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Abstract

A fuzzy finite element approach for static analysis of laterally loaded pile in multi-layer soil with uncertain
properties is presented. The finite element (FE) formulation is established using a beam-on-two-parameter
foundation model. Based on the developed FE model, uncertainty propagation of the soil parameters to the
pile response is evaluated by mean of the α-cut strategy combined with a response surface based optimization
technique. First order Taylor’s expansion representing the pile responses is used to find the binary combinations
of the fuzzy variables that result in extreme responses at an α-level. The exact values of the extreme responses
are then determined by direct FE analysis at the found binary combinations of the fuzzy variables. The proposed
approach is shown to be accurate and computationally efficient.

Keywords: laterally-loaded pile; uncertainty; fuzzy finite element analysis; α-cut strategy; response surface
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1. Introduction

Piles subjected to lateral loadings can be found in many civil engineering structures such as off-
shore platforms, bridge piers, and high-rise buildings. For the design of pile foundations of such
structures, special attention needs to be concentrated not only on the bearing capacity but also on the
behavior (horizontal displacement, stress) of the piles under lateral loading conditions. The determin-
istic analysis of lateral loading behavior of piles is complicated and in general requires a numerical
solution procedure (e.g., the finite difference method, finite element method).

On the other hand, uncertainty is often present in the input data, especially in geotechnical engi-
neering data. These uncertainties can be accounted for by using probabilistic methods, e.g., methods
proposed in [1–6]. However, very often the input data fall into the category of non-statistical uncer-
tainty. The reason for this uncertainty is that the made observations could be best categorized with
linguistic variables (e.g., the soil may be described with linguistic variables such as “very soft,” “soft,”
or “stiff”; “loose”, “dense”, or “very dense”), or that only a limited number of samples are available
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and a particular soil properties are unknown or vary from one location to another location. These
types of uncertainties can be appropriately represented in the mathematical model as fuzziness [7].

In recent years, non-probabilistic FE methods based on fuzzy set theory have been introduced
to the analysis of uncertain structural systems. The fuzzy FE methods have been applied for both
static and dynamic analysis of various structures [8–11]. In this paper, an efficient fuzzy FE approach
is developed to analyze the response of laterally loaded pile in multi-layer soils. It is assumed that
only rough estimates of the soil parameters are available and these are modeled as fuzzy values. The
analysis of the pile-soil interaction is based on a “Beam-on-two-parameter-linear-elastic-foundation”
FE model. The fuzzy pile response is estimated by a response surface based optimization technique
using first order Taylor’s expansion of the pile response. The accuracy and computational efficiency
of the proposed approach are illustrated in a numerical example.

2. General fuzzy structural analysis

2.1. Fuzzy model of uncertainty

Among practical engineering problems, randomness and fuzziness are associated with the model
parameters (e.g. material properties, geometrical dimensions, loads). These uncertainties can be
modeled in form of fuzzy sets [7]. According to [7] a fuzzy set is defined as X̃ = (X, µX) with X is
a set and µX → [0, 1] is called the membership function. Corresponding to each element x ∈ X, the
value µX(x) is called membership level of x; µX(x) defines the level of x belonging to the fuzzy set X̃.
The value 0 states that x does not belong to X̃; the value 1 means that x definitely belongs to X̃; the
value in interval 0 to 1 shows that the level of x belonging to X̃ is uncertain.

The α-cut, Xα of the fuzzy set X̃ is a set of elements x ∈ X with the membership level µX(x) ≥ α:

Xα = {x ∈ X : µX(x) ≥ α}, α ∈ [0, 1] (1)

Fig. 1 illustrates the membership function and an α-cut of a triangular fuzzy set.
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Figure 1. Membership function and the α-cut of a fuzzy set

2.2. The α-level optimization

Consider a model output y given by y = f (x1, x2, . . . , xn) with xi being n fuzzy input variables,
xi ∈ Xi : µXi(x) → [0, 1]. The function f (·) can be any function or numerical model, e.g. the finite

2



Anh, P. H. / Journal of Science and Technology in Civil Engineering

element model. Through the mapping function f (·), the output y is also a fuzzy quantity represented
by its output fuzzy set Ỹ = {y ∈ Y : µY (y) → [0, 1]}. A practical mean to determine the membership
function of y, µY (y), is the α-cut strategy [8]. Here, the fuzzy input variables are discretized into
m levels, αk, (k = 1, 2, . . . ,m). Corresponding to each level αk, we have crisp sets of values of
inputs, Xi,αk ⊂ Xi. The output interval of y corresponding to level αk (the αk-cut Yαk of Ỹ) is then
determined by interval analysis of the input sets Xi,αk through the mapping model f (·). Thus, a
discrete approximation of the membership function of the output can be obtained by repeating the
interval analysis on a finite number of αk-levels. Fig. 2 illustrates the fuzzy analysis using the α-cut
strategy for a function of two input variables.
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Figure 2. Illustration of fuzzy analysis by α-cut strategy
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The solution for the optimization problems of Eq. 20 can be numerical demanding. In order to reduce the 
computational burden, researchers have focused on efficient procedures to reduce the number of function
evaluations in performing these optimization problems [8,10,11].

This paper introduces a fast solution for the above optimization problems based on a response surface 
method, which is applicable for the fuzzy analysis of laterally loaded piles with uncertain soil parameters. The 
methodology is presented in the followings. 

3. Fuzzy finite element analysis of laterally loaded pile

3.1 Model of analysis 

Consider a vertical pile embed in a soil deposit containing n layers, with the thickness of layer i given by
iH

(Fig. 1(a)). The top of the pile is at the ground surface and the bottom end of the pile is considered embedded
in the n -th layer. Each soil layer is assumed to behave as a linear, elastic material with the compressive 
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The equation (3) is exactly the same as the equation for the “Beam-on-two-parameter-linear-elastic-
foundation” model introduced by Vlasov and Leont’ev [14]. The use of linear elastic analysis in the laterally 
loaded pile problem, especially in the prediction of deformations at working stress levels, has become a 
widely accepted model in geotechnical engineering. Also in the real problem where nonlinear stress-strain 
relationships for the soil must be used, linear elastic solution provides the framework for the analysis, in which 
the elastic properties of the soil will be changed with the changing deformation of the soil mass (e.g., the “p–
y” method [15]).
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Figure 2. Illustration of fuzzy analysis by α-cut strategy

The smallest and largest values (the extreme values) of the α-cut Yαk define two points of the
membership function of the fuzzy output, Ỹ . The exact extreme values of the α-cut Yαk are often
determined by solving two optimization problems, which are referred as the α-level optimization [12]:

yαk ,min = min
xi∈Xi,αk

( f (x1, x2, . . . , xn))

yαk ,max = max
xi∈Xi,αk

( f (x1, x2, . . . , xn))
(2)

The solution for the optimization problems of Eq. (2) can be numerical demanding. In order
to reduce the computational burden, researchers have focused on efficient procedures to reduce the
number of function evaluations in performing these optimization problems [8, 10, 11].

This paper introduces a fast solution for the above optimization problems based on a response
surface method, which is applicable for the fuzzy analysis of laterally loaded piles with uncertain soil
parameters. The methodology is presented in the followings.

3. Fuzzy finite element analysis of laterally loaded pile

3.1. Model of analysis

Consider a vertical pile embed in a soil deposit containing n layers, with the thickness of layer i
given by Hi (Fig. 3(a)). The top of the pile is on the ground surface and the bottom end of the pile
is considered embedded in the n-th layer. Each soil layer is assumed to behave as a linear, elastic
material with the compressive resistance parameter ki and shear resistance parameter ti. The pile
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is subjected to a lateral force F0 and a moment M0 at the pile top. The pile behaves as an Euler–
Bernoulli (EB) beam with length Lp and a constant flexural rigidity EI. The governing differential
equation for pile deflection wi within any layer i is given in [13]:

EI
d4wi

dz4 + kiwi − 2ti
d2wi

dz2 = 0 (3)

Eq. (3) is exactly the same as the equation for the “Beam-on-two-parameter-linear-elastic-
foundation” model introduced by Vlasov and Leont’ev [14]. The use of linear elastic analysis in
the laterally loaded pile problem, especially in the prediction of deformations at working stress lev-
els, has become a widely accepted model in geotechnical engineering. Also in the real problem
where nonlinear stress-strain relationships for the soil must be used, linear elastic solution provides
the framework for the analysis, in which the elastic properties of the soil will be changed with the
changing deformation of the soil mass (e.g., the “p–y” method [15]).

In this paper, this Beam-on-linear-elastic-foundation model is the basis for the finite element
formulation of the laterally loaded pile problem which will be presented in the next section.
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The pile is divided into m finite elements and to each j -th node of their interconnection, two degrees of

freedom are allowed: 
jwq – the deflection and jq – the rotation of cross section with positive direction as 

in Figure 1(b). Element of EB-beam type is chosen for each pile element with length el and two nodes, 

one at each end. The element is connected to other elements only at the nodes. To each element, two

degrees of freedom are allowed at both ends: deflection, 1w  and rotation, 1 , and 2w , 2 respectively,

positive in the system of local axes as shown in Figure 1(c). The element nodal displacement vector 
e
q

and the element nodal force vector 
e
r with respect to the system of local axes are defined: 
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k k k k represents the stiffness matrix of one-dimension finite element
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Figure 3. (a) A laterally-loaded pile in a layered soil; (b) FE discretization; (c) Beam-type element

3.2. Finite element modeling

The pile is divided into m finite elements and to each j-th node of their interconnection, two
degrees of freedom are allowed: q jw - the deflection and q jθ - the rotation of cross section with
positive direction as in Fig. 3(b). Element of EB-beam type is chosen for each pile element with
length le and two nodes, one at each end. The element is connected to other elements only at the
nodes. To each element, two degrees of freedom are allowed at both ends: deflection, w1 and rotation,
θ1, and w2, θ2 respectively, positive in the system of local axes as shown in Fig. 3(c). The element
nodal displacement vector {q}e and the element nodal force vector {r}e with respect to the system of
local axes are defined:

{q}e = {w1 θ1 w2 θ2}
T , {r}e = {Q1 M1 Q2 M2}

T (4)
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It is noted that Q1 and Q2 from (4) include shear force in the pile section and also shear force in
the soil.

The equilibrium equation of an element has the form:

[k]e {q}e = {r}e (5)

In Eq. (5) [k]e = [k]b + [k]w + [k]t represents the stiffness matrix of one-dimension finite element
of pile on two-parameter elastic foundations. The terms of [k]b , [k]w , [k]t matrices have been
established in [16] as:

[k]b =
EI
l3e


12 −6le −12 −6le
−6le 4l2e 6le 2l2e
−12 6le 12 6le
−6le 2l2e 6le 4l2e

 (6)

[k]w =
kle
420


156 −22le 54 13le
−22le 4l2e −13le −3l2e

54 −13le 156 22le
13le −3l2e −3l2e 4l2e

 (7)

[k]t =
2t

30le


36 −3le −36 −3le
−3le 4l2e 3le −l2e
−36 3le 36 3le
−3le −l2e 3le 4l2e

 (8)

The system equation is obtained by assembly of all elements, implementation of boundary condi-
tions, and introduction of loads.

3.3. Proposed fuzzy analysis

Assume that a pile response y is monotonic with respects to the fuzzy soil parameters ai, i =

1, 2, . . . , n, (here ai can be compressive parameters or shear parameters). A first order Taylor’s expan-
sion of y at the soil parameter value (a0

1, a
0
2, . . . , a

0
n) given by

y(a1, a2, .., an) ' y(a0
1, a

0
2, . . . , a

0
n) +

n∑
i=1

ẏ0
i (ai − a0

i ) (9)

where ẏ0
i is the partial derivative of y with respect to the parameter ai, taken at (a0

1, a
0
2, . . . , a

0
n).

The extreme values of y at an α-level can be determined then as

ymin = y(a0
1, a

0
2, . . . , a

0
n) +

n∑
i=1

min
{
ẏ0

i (ai − a0
i )
}

ymax = y(a0
1, a

0
2, . . . , a

0
n) +

n∑
i=1

max
{
ẏ0

i (ai − a0
i )
} (10)

or for monotonic function,

ymin = y(a0
1, a

0
2, . . . , a

0
n) +

n∑
i=1

min
{
ẏ0

i (ai,min − a0
i ), ẏ0

i (ai,max − a0
i )
}

ymax = y(a0
1, a

0
2, . . . , a

0
n) +

n∑
i=1

max
{
ẏ0

i (ai,min − a0
i ), ẏ0

i (ai,max − a0
i )
} (11)
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where ai,min and ai,max are the lower and upper bound of ai, respectively, corresponding to that α-level.
Since Eq. (9) is only an approximation of the actual response, the extreme values obtained by (11) do
not represent the real bounds of the response. To calculate the exact bounds of y, we directly evaluate
y using FE analysis at the binary combinations of the fuzzy parameter values that result in the extreme
responses of (11).

Furthermore, the partial derivative ẏ0
i is approximated as:

ẏ0
i '

y(a0
1, a

0
2, . . . , a

0
i + δai, . . . , a0

n) − y(a0
1, a

0
2, . . . , a

0
i − δai, . . . , a0

n)
2δai

(12)

where δai is a small variation of ai, taken as 0.001a0
i in this study. The determination of ẏ0

i is carried
out once for each ai, with (a0

1, a
0
2, . . . , a

0
n) to be the value of the fuzzy variable ai having the member-

ship of 1. Thus, the proposed approach requires 2(n + m) + 1 model analysis to approximate the fuzzy
membership function of a pile response, where m is the number of discretized membership levels.

The flowchart of the proposed fuzzy analysis is presented in Fig. 4.
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k k
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function 

End 
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TRUE 

Determine   i,mina

Figure 4. Flowchart of the proposed fuzzy analysis for pile

4. Application

To verify the above approach, a laterally-loaded pile taken from [17] is analyzed. The pile of
length Lp = 20 m, cross-section radius rp = 0.3 m and modulus Ep = 25 × 106 kN/m2 is subjected
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to a lateral force F0 = 300 kN and a moment M0 = 100 kNm at the pile head. The soil deposit
has four layers with H1 = H2 = H3 = 5 m, and H4 = ∞. The soil properties are uncertain and
given by triangular fuzzy numbers: k1 = (33.6, 56.0, 78.4) MPa, k2 = (84.0, 140.0, 196.0) MPa,
k3 = (93.0, 155.0, 217.0) MPa and k4 = (120.0, 200.0, 280.0) MPa, and t1 = (6.6, 11.0, 15.4) MN,
t2 = (16.8, 28.0, 39.2) MN, t3 = (24.0, 40.0, 56.0) MN and t4 = (36.0, 60.0, 84.0) MN. Each fuzzy
parameter has the relative variation at different levels of membership with respect to the main value
at the membership of 1 not exceed 40%.

A finite-element model of forty elements with equal length 0.5 m is used for the analysis. Using
five membership levels, the estimated membership functions of the top deflection and the maximum
bending moment in the pile are shown in Fig. 5(a) and Fig. 5(b), respectively. The corresponding
membership functions obtained by direct optimization using differential evolution (DE) [18] are also
plotted in Fig. 5 for comparison. Moreover, the values of these membership functions at each mem-
bership level are listed in Table 1.
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Table 1. Results of the fuzzy analysis for the pile

µY (y)
Top displacement (min;max) [m] Max. bending moment (min;max) [kNm]

DE Proposed DE Proposed

1.0 0.0058 0.0058 199.8863 199.8863
0.8 (0.0055; 0.0062) (0.0055; 0.0062) (195.9505; 204.1065) (195.9505; 204.1065)
0.6 (0.0052; 0.0067) (0.0052; 0.0067) (192.2638; 208.6543) (192.2638; 208.6544)
0.4 (0.0049; 0.0072) (0.0049; 0.0072) (188.7972; 213.5837) (188.7972; 213.5838)
0.2 (0.0047; 0.0079) (0.0047; 0.0079) (185.5262; 218.9637) (185.5261; 218.9637)
0.0 (0.0045; 0.0087) (0.0045; 0.0087) (182.4303; 227.6920) (182.4300; 227.6922)

It is seen that the results obtained by the proposed approach and those provided by direct opti-
mization are almost identical. In this example, the membership functions of the pile responses are
approximated with five membership levels. To obtain sufficient good results DE requires more than
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1000 FE analyses, while the proposed approach needs only 2(8 + 5) + 1 = 27 FE analyses to produce
exact results. This clearly demonstrates the computational efficiency of the proposed approach.

5. Conclusion

This paper presents a fuzzy finite element analysis approach for the laterally-loaded pile in multi-
layered soils. The pile is idealized as a one-dimensional beam and the soil as two-parameter elas-
tic foundation model. A fast α-level optimization procedure is developed using a response surface
methodology based on the first order Taylor’s expansion of the pile response. The procedure is val-
idated by an example of a pile in 4-layer soil with fuzziness in soil parameters. Numerical results
show that the obtained fuzzy pile responses agree well with those obtained by direct optimization.
The advantage of the approach is that it does not require a large number of finite-element analyses as
often found in direct optimization strategy.
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