂x
+ f ′2(z)θx (4)
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The stress field in the ith layer is determined from the strain field via the Hooke law, in which the
coefficient of Poisson ν is assumed to be constant across the thickness of the beam.

{
σxx

σxz

}i

=


E(z)

1 − ν2 0

0
KsE(z)
2(1 + ν)


i {

εxx

γxz

}i

(5)

where Ks is shear correction factor, Ks = 5/6 for Timoshenko theory and Ks = 1 otherwise.

3.3. Hamilton’s principle and equations of motion

The Hamilton’s principle is written as following.

T∫
0

(δU + δV − δK)dt = 0 (6)

where δU, δV, δK are respectively first variation of virtual strain energy, of virtual work done by
external forces and of virtual kinetic energy of the beam.

First variation of the virtual strain energy.

δU =

L∫
0

∫
A

(σxxδεxx + σxzδγxz) dAdx

=

L∫
0

∫
A

[
σxxδ

(
∂u0

∂x
+ f1(z)

∂2w0

∂x2 + f2(z)
∂θx

∂x

)
+ σxzδ

((
1 + f ′1(z)

) ∂w0

∂x
+ f ′2(z)θx

)]
dAdx

=

L∫
0

(
Nxxδ

(
∂u0

∂x

)
+ Mxxδ

(
∂2w0

∂x2

)
+ Fxxδ

(
∂θx

∂x

)
+ Qxzδ

(
∂w0

∂x

)
+ Hxzδθx

)
dx

=

L∫
0

(
−∂Nxx

∂x
δu0 − ∂Mxx

∂x
δ

(
∂w0

∂x

)
− ∂Fxx

∂x
δθx − ∂Qxz

∂x
δw0 + Hxzδθx

)
dx

+ Nxxδu0|L0 + Mxxδ

(
∂w0

∂x

)∣∣∣∣∣∣L
0

+ Fxxδθx|L0 + Qxxw0|L0

=

L∫
0

(
−∂Nxx

∂x
δu0 +

∂2Mxx

∂x2 δw0 − ∂Fxx

∂x
δθx − ∂Qxz

∂x
δw0 + Hxzδθx

)
dx

+ Nxxδu0|L0 + Mxxδ

(
∂w0

∂x

)∣∣∣∣∣∣L
0

+ Fxxδθx|L0 + Qxxw0|L0 −
∂Mxx

∂x
δw0

∣∣∣∣∣L
0

(7)

where
Nxx =

∫
A

σxxdA; Mxx =

∫
A

f1(z)σxxdA; Fxx =

∫
A

f2(z)σxxdA;

Qxz =

∫
A

(
1 + f ′1(z)

)
σxzdA; Hxz =

∫
A

f ′2(z)σxzdA
(8)
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- First variation of the virtual work done by external forces.

δV = −
L∫

0

(q − knw0) δw0dx (9)

where q is distributed transverse load (q = 0 in this case) and kn is Winkler foundation stiffness.
- First variation of the virtual kinetic energy.

δK =

L∫
0

∫
A

ρ(z) (u̇δu̇ + ẇδẇ) dAdx

=

L∫
0

∫
A

ρ(z)
[(

u̇0 + f1(z)
∂ẇ0

∂x
+ f2(z)θ̇x

) (
δu̇0 + f1(z)δ

(
∂ẇ0

∂x

)
+ f2(z)δθ̇x

)
+ ẇ0δẇ0

]
dAdx

=

L∫
0

∫
A

ρ(z)


u̇0δu̇0 + f1(z)u̇0δ

(
∂ẇ0

∂x

)
+ f2(z)u̇0δθ̇x + f1(z)

∂ẇ0

∂x
δu̇0 + f 2

1 (z)
∂ẇ0

∂x
δ

(
∂ẇ0

∂x

)
+ f1(z) f2(z)

∂ẇ0

∂x
δθ̇x + f2(z)θ̇xδu̇0 + f1(z) f2(z)θ̇xδ

(
∂ẇ0

∂x

)
+ f 2

2 (z)θ̇xδθ̇x + ẇ0δẇ0

dAdx

=

L∫
0


I0u̇0δu̇0 + I1u̇0δ

(
∂ẇ0

∂x

)
+ I3u̇0δθ̇x + I1

∂ẇ0

∂x
δu̇0 + I2

∂ẇ0

∂x
δ

(
∂ẇ0

∂x

)
+I4

∂ẇ0

∂x
δθ̇x + I3θ̇xδu̇0 + I4θ̇xδ

(
∂ẇ0

∂x

)
+ I5θ̇xδθ̇x + I0ẇ0δẇ0

dx

=

L∫
0


I0u̇0δu̇0 − I1

∂u̇0

∂x
δẇ0 + I3u̇0δθ̇x + I1

∂ẇ0

∂x
δu̇0 − I2

∂2ẇ0

∂x2 δẇ0

+I4
∂ẇ0

∂x
δθ̇x + I3θ̇xδu̇0 − I4

∂θ̇x

∂x
δẇ0 + I5θ̇xδθ̇x + I0ẇ0δẇ0

dx

+ I1u̇0δẇ0|L0 + I2
∂ẇ0

∂x
δẇ0

∣∣∣∣∣L
0

+ I4θ̇xδẇ0
∣∣∣L
0

(10)
Substituting the expressions (7), (9) and (10) into equation (6) one obtains.

0 =

T∫
0

L∫
0


−∂Nxx

∂x
δu0 +

∂2Mxx

∂x2 δw0 − ∂Fxx

∂x
δθx − ∂Qxz

∂x
δw0 + Hxzδθx + knw0δw0

−I0u̇0δu̇0 + I1
∂u̇0

∂x
δẇ0 − I3u̇0δθ̇x − I1

∂ẇ0

∂x
δu̇0 + I2

∂2ẇ0

∂x2 δẇ0

−I4
∂ẇ0

∂x
δθ̇x − I3θ̇xδu̇0 + I4

∂θ̇x

∂x
δẇ0 − I5θ̇xδθ̇x − I0ẇ0δẇ0


dxdt

+

T∫
0


Nxxδu0|L0 + Mxxδ

(
∂w0

∂x

)∣∣∣∣∣∣L
0

+ Fxxδθx|L0 + Qxxδw0|L0 −
∂Mxx

∂x
δw0

∣∣∣∣∣L
0

−I1u̇0δẇ0|L0 − I2
∂ẇ0

∂x
δẇ0

∣∣∣∣∣L
0
− I4θ̇xδẇ0

∣∣∣L
0

dt

=

T∫
0

L∫
0



−
(
∂Nxx

∂x
− I0ü0 − I1

∂ẅ0

∂x
− I3θ̈x

)
δu0

+

(
∂2Mxx

∂x2 − ∂Qxz

∂x
+ knw0 − I1

∂ü0

∂x
− I2

∂2ẅ0

∂x2 − I4
∂θ̈x

∂x
+ I0ẅ0

)
δw0

−
(
∂Fxx

∂x
− Hxz − I3ü0 − I4

∂ẅ0

∂x
− I5θ̈x

)
δθx


dxdt

+

T∫
0


Nxxδu0|L0 + Mxxδ

(
∂w0

∂x

)∣∣∣∣∣∣L
0

+ Fxxδθx|L0 +

(
Qxx − ∂Mxx

∂x

)
δw0

∣∣∣∣∣∣L
0

−
(
I1u̇0 + I2

∂ẇ0

∂x
+ I4θ̇x

)
δẇ0

∣∣∣∣∣∣L
0

dt

(11)
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where
I0 =

∫
A

ρ(z)dA; I1 =

∫
A

f1(z)ρ(z)dA; I2 =

∫
A

f 2
1 (z)ρ(z)dA

I3 =

∫
A

f2(z)ρ(z)dA; I4 =

∫
A

f1(z) f2(z)ρ(z)dA; I5 =

∫
A

f 2
2 (z)ρ(z)dA

(12)

The equations of motion are formulated by taking Euler-Lagrange equations from (11).

δu0 :
∂Nxx

∂x
= I0ü0 + I1

∂ẅ0

∂x
+ I3θ̈x

δw0 :
∂2Mxx

∂2x
− ∂Qxz

∂x
+ knẅ0 = I1

∂ü0

∂x
+ I2

∂2ẅ0

∂2x
+ I4

∂θ̈x

∂x
− I0ẅ0

δθx :
∂Fxx

∂x
− Hxz = I3ü0 + I4

(
∂ẅ0

∂x

)
+ I5θ̈x

(13)

3.4. Navier’s solution

Navier’s solution satisfies the boundary conditions of a simply supported beam and has the fol-
lowing form with α = nπ/L.

u0 =

∞∑
n=1

uncos (αx)cos (ωt) ; w0 =

∞∑
n=1

wnsin (αx)cos (ωt) ; θx =

∞∑
n=1

θncos (αx)cos (ωt) (14)

Take into account each term of the serie solution as a free vibration mode shape of the beam
and replace it into the equations (3), (8) and (13), one obtains the eigenvalue-equations of the free
vibration. 

 k11 k12 k13
k21 k22 k23
k31 k32 k33

 − ω2

 m11 m12 m13
m21 m22 m23
m31 m32 m33



 un

wn

θn

 =

 0
0
0

 (15)

4. Numerical results

Consider a simply supported FG sandwich beam of dimensions L × 1 × h with metal foam core
of porosity coefficient e0 and FGM face layers. The FG sandwich beam is made of aluminum as
metal (Al: Em = 70 GPa, νm = 0, 3) and of Alumina as ceramic (Al2O3: Ec = 380 GPa, νc = 0, 3).
The beam rests on a Winkler elastic foundation of constant kn. Non-dimensional fundamental natural
frequency is defined as [18].

ω =
ωL2

h

√
ρm

Em
(16)

4.1. Validation

In order to verify the accuracy of present study, a simply supported FG sandwich beam with
isotropic core (e0 = 0) without elastic foundation (kn = 0) is considered. The non-dimensional funda-
mental natural frequencies are calculated for different face-core-face thickness ratios, two slenderness
ratios L/h = 5; 20 and power law index p = 5 using various beam theories.

The results are compared with those obtained using refined shear deformation beam theory (RS-
DBT) of [18] and are presented in Table 2. It can be seen that non-dimensional fundamental natural
frequencies of the parabolic shear deformation beam theory (PSDBT) are absolutely in agreement
with that of RSDBT theory in [18]. The other theories show a good agreement with RSDBT except
CBT and FSDBT show a little discrepancy.
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Table 2. Comparison of non-dimensional fundamental natural frequencies of FG sandwich beam
with isotropic core for various beam theories and beam configurations

p Theory
L/h = 5 L/h = 20

1-0-1 2-1-2 1-1-1 1-2-1 1-0-1 2-1-2 1-1-1 1-2-1

5

RSDBT [18] 2.7446 2.8439 3.0181 3.3771 2.8439 2.9310 3.1111 3.4921
PSDBT 2.7446 2.8439 3.0181 3.3771 2.8439 2.9310 3.1111 3.4921

CBT 2.8082 2.8953 3.0741 3.4517 2.8483 2.9346 3.1149 3.4972
FSDBT 2.7274 2.8281 3.0039 3.3652 2.8427 2.9299 3.1101 3.4913
TSDBT 2.7462 2.8451 3.0188 3.3772 2.8440 2.9311 3.1111 3.4921
ESDBT 2.7480 2.8463 3.0197 3.3773 2.8442 2.9312 3.1112 3.4921

4.2. Effect of slenderness ratio L/h

Consider a 1-2-1 sandwich FG beam consist metal foam core and FGM faces resting on Win-
kler elastic foundation with e0 = 0.4, p = 5, kn = 107 (N/m3) and with different ratios L/h =

5; 10; 15; 20; 30; 40. The non-dimensional fundamental natural frequencies of the FG sandwich beam
are presented in Table 3 and their variation versus slenderness ratios are graphically depicted in Fig. 2.

Table 3. Non-dimensional fundamental natural frequency ω of 1-2-1 FG sandwich beam
with different slenderness ratios

Theory
L/h

5 10 15 20 30 40

ω

CBT 5.5914 5.7047 5.8538 6.2048 7.9592 11.4091
FSDBT 5.1969 5.5910 5.8030 6.1775 7.9496 11.4054
PSDBT 4.9243 5.5012 5.7615 6.1551 7.9417 11.4023
TSDBT 4.8894 5.4889 5.7558 6.1519 7.9406 11.4018
ESDBT 4.8542 5.4762 5.7498 6.1487 7.9395 11.4014

It is observed that the non-dimensional natural frequency increases with increasing value of slen-
derness ratios for all beam theories. When the ratio L/h is small, natural frequencies obtained by var-
ious theories are considerably different and they are more and more convergent when L/h increases.
This result shows important effect of the shear deformation on the short beams.

4.3. Effect of the face-core-face thickness ratios

A sandwich beam with L/h = 5, e0 = 0.4, p = 5, kn = 107 (N/m3) and different face-core-face
thickness ratios is studied. The non-dimensional fundamental natural frequencies are presented in
Table 4. Fig. 3 shows their variation with respect to face-core-face thickness ratios. It can be seen
that, in most case, non-dimensional fundamental natural frequency decreases as the face-core-face
thickness ratio increases. This can be explained by the reduction of bending stiffness of the beam
when the porous core thickness increases. Nonetheless, when the thickness of the core is small (1-0-1
to 3-4-3), it seems that the frequency slightly increases in two cases: CBT, FSDBT. This is due to the
low effect of shear deformation in these theories.
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Table 4. Non-dimensional natural frequency ω of sandwich beams
with different face-core-face thickness ratios

Theory
Ratio of the layer’s depth

1-0-1 2-1-2 3-2-3 1-1-1 3-4-3 1-2-1 1-8-1

ω

CBT 5.5009 5.6371 5.6572 5.6708 5.6590 5.5914 4.7538
FSDBT 5.2220 5.3085 5.3158 5.3090 5.2824 5.1969 4.3892
PSDBT 5.1898 5.2054 5.1883 5.1353 5.0684 4.9243 4.1615
TSDBT 5.1858 5.1901 5.1692 5.1094 5.0375 4.8894 4.1568
ESDBT 5.1824 5.1743 5.1491 5.0820 5.0052 4.8542 4.1551

4.4. Effect of volume fraction of FG face layers

Reconsider the 1-2-1 FG sandwich beam with L/h = 5, e0 = 0.4, kn = 107 (N/m3) and different
volume fraction indices of the face layers p = 0.1; 0.5; 1; 2; 5; 10. The obtained non-dimensional
fundamental natural frequencies ω of the beams are tabulated in Table 5. Fig. 4 exhibits the their
variation with respect to volume fraction index of the face layers. As can be seen from the presented
results, the non-dimensional natural frequency increases with increasing value of volume fraction
index p of face layers. It is basically due to the fact that Young’s modulus of ceramic is higher
than those of metal. When the volume fraction p increases, the ceramic amount increases and this
makes augment to natural frequency. The effect of shear deformation on the considered beams is also
indicated in the figure.

4.5. Effect of porosity coefficient of the porous core

The non-dimensional fundamental natural frequencies computed for a 1-2-1 sandwich beam with
L/h = 5, p = 5, kn = 107 (N/m3) and different values of porosity coefficient of the porous core
e0 = 0; 0.2; 0.4; 0.6; 0.8 to show the effect of this parameter. The results are presented in Table 6.
The variation of non-dimensional fundamental natural frequencies versus porosity coefficients is il-
lustrated in the Fig. 5. The presented results show that non-dimensional natural frequency of the
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Table 5. Non-dimensional fundamental natural frequency ω of FG sandwich beams
with different values of volume fraction index of face layers

Theory
Volume fraction index of the face layers p

0.1 0.5 1 2 5 10

ω

CBT 3.4579 4.5084 4.9964 5.3520 5.5914 5.6628
FSDBT 3.2545 4.1951 4.6374 4.9664 5.1969 5.2700
PSDBT 3.2120 4.0441 4.4182 4.7030 4.9243 5.0071
TSDBT 3.2095 4.0341 4.3999 4.6754 4.8894 4.9706
ESDBT 3.2078 4.0257 4.3833 4.6490 4.8542 4.9330
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Table 6. Non-dimensional fundamental natural frequency ω of FG sandwich beams
with different values of porosity coefficient of the porous core

Theory
Porosity coefficient of the porous core e0

0 0.2 0.4 0.6 0.8

ω

CBT 5.4373 5.5074 5.5914 5.6979 5.8487
FSDBT 5.0666 5.1254 5.1969 5.2889 5.4219
PSDBT 4.8587 4.8879 4.9243 4.9739 5.0539
TSDBT 4.8361 4.8599 4.8894 4.9299 4.9978
ESDBT 4.8148 4.8326 4.8542 4.8842 4.9375

beam increases with the increasing porosity coefficient. This seems reasonless because the increase
of the porosity of the core will entrain the reduction of the bending stiffness of the beams and makes
decrease the natural frequency. But one has to notice that this increase of the porosity also entrains
the reduction of the mass density and its effect is inverse. Thus, combination of these two effects
makes increase the natural frequency of the beam.

31

Figure 5. Effect of porosity coefficient of the porous
core e0 on non-dimensional natural frequency ω of

FG sandwich beams

Table 6. Non-dimensional fundamental natural frequency ω of FG sandwich beams
with different values of porosity coefficient of the porous core

Theory
Porosity coefficient of the porous core e0

0 0.2 0.4 0.6 0.8

ω

CBT 5.4373 5.5074 5.5914 5.6979 5.8487
FSDBT 5.0666 5.1254 5.1969 5.2889 5.4219
PSDBT 4.8587 4.8879 4.9243 4.9739 5.0539
TSDBT 4.8361 4.8599 4.8894 4.9299 4.9978
ESDBT 4.8148 4.8326 4.8542 4.8842 4.9375
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5. Conclusions 

This paper investigates the free vibration of sandwich beams with FG porous core and FGM faces resting on 

Winkler elastic foundation. A general form of the displacement field and the equations of motion through 

Hamilton’s principle have been established. Using this general form of various beam theories, the paper 

shows the important effect of shear deformation on the fundamental natural frequency of short beams. The 

effects of  Winkler foundation stiffness, transverse shear deformation, slenderness ratio, face-core-face 

thickness ratio, volume fraction index, as well as porosity coefficient of the core on the fundamental natural 

frequency are also investigated. The results show an inverse effect of the increase of porosity coefficient of 

the core on the fundamental natural frequency beacause of the reduction of the mass density.    
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Figure 6. Effect of stiffness of Winkler elastic
foundation kn on non-dimensional natural

frequency ω of sandwich beams

Consider a 1-2-1 sandwich beam with
L/h = 5, e0 = 0.4, p = 5 and differ-
ent Winkler elastic foundation stiffness kn =

0.5; 20; 200; 500; 1000; 2000 (×106 N/m3).
The results presented in Table 7 and in Fig. 6.
This figure shows that the non-dimensional
fundamental natural frequency of the beam
increases with the increasing constant of the
elastic foundation. Because when the constant
kn increases, it makes augment to the bending
stiffness of the beam and therefore entrains the
increase of the natural frequency. Moreover
we can also clearly observe the effect of the
shear deformation as in the above other tests.

Table 7. Non-dimensional natural frequency ω of sandwich beams with increasing constant
of Winkler elastic foundation obtained by various theories

Theory
kn(×106 N/m3)

0.5 20 200 500 1000 2000

ω

CBT 5.5895 5.5935 5.6303 5.6911 5.7911 5.9860
FSDBT 5.1948 5.1992 5.2392 5.3051 5.4133 5.6234
PSDBT 4.9221 4.9267 4.9691 5.0390 5.1535 5.3750
TSDBT 4.8871 4.8918 4.9345 5.0050 5.1202 5.3433
ESDBT 4.8519 4.8566 4.8997 4.9707 5.0868 5.3114

5. Conclusions

This paper investigates the free vibration of sandwich beams with FG porous core and FGM faces
resting on Winkler elastic foundation. A general form of the displacement field and the equations
of motion through Hamilton’s principle have been established. Using this general form of various
beam theories, the paper shows the important effect of shear deformation on the fundamental natural
frequency of short beams. The effects of Winkler foundation stiffness, transverse shear deformation,
slenderness ratio, face-core-face thickness ratio, volume fraction index, as well as porosity coefficient
of the core on the fundamental natural frequency are also investigated. The results show an inverse
effect of the increase of porosity coefficient of the core on the fundamental natural frequency because
of the reduction of the mass density.
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